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ABSTRACT

Motivated by its success in decoding turbo codes, we provide an analysis of the belief
propagation algorithm on the turbo decoding graph with Gaussian densities. In this context,
we are able to show that, under certain conditions, the algorithm converges and that –
somewhat surprisingly – though the density generated by belief propagation may differ
significantly from the desired posterior density, the means of these two densities coincide.

Since computation of posterior distributions is tractable when densities are Gaussian,
use of belief propagation in such a setting may appear unwarranted. Indeed, our primary
motivation for studying belief propagation in this context stems from a desire to enhance
our understanding of the algorithm’s dynamics in non-Gaussian setting, and to gain in-
sights into its excellent performance in turbo codes. Nevertheless, even when the densities
are Gaussian, belief propagation may sometimes provide a more efficient alternative to
traditional inference methods.

Key words: approximate inference, belief network, belief propagation, Gaussian densities,
and turbo decoding.
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1 Introduction

Probability distributions provide a tool for characterizing beliefs about unobserved quan-
tities and relationships among them. As observations are made, beliefs change and poste-
rior distributions evolve to reflect improved understanding. Unfortunately, the process of
inference – that of computing posterior distributions – often entails integration over high–
dimensional spaces and is typically intractable. One exception arises when densities are
Gaussian. In this case, posterior distributions – which are also Gaussian – can be computed
efficiently and represented compactly in terms of means and covariances.

Another case that admits efficient computation arises when conditional independencies
among random variables form a convenient pattern. Belief networks and Markov random
fields offer two approaches to characterizing such conditional independencies in terms of
directed and undirected graphs, respectively. In either case, when the graph is singly con-
nected (i.e., when there are no cycles), belief propagation – an efficient inference algorithm
– becomes applicable [13, 22].

Many distributions of interest are not Gaussian and do not accommodate singly–connected
graphs. In such cases, exact inference is typically intractable, and approximations are called
for. Surprisingly, although belief propagation was developed for singly-connected graphs,
it has been shown to deliver impressive performance in many applications involving graphs
with cycles. A notable example of this is the turbo decoding algorithm used in turbo codes.

The turbo decoding algorithm is an approximation method that has delivered impressive
performance in certain coding applications [5, 6]. The inference task originally addressed
by the turbo decoding algorithm involves computing a distribution over the underlying
message after receiving an encoded transmission across a noisy communication channel.
The structure of the encoding scheme – which makes use of “turbo codes” – leads to efficient
transmission rates, but leaves the decoder with the job of solving an intractable inference
problem. The turbo decoding algorithm has proven to be an effective approximation method
for this task. Because its initial development was not supported by mathematical theory,
spectacular empirical success was received with surprise, excitement, and intrigue.

It turns out that the turbo decoding algorithm is equivalent to belief propagation. This
connection was first noted by Frey and Kschischang [11] and McEliece [20]. In particu-
lar, McEliece, MacKay, and Cheng [19] presented an interpretation of the turbo decoding
algorithm as an application of belief propagation in a graph with cycles. Since belief prop-
agation was developed for singly–connected graphs, application in the presence of cycles –
as is done in turbo decoding – was not supported by pre–existing principles.

With the excitement spawned by success of the turbo decoding algorithm came a reex-
amination of iterative decoding algorithms for codes on graphs [31, 32] and message passing
algorithms [12]. Message passing algorithms were proposed decades earlier in the coding
literature and bear similarities with the turbo decoding algorithm. Designed for decoding of
low density parity check codes, message passing algorithms turned out also to correspond to
belief propagation in graphs with cycles. Furthermore, a recent empirical study establishes
that message–passing algorithms share the impressive performance demonstrated by turbo
decoding [18, 24].

Indeed, Kschischang and Frey [14, 15] have shown that iterative decoding algorithms,
belief propagation, and various message passing algorithms are unified by a single frame-
work involving a distributed marginalization algorithm for functions characterized by factor
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graphs. They also show that many algorithms in artificial intelligence, signal processing,
and digital communications, which were each developed independently, fit naturally into
this framework. A similar unifying framework was also proposed in [3].

There are also signs of promise for belief propagation (in graphs with cycles) in inference
problems beyond those arising in coding. Positive results have been generated – for example
– in empirical case studies motivated by applications in image processing and medical deci-
sion making [21]. However, in some case studies, the algorithm fails, and factors influencing
performance are not well–understood. Analytical work has focused on identifying suitable
classes of problems and understanding why their properties foster success.

Recent analyses focusing on the context of coding [17, 23, 25] extend early work by
Gallager [12] to shed light on the success of turbo decoding and message passing algorithms.
In very rough terms, the thrust of this line of research involves establishing that cycles
arising in relevant coding applications are “generally very long” and showing that this allows
belief propagation to work “almost as well as in singly–connected graphs.” Additional work
specialized to the context of low density parity check codes further strengthens these results
[24].

Another line of analytical work has aimed at understanding the behavior of belief prop-
agation in general graphs with cycles. As a starting point, several researchers have studied
the case involving a graph with a single cycle [2, 8, 28]. This case is not useful in its own
right, since exact inference is tractable in the presence of a single cycle. However, the
study of this case has lead to concise results that enhance our state of understanding. In
particular, results pertaining to the case of a single cycle include:

1. Belief propagation converges to a unique stationary point.

2. If all random variables are binary–valued, the component–wise maximum likelihood
estimates offered by the resulting approximation concur with true maximum likelihood
values.

Unfortunately, the line of analysis employed for the case with a single cycle does not imme-
diately extend to graphs with multiple cycles.

In this paper, we study belief propagation from a new angle by analyzing its dynamics
in a restrictive setting where densities are Gaussian. We focus our attention on the case
where the dependence structure of the random variables is similar to the one that appeared
in the original turbo decoding application. The graph that captures this dependency will
be referred to as the turbo decoding graph. In this case, exact inference is tractable and
use of belief propagation is not entirely necessary. Nevertheless, belief propagation may
sometimes provide a more efficient method for solving certain inference problems in this
context. Our primary motivation for studying the Gaussian case, however, is to provide a
setting amenable to a streamlined analysis. A clear understanding here may offer insights
into behavior of belief propagation in more general settings, and possibly shed light on its
success in turbo codes.

Contributions of our analysis include certain concise results concerning use of belief
propagation when densities are Gaussian:

1. If belief propagation is initialized with Gaussian densities, each iterate is also Gaussian
(Lemma 2).

3



2. The associated sequence of covariance matrices converges to a unique stationary point
(Theorem 1).

3. Under certain conditions, the sequence of mean vectors also converges to a unique
stationary point (Theorem 2, Proposition 1, 2, 3, 4, and 5).

4. When belief propagation converges, the mean of the resulting approximation coincides
with that of the true posterior density (Theorem 3). (Note that, since the distribution
is Gaussian, the mean corresponds to the maximum likelihood value, so this result
parallels an aforementioned result concerning the case of a graph with a single cycle
and binary variables.)

While preparing this paper, we became aware of two related initiatives, both involving
analysis of belief propagation when densities are Gaussian and graphs possess cycles. Weiss
and Freeman [30] were studying the case of 2-dimensional lattice. Here, they were able
to show that, if belief propagation converges, the mean of the resulting approximation
coincides with that of the true posterior distribution. Weiss and Freeman also derived
equations characterizing dynamics of means and covariance matrices generated by belief
propagation. At the same time, Frey [10] studied a case involving graphical structures that
generalize those employed in turbo decoding. He derived an equation satisfied by stationary
points and provided an analysis relating convergence of means to the spectral radius of a
particular matrix (we will present and analyze a related matrix in Section 5.2). He also
conducted an empirical study. Coincidentally, short papers describing the work of Weiss
and Freeman [29] and Frey [9], as well as one summarizing results in this paper [26], were
simultaneously submitted to the same conference.

The paper is organized as follow. In the next section, we provide our working definition
of the belief propagation algorithm. To lend concreteness to this definition, we present an
example in Section 3 of a situation where belief propagation might be more efficient than
traditional inference methods. In Section 4, we discuss specialization of belief propagation
to the Gaussian case. A convergence analysis is then presented in Section 5. In section
6, we prove that the mean of the approximation generated by belief propagation coincides
with that of the desired posterior distribution. After presenting some experimental results,
we close with a concluding section.

2 Belief Propagation on the Turbo Decoding Graph

Consider a random variable x that takes on values in <n and has independent components.
Let p0 denote the prior density of x. Also, let y1 and y2 be two random variables that are
conditionally independent given x. For example, y1 and y2 might represent outcomes of
two independent transmissions of the signal x over a memoryless communication channel.
The turbo decoding graph depicting the dependence among the random variables (both in
Bayesian network and factor graph representation) is given in Figure 1. Our definition of
belief propagation will exploit the dependence structure of these random variables.

If y1 and y2 are observed, one might want to infer a posterior density f of x conditioned
on y1 and y2. This can be obtained by first computing densities p∗1 and p∗2, where the first
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Figure 1: Turbo Decoding Graph (a) Bayesian network representation, (b) factor graph
representation. In (b), the function f1 (resp. f2) corresponds to the conditional density of
y1 (resp. y2) given x. The function gi corresponds to the prior density of xi.

is conditioned on y1 and the second is conditioned on y2. Then,

f = α

(

p∗1p
∗
2

p0

)

,

where α is a “normalizing operator” defined by

αg =
g

∫

g(x)dx
,

and multiplication and division are carried out pointwise.
Unfortunately, even when p∗1 and p∗2 are known, computation of f can be intractable.

The burden associated with storing and manipulating high–dimensional densities appears
to be the primary obstacle. This motivates the idea of limiting attention to densities that
factor. In this context, it is convenient to define an operator π that generates a density that
factors while possessing the same marginals as another density. In particular, this operator
is defined by

(πg)(a) =
n
∏

i=1

∫

{x̄∈<n|x̄i=ai}
g(x̄)dx̄ ∧ dx̄i,

for any density g and any a ∈ <n, where dx̄ ∧ dx̄i = dx̄1 · · · dx̄i−1dx̄i+1 · · · dx̄n. One might
aim at computing πf as a proxy for f . Unfortunately, even this problem can be intractable.
Belief propagation can be viewed as an iterative algorithm for approximating πf .

Let operators T1 and T2 be defined by

T1g = α

((

π
p∗1g

p0

)

p0

g

)

,

and

T2g = α

((

π
gp∗2
p0

)

p0

g

)

,

for any density g. Belief propagation is applicable in cases where computation of these two

operations is tractable. The algorithm generates sequences q
(k)
1 and q

(k)
2 according to

q
(k+1)
1 = T1q

(k)
2 and q

(k+1)
2 = T2q

(k)
1 .

initialized with densities q
(0)
1 and q

(0)
2 that factor. The hope is that α(q

(k)
1 q

(k)
2 /p0) converges

to a useful approximation of πf .
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Figure 2: An example of a hidden Markov model.

3 An Example

The preceding abstract definition relied on use of operators T1 and T2 as subroutines. For
the sake of concreteness, we will discuss in this section certain situations where computation
of T1 and T2 is tractable. It is in such situations that belief propagation may constitute a
legitimate approximation scheme.

We will describe an example in terms of Markov random fields, so let us begin by
reviewing the semantics of this graphical modeling framework. A Markov random field is
an undirected graph with each node corresponding to a random variable. The arcs convey
information about conditional independencies. In particular, if A, B, and C, are mutually
exclusive sets of nodes and C separates A from B, then the random variables corresponding
to A are conditionally independent from those corresponding to B conditioned on those
corresponding to C. The term separates refers to the fact that every path from a node in A
to a node in B visits at least one node in C.

When a Markov random field is singly connected, belief propagation offers an efficient
approach to inference. In particular, when some of the variables are observed, a poste-
rior distribution over the remaining variables, and furthermore, marginal distributions over
individual variables, can be efficiently computed.

One common class of Markov random fields that accommodates efficient inference is the
class of hidden Markov models. Figure 2 depicts the Markov random field associated with a
simple hidden Markov model. The nodes are labeled with corresponding random variables.
It is easy to see that the graph is singly connected, and the common inference problem
of computing a posterior distribution over a1, . . . , an conditioned on b1, . . . , bn is efficiently
solved by belief propagation.

In the presence of cycles, inference becomes more complicated and often intractable.
We will now describe one class of problems for which belief propagation may constitute a
useful approximation scheme. Consider two singly connected Markov random fields – M1

and M2 – each with 2n nodes. The nodes of M1 correspond to the components of two
n–dimensional random vectors y1 and z1, while those of M2 correspond to y2 and z2. In
either graph, belief propagation offers efficient inference when y1 or y2 is observed.

Consider now an augmented Markov random fieldM containing 5n nodes, corresponding
to components of y1, y2, z1, z2, and another random vector x. The arcs include those
connecting components of y1 and z1 in M1, as well as those connecting components of
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Figure 3: An example of the Markov random field M when n = 4. Note the presence of
cycles.

y2 and z2 in M2. Furthermore, 2n additional arcs connect each component of x with
components of z1 and z2. As illustrated by an example in Figure 3, M can possess cycles.
In the presence of cycles, traditional exact inference method [16] requires construction of a
junction tree, where nodes in the tree correspond to cliques in a triangulated graph. The
resulting clique is generally very large due to the presence of cycles. Since the running time
of these algorithms is exponential in the clique size, exact inference is typically infeasible in
these problems.

Though the presence of cycles can render many inference tasks intractable, there are
at least some forms of inference in M that can be performed efficiently. For example,
upon observation of y1, the posterior distribution p∗1 over x can be efficiently computed
by belief propagation. This is possible because the nodes corresponding to z2 and y2 can
be ignored, and the remaining nodes form a singly connected graph. Similarly, if y2 is
observed, the posterior distribution p∗2 over x can be efficiently inferred. However, if we
observe both y1 and y2, inference becomes complex. In this context, belief propagation may
provide a suitable approximation algorithm. Ideally, the algorithm should generate marginal
distributions over individual components of x, conditioned on simultaneous observation of
y1 and y2.

We assume that the prior distribution p0 over x factors (i.e., p0 = πp0, or equivalently,
the components of x are initially independent). For any density g over x, p∗1g/p0 would be
the posterior density over x conditioned on y1 if the prior density over x were g, rather than
p0. Consequently, for any density g that factors, by appropriately altering the priors on x
(while keeping fixed conditional probabilities of y1 and z1, conditioned on x) and applying
belief propagation, we can efficiently compute π(p∗1g/p0). This in turn enables efficient
computation of

T1g = α

(

π

(

p∗1g

p0

)

p0

g

)

,

since pointwise multiplication and normalization are tractable for functions that factor. The
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operator T2 similarly accommodates efficient computation.
In conclusion, for the Markov random field M, there are tractable implementations of

T1 and T2, and application of belief propagation is therefore feasible. Whether or not belief
propagation will generate useful approximations, however, is a separate issue.

4 The Gaussian Case

In the remainder of this paper, we will focus on a setting in which the joint distribution of
x, y1, and y2, is Gaussian. In this context, application of belief propagation may appear
to be unwarranted – there are tractable algorithms for computing conditional distributions
when priors are Gaussian. Indeed, our primary motivation is to provide a setting amenable
to a streamlined analysis and concise results. It is worth noting, nevertheless, that belief
propagation may provide a more efficient means than traditional algorithms for solving cer-
tain Gaussian inference problems. We will further discuss this possibility in the concluding
section.

Let us define some notation that will facilitate our exposition. Let D denote the set of
covariance matrices that are diagonal and positive definite. Let G denote the set of Gaussian
densities with covariance matrices in D. We will write g ∼ N(µg,Σg) to denote a Gaussian
density g with mean vector µg and covariance matrix Σg. For any matrix A, let δ(A) denote
a diagonal matrix with entries equal to the diagonal elements of A. Hence,

πg ∼ N(µg, δ(Σg)),

for any Gaussian density g ∼ N(µg,Σg). For any diagonal matrices D and D, we write
D ≤ D if Dii ≤ Dii for all i and D < D if Dii < Dii for all i. For any two pairs of
diagonal matrices (C,D) and (C,D), we write (C,D) ≤ (C,D) if C ≤ C and D ≤ D.
Similarly, we write (C,D) < (C,D) if C < C and D < D. For any matrices Σu,Σv for
which Σ−1

u + Σ−1
v − I is nonsingular, we define a matrix AΣu,Σv by

AΣu,Σv = (Σ−1
u + Σ−1

v − I)−1.

To abbreviate, we will sometimes denote this matrix by Auv. Finally, all vectors are assumed
to be column vectors unless explicitly stated otherwise.

When the random variables x, y1, and y2, are jointly Gaussian, the densities p∗1, p∗2, f ,
and p0, are also Gaussian. We define µ, µ1, µ2, Σ, Σ1, and Σ2, to be means and covariance
matrices satisfying

p∗1 ∼ N(µ1,Σ1), p∗2 ∼ N(µ2,Σ2), f ∼ N(µ,Σ).

We make the following assumptions concerning these parameters.

Assumption 1
(a) p0 = N(0, I), where I is the identity matrix.
(b) Σ−1

1 − I and Σ−1
2 − I are positive definite.

(c) Σ1 and Σ2 are positive definite.

The first assumption simplifies the exposition at no sacrifice of generality. Any problem
with a nondegenerate Gaussian prior on x can be transformed to meet this requirement
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by appropriate translation and scaling of the coordinate system. The second assumption
implies that the observations y1 and y2 each provide at least some information pertinent
to every component of x. The final assumption, on the other hand, requires that neither
observation rules out possible outcomes – every outcome for x is possible both before and
after an observation, though the prior and posterior probabilities may differ substantially.

Since f = α(p∗1p
∗
2/p0), its mean µ and covariance matrix Σ are determined by those of

p∗1, p∗2, and p0. The nature of this dependence is identified by the following lemma, which
will be reused for various purposes in subsequent sections.

Lemma 1 Let u ∼ N(µu,Σu) and v ∼ N(µv,Σv), where Σu and Σv are positive definite.
If Σ−1

u + Σ−1
v − I is positive definite, then

α

(

uv

p0

)

∼ N
(

Auv

(

Σ−1
u µu + Σ−1

v µv

)

, Auv

)

.

This result follows from simple algebra, and we omit the proof. The implications with
respect to µ and Σ are, of course, that

µ = AΣ1,Σ2

(

Σ−1
1 µ1 + Σ−1

2 µ2

)

and Σ = AΣ1,Σ2 .

It turns out that, if initialized with Gaussian densities q
(0)
1 , q

(0)
2 ∈ G, all iterates q

(k)
1

and q
(k)
2 generated by belief propagation are also in G. This fact simplifies analysis of the

algorithm’s dynamics – we need only attend to sequences of means and covariance matrices.

In particular, we can define sequences m
(k)
1 , m

(k)
2 , C

(k)
1 , and C

(k)
2 , such that

q
(k)
1 ∼ N

(

m
(k)
1 , C

(k)
1

)

and q
(k)
2 ∼ N

(

m
(k)
2 , C

(k)
2

)

.

The fact that iterates remain Gaussian is a consequence of the following lemma, the proof
of which is provided in Appendix B.

Lemma 2 The set G is closed under T1 and T2.

It follows from this lemma that, over the domain G, the mappings T1 and T2, which act
on densities, can be represented in terms of operations on mean vectors and covariance
matrices. We will provide characterizations of these operations in the form of a lemma. For
a concise statement of the lemma, let us define some notation. For any D ∈ D, let functions
F1 and F2 be defined by

F1(D) =
(

(δ (AΣ1,D))−1 + I −D−1
)−1

,

and

F2(D) =
(

(δ (AD,Σ2))
−1 + I −D−1

)−1
.

Furthermore, for any m ∈ <n and any D ∈ D, let functions H1 and H2 be defined by

H1(m,D) = F1(D)
(

A−1
F1(D),DAΣ1,D − I

)

D−1m + F1(D)A−1
F1(D),DAΣ1,DΣ−1

1 µ1,

and

H2(m,D) = F2(D)
(

A−1
D,F2(D)AD,Σ2 − I

)

D−1m + F2(D)A−1
D,F2(D)AD,Σ2Σ

−1
2 µ2.

The lemma follows.
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Lemma 3 For all g ∈ G, if g ∼ N(µg, Dg) then

T1g ∼ N(H1(µg, Dg),F1(Dg)) and T2g ∼ N(H2(µg, Dg),F2(Dg)).

Given this lemma, dynamics of belief propagation can be characterized by

C
(k+1)
1 = F1

(

C
(k)
2

)

and C
(k+1)
2 = F2

(

C
(k)
1

)

,

and
m

(k+1)
1 = H1

(

m
(k)
2 , C

(k)
2

)

and m
(k+1)
2 = H2

(

m
(k)
1 , C

(k)
1

)

.

Once again, we postpone the proof of this lemma to Appendix B.

5 Convergence Analysis

Two immediate consequences of Lemma 3 guide the general structure of our convergence
analysis. The first is that covariance matrices generated by belief propagation evolve in-
dependently from mean vectors. This fact leads us to begin by studying the dynamics of
covariance matrices without paying any attention to that of the mean vectors.

We will show that each sequence of covariance matrices converges to a unique stationary
point. Denoting the stationary points by C∗

1 and C∗
2 , this allows us to approximate the

dynamics of the means for large k by

m
(k+1)
1 = H1

(

m
(k)
2 , C∗

2

)

and m
(k+1)
2 = H2

(

m
(k)
1 , C∗

1

)

.

A second consequence of Lemma 3 – that the functions H1 and H2 are affine in their

first arguments – then renders the convergence analysis for m
(k)
1 and m

(k)
2 amenable to the

tools of linear systems. Unfortunately, unlike the sequences of covariance matrices, the
sequences of means do not always converge. We will, however, provide conditions under
which convergence is guaranteed.

Stability of a particular matrix constitutes a sufficient condition for global convergence
of the mean vectors. We will show that the set of Σ1 and Σ2 that lead to stability of
this matrix is invariant under a certain type of transformation. In addition, to facilitate
understanding, we will provide simpler conditions under which the matrix is stable. As
a preview, let us state – in rough terms – three such conditions, each of which ensures
convergence:

1. Σ1 and Σ2 are “complementary.” (Proposition 2)

2. Either Σ1 or Σ2 is diagonal or “nearly diagonal.” (Proposition 3 and 4)

3. Σ1 and Σ2 are “well-conditioned.” In other words, for each matrix, the ratio of the
largest to the smallest eigenvalue is not large. (Proposition 5)

In analyzing each of the above conditions, we will use a customized argument. A unified
approach that offers interpretable means to distinguishing convergent cases from those that
are not would be desirable, but finding such an approach remains an open problem.

Let us now move on to formal statements of our results and the corresponding analyses.
The following subsection addresses convergence of the sequences of covariance matrices,
while dynamics of the mean vectors are treated in Section 5.2.
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5.1 Convergence of the Covariance Matrices

Defining F by
F(D1, D2) = (F1(D2),F2(D1)) ,

for all D1, D2 ∈ D, it is clear from Lemma 3 that
(

C
(k)
1 , C

(k)
2

)

= Fk
(

C
(0)
1 , C

(0)
2

)

.

The following theorem establishes that such a sequence converges to a point that is inde-
pendent of the initial iterate.

Theorem 1 The operator F possesses a unique fixed point in D×D. Furthermore, denoting
this fixed point by (C∗

1 , C∗
2 ),

lim
k→∞

Fk(D1, D2) = (C∗
1 , C∗

2 ) ,

for all D1, D2 ∈ D.

Since the operator F is uniquely determined by Σ1 and Σ2, it follows from Theorem 1
that the unique fixed point (C∗

1 , C∗
2 ) is completely determined by Σ1 and Σ2, which are

the covariance matrices of the conditional densities p∗1 and p∗2, respectively. For ease of
exposition, we do not make explicit the dependence of C ∗

1 and C∗
2 on Σ1 and Σ2. The

proof of Theorem 1 relies on the following lemma. The first lemma captures the essential
properties of the operator F . The proof of this result is given in Appendix C

Lemma 4
(a) Continuity: The function F is continuous on D ×D.
(b) Monotonicity: For all X1, X2, Y1, Y2 ∈ D, if (X1, X2) ≤ (Y1, Y2), then

F(X1, X2) ≤ F(Y1, Y2).

(c) Boundedness: There exist matrices D1, D2 ∈ D such that for all D1, D2 ∈ D,
(

D1, D2

)

≤ F(D1, D2) < (I, I) .

(d) Scaling: For all β ∈ (0, 1) and D1, D2 ∈ D,

βF (D1, D2) < F (βD1, βD2) .

The following lemma establishes convergence when the sequence of covariance matrices
is initialized with the identity matrix.

Lemma 5 The sequence Fk(I, I) converges in D ×D to a fixed point of F .

Proof: By Lemma 4(c), F(I, I) < (I, I). It then follows from monotonicity (Lemma 4(b))
that Fk+1(I, I) ≤ Fk(I, I). Because Fk(I, I) is bounded below by a pair of matrices in D
(Lemma 4(c)), the sequence must converge in D×D. Furthermore, because F is continuous
on D ×D (Lemma 4(a)), the limit limk→∞Fk(I, I) must be a fixed point of F .

Let (C∗
1 , C∗

2 ) = limk→∞Fk(I, I). (By Lemma 5, the limit exists and C∗
1 , C∗

2 ∈ D.) The
following lemma establishes this as the unique fixed point in D ×D.

11



Lemma 6 (C∗
1 , C∗

2 ) is the unique fixed point in D ×D of F .

Proof: By Lemma 5, (C∗
1 , C∗

2 ) is a fixed point of F . Let (D1, D2) ∈ D × D be a different
fixed point. It follows from Lemma 4(c) that (D1, D2) ≤ (I, I). By monotonicity (Lemma
4(b)),

(D1, D2) = Fk (D1, D2) ≤ Fk (I, I) ,

for all k. Hence, (D1, D2) ≤ (C∗
1 , C∗

2 ) .
Let

β = sup
{

γ ∈ (0, 1]
∣

∣

∣ (γC∗
1 , γC∗

2 ) ≤ (D1, D2)
}

.

Note that β is well–defined because D1 and D2 are positive definite. Furthermore, since
(D1, D2) 6= (C∗

1 , C∗
2 ), we have β < 1. It follows from Lemma 4(d) that

β (C∗
1 , C∗

2 ) = βF (C∗
1 , C∗

2 ) < F (βC∗
1 , βC∗

2 ) .

In addition, due to monotonicity of F (Lemma 4(b)),

F (βC∗
1 , βC∗

2 ) ≤ F (D1, D2) = (D1, D2) .

Hence,
(βC∗

1 , βC∗
2 ) < (D1, D2) ,

which implies existence of some α > 0 such that

(α + β) (C∗
1 , C∗

2 ) ≤ (D1, D2) .

However, this contradicts the definition of β. It follows that (C ∗
1 , C∗

2 ) is the unique fixed
point of F in D ×D.

5.1.1 Proof of Theorem 1

Lemma 6 established uniqueness of a fixed point (C ∗
1 , C∗

2 ) and Lemma 5 asserts that Fk(I, I)
converges to this fixed point. To complete the proof of Theorem 1, we need to show that
Fk(D1, D2) converges for all D1, D2 ∈ D, not only D1 = D2 = I.

If (C∗
1 , C∗

2 ) ≤ (D1, D2) ≤ (I, I) convergence to (C∗
1 , C∗

2 ) follows from monotonicity
(Lemma 4(b)). In particular, (C∗

1 , C∗
2 ) = Fk(C∗

1 , C∗
2 ) ≤ Fk(D1, D2) ≤ Fk(I, I), and since

Fk(I, I) converges to (C∗
1 , C∗

2 ), so must Fk(D1, D2).
For the more general case of (D1, D2) ≥ (C∗

1 , C∗
2 ), convergence follows from the fact

that (C∗
1 , C∗

2 ) = F(C∗
1 , C∗

2 ) ≤ F(D1, D2) < (I, I) (a consequence of Lemmas 4(b) and 4(c)).
Considering F(D1, D2) as a starting point for the sequence leads to the preceding case for
which we have already established convergence.

Let us now address the case of (D1, D2) ≤ (C∗
1 , C∗

2 ). Let

β = sup
{

γ ∈ (0, 1]
∣

∣

∣ (γC∗
1 , γC∗

2 ) ≤ (D1, D2)
}

.

By Lemma 4(d),
(βC∗

1 , βC∗
2 ) ≤ F (βC∗

1 , βC∗
2 ) .

It follows from monotonicity (Lemma 4(b)) that,

Fk (βC∗
1 , βC∗

2 ) ≤ Fk+1 (βC∗
1 , βC∗

2 ) ≤ Fk+1 (D1, D2) ≤ (C∗
1 , C∗

2 )

12



for all k. Hence, Fk (βC∗
1 , βC∗

2 ) converges in D × D, and since F is continuous, the limit
must be a fixed point. Uniqueness of the fixed point (C ∗

1 , C∗
2 ) makes it the only viable limit.

Since
(βC∗

1 , βC∗
2 ) ≤ (D1, D2) ≤ (C∗

1 , C∗
2 ) ,

Fk (D1, D2) must also converge to (C∗
1 , C∗

2 ) by monotonicity.
To complete the proof, we consider the case of an arbitrary pair D1, D2 ∈ D. For this

case, there exist matrices D,D ∈ D such that D ≤ C ∗
i ≤ D and D ≤ Di ≤ D for i = 1, 2.

By monotonicity,

Fk (D,D) ≤ Fk (D1, D2) ≤ Fk
(

D,D
)

.

Our previous arguments establish that F k(D,D) and Fk(D,D) both converge to (C∗
1 , C∗

2 ),
and consequently Fk(D1, D2) must also converge to (C∗

1 , C∗
2 ).

5.2 Convergence of the Mean Vectors

Unlike the sequences of covariance matrices, the sequences of mean vectors do not always
converge. In this section, we establish sufficient conditions that ensure convergence. We
will first show that convergence is guaranteed by the stability of a certain matrix TΣ1,Σ2 ,
defined by

TΣ1,Σ2 =

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

.

Unfortunately, this matrix and the factors influencing its stability are difficult to interpret.
Consequently, the remainder of this section will be devoted to understanding properties of
those Σ1 and Σ2 that give rise to a stable TΣ1,Σ2 and to establishing interpretable conditions
that ensure stability, and thus, convergence of the mean vectors.

Let us begin by stating and proving the result linking convergence to stability of TΣ1,Σ2 .
For the purpose of this theorem as well as the associated analysis, we will denote the spectral
radius of any matrix A by ρ(A).

Theorem 2 If ρ (TΣ1,Σ2) < 1, then there exist vectors m∗
1 and m∗

2 such that, for any

m
(0)
1 ,m

(0)
2 and any C

(0)
1 , C

(0)
2 ∈ D, the sequence (m

(k)
1 ,m

(k)
2 ) converges to (m∗

1,m
∗
2).

This theorem provides a sufficient and “almost necessary” condition for convergence.
However, because the matrix TΣ1,Σ2 is difficult to interpret, this condition offers little
insight into factors influencing convergence. After proving Theorem 2, we will provide in
subsequent subsections more interpretable conditions under which ρ(TΣ1,Σ2) < 1. Let us
now move on to prove Theorem 2. We will rely on a lemma that is somewhat standard in
flavor. We state the result here and provide its proof in Appendix D.

Lemma 7 Let {Ak} be a sequence of matrices that converges to A, and let {bk} be a
sequence of vectors that converges to b. Consider a sequence of vectors {xk} with

xk+1 = Akxk + bk,

for all k ≥ 0. If ρ(A) < 1, then there exists a vector x∗ such that the sequence {xk}
converges to x∗ for any x0.

13



Proof of Theorem 2
Recall from Lemma 3 that the mean vectors evolve according to

m
(k+1)
1 = H1

(

m
(k)
2 , C

(k)
2

)

and m
(k+1)
2 = H2

(

m
(k)
1 , C

(k)
1

)

,

which we can rewrite as

m
(k+1)
1 = C

(k+1)
1

(

A−1

C
(k+1)
1 ,C

(k)
2

A
Σ1,C

(k)
2

− I

)

(

C
(k)
2

)−1
m

(k)
2 +C

(k+1)
1 A−1

C
(k+1)
1 ,C

(k)
2

A
Σ1,C

(k)
2

Σ−1
1 µ1,

and

m
(k+1)
2 = C

(k+1)
2

(

A−1

C
(k)
1 ,C

(k+1)
2

A
C

(k)
1 ,Σ2

− I

)

(

C
(k)
1

)−1
m

(k)
1 +C

(k+1)
2 A−1

C
(k)
1 ,C

(k+1)
2

A
C

(k)
1 ,Σ2

Σ−1
2 µ2.

To highlight the relation between these dynamics and those addressed by Lemma 7, let us
introduce some additional notation. For each k, let Ck, Rk, and Tk be defined by

Ck =

(

C
(k)
1 0

0 C
(k)
2

)

, Rk =





A−1

C
(k+1)
1 ,C

(k)
2

A
Σ1,C

(k)
2

0

0 A−1

C
(k)
1 ,C

(k+1)
2

A
C

(k)
1 ,Σ2



 ,

and

Tk =





0 A−1

C
(k+1)
1 ,C

(k)
2

A
Σ1,C

(k)
2

− I

A−1

C
(k)
1 ,C

(k+1)
2

A
C

(k)
1 ,Σ2

− I 0



 .

We then have
(

m
(k+1)
1

m
(k+1)
2

)

= Ck+1 Tk Ck
−1

(

m
(k)
1

m
(k)
2

)

+ Ck+1 Rk

(

Σ−1
1 µ1

Σ−1
2 µ2

)

.

Theorem 1, asserts that (C
(k)
1 , C

(k)
2 ) converges to (C∗

1 , C∗
2 ). It follows that the matrices

Ck+1, Tk, Ck
−1, and Rk, converge. Furthermore, the limit of convergence of Ck+1 Tk Ck

−1

is given by
(

C∗
1 0

0 C∗
2

)

TΣ1,Σ2

(

C∗
1 0

0 C∗
2

)−1

.

Since ρ(A) = ρ(MAM−1) for any matrix A and nonsingular matrix M , we have

ρ





(

C∗
1 0

0 C∗
2

)

TΣ1,Σ2

(

C∗
1 0

0 C∗
2

)−1


 = ρ(TΣ1,Σ2).

The result therefore follows from Lemma 7.

5.2.1 Region of Convergence

We know from Theorem 2 that a sufficient (and almost necessary) condition for convergence
of the mean vectors is ρ (TΣ1,Σ2) < 1. Let C denote the set of (Σ1,Σ2) satisfying Assumption
1 such that ρ (TΣ1,Σ2) < 1. Thus, C can be interpreted as the region in the space of
symmetric positive definite matrices where belief propagation converges. In this section, we
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will show that C is invariant under a certain type of transformation. This result will provide
us with some information on the shape of C. In the next section, we will demonstrate that
certain classes of “well-behaved” symmetric positive definite matrices belong to C.

Before we proceed to the main result of this section, let us introduce some notation.
For any symmetric matrix A, let λmin(A) and λmax(A) denote the smallest and largest
eigenvalues of A, respectively.

Proposition 1 Let

Σβ
1 =

(

βΣ−1
1 + (1− β)

I

2

)−1

, and Σβ
2 =

(

βΣ−1
2 + (1− β)

I

2

)−1

, β ≥ 1.

If (Σ1,Σ2) ∈ C, then
(

Σβ
1 ,Σβ

2

)

∈ C for all β ≥ 1.

Proof: It is not hard to verify that Σβ
1 and Σβ

2 satisfy Assumption 1. Let (C∗
1 , C∗

2 ) denote the
unique fixed point of the sequence of covariance matrices generated by belief propagation
when the covariance matrices of p∗1 and p∗2 are Σ1 and Σ2, respectively. Also, let

Cβ
1 =

(

β (C∗
1 )−1 + (1− β)

I

2

)−1

, and Cβ
2 =

(

β (C∗
2 )−1 + (1− β)

I

2

)−1

.

It follows from the definition of
(

Σβ
1 ,Σβ

2

)

and
(

Cβ
1 , Cβ

2

)

that

A
Σβ

1 ,Cβ
2

=
1

β
AΣ1,C∗

2
, A

Cβ
1 ,Σβ

2
=

1

β
AC∗

1 ,Σ2 , and A
Cβ

1 ,Cβ
2

=
1

β
AC∗

1 ,C∗

2
.

Since (C∗
1 , C∗

2 ) is the unique fixed point of F (Theorem 1), it follows that

C∗
1 =

(

(

δ
(

AΣ1,C∗

2

))−1
+ I − (C∗

2 )−1
)−1

,

or equivalently

AC∗

1 ,C∗

2
=
(

(C∗
1 )−1 + (C∗

2 )−1 − I
)−1

= δ
(

AΣ1,C∗

2

)

.

Thus,

A
Cβ

1 ,Cβ
2

=
1

β
AC∗

1 ,C∗

2
=

1

β
δ
(

AΣ1,C∗

2

)

=
1

β
δ
(

βA
Σβ

1 ,Cβ
2

)

= δ
(

A
Σβ

1 ,Cβ
2

)

.

Hence,

Cβ
1 =

(

(

δ
(

A
Σβ

1 ,Cβ
2

))−1
+ I −

(

Cβ
2

)−1
)−1

.

A similar argument shows that

Cβ
2 =

(

(

δ
(

A
Cβ

1 ,Σβ
2

))−1
+ I −

(

Cβ
1

)−1
)−1

.

It follows from Theorem 1 that
(

Cβ
1 , Cβ

2

)

is the unique fixed point of the sequence of

covariance matrices generated by belief propagation when the covariance matrices of p∗1 and
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p∗2 are Σβ
1 and Σβ

2 , respectively. Therefore,

T
Σβ

1 ,Σβ
2

=





0 A−1

Cβ
1 ,Cβ

2

A
Σβ

1 ,Cβ
2
− I

A−1

Cβ
1 ,Cβ

2

A
Cβ

1 ,Σβ
2
− I 0





=

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

= TΣ1,Σ2

The desired result follows.
The previous proposition provides us with some information on the shape of C. If we let

C−1 =
{(

Σ−1
1 ,Σ−1

2

)

: (Σ1,Σ2) ∈ C
}

be a collection of the inverses of covariance matrices in

C, the previous proposition suggests that there is an open set centered at
(

I
2 , I

2

)

such that

C−1 consists of rays emanating from the boundary of this set. Consequently, we conjecture
that the region of convergence C should be star-shaped with a center at the origin (0, 0).
Currently, we do not have a formal proof of this result, but we plan to pursue this in our
future work. Also, this result appears to resemble a result reported in [23] (Theorem 6.2)
on stability of fixed points of general turbo decoding.

5.2.2 Sufficient Conditions for ρ(TΣ1,Σ2) < 1

In the previous section, we showed that covariance matrices Σ1 and Σ2 that lead to conver-
gence of the mean vectors are invariant under a certain type of transformation. This result
provides us with information on the shape of the region of convergence. Unfortunately, it
does not help us in determining if a particular pair of covariance matrices (Σ1,Σ2) will lead
to a convergent sequence of mean vectors. In this section, we offer four sufficient conditions
that ensure stability of the matrix TΣ1,Σ2 , and thus, convergence of the mean vectors. Since
the proofs of these conditions are quite complicated, we defer them to the appendices. We
will instead focus on the insights derived from each of these conditions. The first condition
is expressed in the following proposition, whose proof is given in Appendix E.

Proposition 2 For any symmetric positive definite matrix Σ such that Σ−1− I is positive
definite, if

Σ1 =
(

Σ−1 + γI
)−1

, and Σ2 =
(

Σ−1 − γI
)−1

,

then (Σ1,Σ2) ∈ C for all − 1−λmax(Σ)
λmax(Σ) < γ < 1−λmax(Σ)

λmax(Σ) .

We should note that since Σ−1− I is positive definite, all eigenvalues of Σ are less than
one. This implies that the range of allowable γ’s in Proposition 2 includes zero. So, if
S = {(Σ1,Σ2) : Σ1 = Σ2}, it follows that there is an open set U containing S such that
ρ (TΣ1,Σ2) < 1 for all (Σ1,Σ2) ∈ U . Thus, whenever Σ1 and Σ2 are equal or “close”, the
mean vectors converge.

In general, Proposition 2 shows that the mean vectors will converge if the covariance
matrices Σ1 and Σ2 are “complementary” in the sense that the total variance, as measured

by
(

Σ−1
1 + Σ−1

2

)−1
, is not too large. The degree of “complementarity” between Σ1 and Σ2

is captured by the parameter γ. As γ increases, the variance of Σ1 decreases (relative to
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Σ) while that of Σ2 increases. This might correspond to the situation in which additional
errors are introduced, resulting in greater uncertainty over the expected value of x given
y2 (thus, the increase in the variance of Σ2). Proposition 2 tells us that belief propagation
still converges, provided that there is a corresponding increase in the precision associated
with the estimate of the expected value of x given y1 (i.e., a decrease in the variance of
Σ1). Furthermore, if we start with a fairly certain estimate of x (λmax(Σ) ≈ 0), we see that
belief propagation would still converge despite a wide range of variation in the covariance
matrices, since the range of γ is inverse proportional to the largest eigenvalue of Σ.

Whether or not we are dealing with Gaussians, when the components of x conditioned
on y1 are independent – or equivalently, p∗1 factors – it is easy to see that belief propagation
converges to πf . Since p∗1 factors, it follows that for any density q,

T1q = α

((

π
p∗1q

p0

)

p0

q

)

= p∗1,

which implies that q
(k)
1 = p∗1 for k ≥ 1. Furthermore, note that

T2p
∗
1 = α

((

π
p∗1p

∗
2

p0

)

p0

p∗1

)

= α

(

(πf)p0

p∗1

)

.

Therefore, we have

α

(

q
(k)
1 q

(k)
2

p0

)

= πf,

for k ≥ 2. Independence of components of x conditioned on y2 leads to an analogous
outcome.

In the Gaussian case, independence corresponds to the fact that a covariance matrix is
diagonal. The argument we have discussed in the context of general distributions implies
that belief propagation converges when either Σ1 or Σ2 is diagonal. However, a stronger
result, formalized in the following proposition, establishes that convergence holds for a range
of matrices that are “nearly diagonal.” The proof of this proposition is given in Appendix
F.

Proposition 3 For i = 1, 2, let Li and Ui be defined by

Li = 1− λmin

(

Σi (δ (Σi))
−1
)

and Ui = λmax

(

Σiδ
(

Σ−1
i

))

− 1.

If
2
∏

i=1

(Li ∨ Ui) < 1,

then ρ (TΣ1,Σ2) < 1.

Let us discuss a certain interpretation of the proposition. When Σ1 is diagonal, L1 =
U1 = 0 and

∏2
i=1 (Li ∨ Ui) = 0. This is an extreme case that leaves much leeway in the

requirement that
∏2

i=1 (Li ∨ Ui) < 1. An analogous extreme case arises when Σ2 is diagonal.
As Σ1 becomes “less diagonal,” L1 and U1 grow – the former is bounded by 1 but the

latter can become arbitrarily large. In any event, L1∨U1 can be viewed as a measure of how
far Σ1 is from being diagonal, or alternatively, how correlated the components of x become
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upon observation of y1. Furthermore, the product
∏2

i=1 (Li ∨ Ui) combines this measure for
Σ1 and Σ2, and the requirement for this product to be less than 1 allows for one covariance
matrix to become more diagonal as the other becomes less so.

Proposition 3 places constraints on Σ1 and Σ2 under which convergence is guaranteed,
and we discussed how covariance matrices that are “nearly diagonal” should satisfy such
constraints. The next proposition extends this result further by showing that if the off-
diagonal elements of Σ1 and Σ2 are small relative to the diagonal elements, then belief
propagation converges. The proof of this proposition follows directly from Proposition 3,
and we refer the reader to Appendix G.

Proposition 4 For any Σ1 and Σ2 satisfying Assumption 1, let

Σβ
1 =

(

Σ−1
1 + (β − 1)I

)−1
, and Σβ

2 =
(

Σ−1
2 + (β − 1)I

)−1
.

Then, there exist UΣ1,Σ2 > 1 such that ρ
(

T
Σβ

1 ,Σβ
2

)

< 1 for all β > UΣ1,Σ2.

Let us discuss an interpretation of the above result in coding context. The covariance
matrices Σβ

1 and Σβ
2 can be written as

Σβ
1 =

(

Σ−1
1 +

(

1

β
I

)−1

− I

)−1

, and Σβ
2 =

(

Σ−1
2 +

(

1

β
I

)−1

− I

)−1

.

It follows from Lemma 1 that Σβ
1 can be interpreted as the covariance matrix of the con-

ditional density of x given y1, when the prior density p0 of x has variance 1
β I instead of I.

A similar interpretation applies to Σβ
2 . As β increases, the uncertainty over the prior esti-

mate of the random variable x decreases. Thus, β can be thought of as the signal-to-noise
ratio of x. Moreover, recall that Σ1 and Σ2 represent the covariances of the conditional
density of x given y1 and y2, respectively. These covariances encapsulate the correlations
among information bits conditioned on the observed transmissions. These correlations are
determined by the encoding scheme and the channel characteristics. Viewing from this per-
spective, the result of Proposition 4 implies that, for a given encoding scheme and channel
characteristics, there is a threshold UΣ1,Σ2 such that if the signal-to-noise ratio exceeds this
threshold, then belief propagation converges. This result appears to be related to results
reported in [1, 7, 25].

It was observed by Agrawal and Vardy [1] that for codes with finite length, there are two
thresholds L and U such that when the signal-to-noise ratio is higher than U , turbo decoding
converges, but when the signal-to-noise ratio is below L, the algorithm diverges. We expect
that a similar result should hold in our context of Gaussian densities. Unfortunately, we
currently do not have a formal proof this result. We plan to pursue this in our future work.

The last two propositions show that if the covariance matrices are “close” to diagonal,
then the mean vectors converge. Here, we identify an additional situation where convergence
occurs, which involves covariance matrices that are “well–conditioned.” This result is stated
in the following proposition, whose proof is given in Appendix H.

Proposition 5 If
λmin (Σ1)

λmax (Σ1)
+

λmin (Σ2)

λmax (Σ2)
> 1,

then ρ (TΣ1,Σ2) < 1.
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As an immediate corollary of this proposition, we have ρ(TΣ1,Σ2) < 1 if

λmax (Σi)

λmin (Σi)
< 2

for i = 1, 2. Hence, the means converge if the covariance matrices are “well–conditioned.”

5.2.3 Example of Divergence

In this section, we provide an example that demonstrates the possibility of a divergent
sequence of mean vectors. We should note that when Σi is a 2 × 2 matrix, the variable Ui

in Proposition 3 is bounded by 1. This implies that belief propagation will converge if Σ1

and Σ2 are 2× 2 matrices. So, consider the following 3× 3 matrices

Σ1 =







0.2158720 0.3135334 0.1844028
0.3135334 0.5006464 0.3364129
0.1844028 0.3364129 0.2653747






,

and

Σ2 =







0.0346151 −0.0211820 0.0274089
−0.0211820 0.0157915 −0.0175615

0.0274089 −0.0175615 0.0250863






.

For this particular choice of Σ1 and Σ2, it turns out that

C∗
1 =







0.0095633 0 0
0 0.0157210 0
0 0 0.0255243






,

and

C∗
2 =







0.0145617 0 0
0 0.0050802 0
0 0 0.0072025






.

With this information, it is not hard to verify that ρ(TΣ1,Σ2) = 1.0132513. Thus, the mean
vectors diverge.

6 Analysis of the Fixed Point

We have established that the covariance matrices generated by belief propagation converge,
and under certain conditions, so do the means. In this section, we will show that the limits
of convergence may provide useful information relating to the desired posterior density
f ∼ N(µ,Σ). In particular, it turns out – somewhat surprisingly – that the mean of the
approximation resulting from belief propagation coincides with that of f . To formalize
this result, let the limiting means and covariance matrices be denoted by m∗

1, m∗
2, C∗

1 ,
and C∗

2 . Furthermore, let q∗1 and q∗2 be the limiting densities with q∗1 ∼ N(m∗
1, C

∗
1 ) and

q∗2 ∼ N(m∗
2, C

∗
2 ). The following theorem establishes the main result of this section: the

mean of the density α (q∗1q
∗
2/p0) generated by belief propagation coincides with that of the

desired posterior density f .
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Theorem 3 Let (C∗
1 , C∗

2 ) denote the limit of the sequence of covariance matrices
(

C
(k)
1 , C

(k)
2

)

.

Suppose that sequences of the mean vectors m
(k)
1 and m

(k)
2 converge to m∗

1 and m∗
2, respec-

tively. If q∗1 ∼ N(m∗
1, C

∗
1 ) and q∗2 ∼ N(m∗

2, C
∗
2 ), then

α(q∗1q
∗
2/p0) ∼ N(µ,AC∗

1 ,C∗

2
).

Our proof of this theorem relies on the following lemma, which provides an equation
relating means associated with the fixed points. It is not hard to show that AC∗

1 ,C∗

2
, AΣ1,C∗

2
,

and AC∗

1 ,Σ2 , which are used in the statement, are well–defined.

Lemma 8 Let (C∗
1 , C∗

2 ) denote the limit of the sequence of covariance matrices
(

C
(k)
1 , C

(k)
2

)

.

Suppose that sequences of the mean vectors m
(k)
1 and m

(k)
2 converge to m∗

1 and m∗
2, respec-

tively. If q∗1 ∼ N(m∗
1, C

∗
1 ) and q∗2 ∼ N(m∗

2, C
∗
2 ), then

AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= AΣ1,C∗

2

(

Σ−1
1 µ1 + C∗

2
−1m∗

2

)

= AC∗

1 ,Σ2

(

C∗
1
−1m∗

1 + Σ−1
2 µ2

)

.

Proof: Let q∗1 ∼ N(m∗
1, C

∗
1 ) and q∗2 ∼ N(m∗

2, C
∗
2 ). Since q∗1 and q∗2 denote the fixed points

of belief propagation, we have

q∗1 = T1q
∗
2 and q∗2 = T2q

∗
1.

It follows that

α
q∗1q

∗
2

p0
= απ

p∗1q
∗
2

p0
= απ

q∗1p
∗
2

p0
.

The result is then a consequence of Lemma 1 and the fact that π does not alter the mean
of a density.

Proof of Theorem 3
By Lemma 1, µ = AΣ1,Σ2

(

Σ−1
1 µ1 + Σ−1

2 µ2

)

, while the mean of α(q∗1q
∗
2/p0) is

AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

. We will show that these two expressions are equal.

Multiplying the equations from Lemma 8 by appropriate matrices, we obtain

A−1
Σ1,C∗

2
AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= Σ−1
1 µ1 + C∗

2
−1m∗

2,

and
A−1

C∗

1 ,Σ2
AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= C∗
1
−1m∗

1 + Σ−1
2 µ2.

It follows that
(

A−1
Σ1,C∗

2
+ A−1

C∗

1 ,Σ2

)

AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= Σ−1
1 µ1 + Σ−1

2 µ2 + C∗
1
−1m∗

1 + C∗
2
−1m∗

2,

which implies that
(

(A−1
Σ1 ,C∗

2
+ A−1

C∗

1 ,Σ2
)AC∗

1 ,C∗

2
− I

)

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= Σ−1
1 µ1 + Σ−1

2 µ2.

Therefore,
(

A−1
Σ1,C∗

2
+ A−1

C∗

1 ,Σ2
−A−1

C∗

1 ,C∗

2

)

AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= Σ−1
1 µ1 + Σ−1

2 µ2.

Note that A−1
Σ1,C∗

2
+ A−1

C∗

1 ,Σ2
−A−1

C∗

1 ,C∗

2
= A−1

Σ1,Σ2
. It follows that

AC∗

1 ,C∗

2

(

C∗
1
−1m∗

1 + C∗
2
−1m∗

2

)

= AΣ1,Σ2(Σ
−1
1 µ1 + Σ−1

2 µ2) = µ.
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Figure 4: Evolution of errors during 10 representative runs of belief propagation.

7 Experimental Results

The limits of convergence q∗1 and q∗2 of belief propagation provide an approximation α(q∗1q
∗
2/p0)

to πf . We have established that the mean of this approximation coincides with that of the
desired posterior density. One might further expect that the covariance matrix of α(q∗1q

∗
2/p0)

approximates that of πf , and even more so, that q∗1 and q∗2 bear some relation to p∗1 and p∗2.
Unfortunately, as will be illustrated by experimental results in this section, such expecta-
tions appear to be inaccurate.

We performed experiments involving 20 and 50 dimensional Gaussian densities (i.e., x
was either 20 or 50 dimensional in each instance). The covariance matrices Σ1 and Σ2 were
generated according to

Σ1 =
(

I + U1U
′
1

)−1
and Σ2 =

(

I + U2U
′
2

)−1
,

where U1 and U2 are independent random matrices with elements drawn from a uniform
distribution over (−1, 1). The means µ1 and µ2 were generated as independent random
vectors with elements drawn from a uniform distribution over (−20, 20).

Figure 4 shows the evolution of “errors” during 10 representative runs of belief propaga-
tion on 20–dimensional problems. The first graph plots, for each k, the relative root–mean–

squared error between the mean of πf and the mean of α(q
(k)
1 q

(k)
2 /p0) – the approximation

generated by belief propagation at the kth iteration. By relative root–mean–squared error,
we are referring to the root–mean–squared difference between the two vectors divided by
the root–mean–squared value of the first vector. As indicated by our analysis, if belief
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Figure 5: Errors after 50 iterations. Densities generated at the 50th iteration are used as a
proxy for the fixed points of belief propagation.

propagation converges, this error converges to zero. The second chart plots relative root–

mean–squared error between the covariance of πf and that of α(q
(k)
1 q

(k)
2 /p0). (These two

matrices are diagonal, and we treat the diagonal elements as components of vectors when
measuring root–mean–squared error.) Although these covariances converge, in agreement
with Theorem 1, the ultimate errors are far from zero. The two final graphs plot rela-

tive root–mean–squared errors between the means of p∗1 and p∗2 and those of q
(k)
1 and q

(k)
2 ,

respectively. Again, even if these means converge, the ultimate errors can be large.
Figure 5 plots data from 1000 different experiments involving 50–dimensional problems.

In each experiment, belief propagation was executed for 50 iterations. In measuring errors,
densities generated after 50 iterations are assumed to be equal to the stationary points q∗1
and q∗2. The horizontal axes are labeled with indices of the problem instances. These graphs
exhibit the same phenomenon as that observed in the case of 20–dimensional problems –
the errors between the mean of πf and that of α(q∗1q

∗
2/p0) are very close to zero, while errors

associated with other statistics vary dramatically.
It is worth noting that in all the reported experiments, the sequences of the mean

vectors appeared to converge. However, in larger problems, we have observed divergent
cases, though they are very rare. This suggests that there may be sufficient conditions
for convergence that are almost always satisfied. Finding such conditions remains an open
problem.
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8 Closing Remarks

We have shown that, when densities are Gaussian, belief propagation often converges and
the mean associated with the limit of convergence coincides with that of the desired posterior
density. It is intriguing to note that, in the context of communications, the objective is to
choose a code word x that comes close to the transmitted code x. One natural way to do
this involves assigning to x the code word that maximizes the conditional density f , i.e.,
the one that has the highest chance of being correct. In the Gaussian case that we have
studied, this corresponds to the mean of f – a quantity that is computed correctly by belief
propagation!

It will be interesting to explore generalizations of the line of analysis presented in this
paper. One direction might be to expand the arguments to encompass belief propagation on
general network topologies with Gaussian densities. A more interesting – and probably more
challenging – pursuit would be to develop theory pertaining to more general (non–Gaussian)
densities.

As a parting note, let us suggest that, even in the context of Gaussian densities, be-
lief propagation may prove to be useful. Let us reconsider, for example, a coupled hidden
Markov model as that described in Section 3. Suppose now that prior distributions associ-
ated with this coupled hidden Markov model are Gaussian. Then, although computation of
the conditional mean is tractable via traditional methods, belief propagation may provide
a more efficient alternative, as we will now explain.

Since the densities are Gaussian, the mean of x conditioned on y1 and y2 is given by

µ =
(

Σ−1
1 + Σ−1

2 − I
)−1 (

Σ−1
1 µ1 + Σ−1

2 µ2

)

.

Computation of this mean may be carried out via inversion of the relevant symmetric posi-
tive definite matrices, which takes on the order of n2.81 operations. Additional computation
might also be required to obtain µ1, µ2, Σ1 and Σ2.

Let us consider an alternative approach that uses belief propagation. Recall that belief

propagation computes sequences q
(k)
1 and q

(k)
2 . As discussed in Section 3, computation of

q
(k)
1 and q

(k)
2 at each iteration can be done efficiently via belief propagation – the procedure

requires O(n) operations per iteration. If the algorithm converges, the mean of the resulting
approximation coincides with µ. Hence, if the algorithm converges within s iterations, or
at least comes very close to the limit point, we can obtain a very good approximation to
µ in O (sn) operations. If s is not too large, this can result in substantial computational
savings. Unfortunately, we do have a bound on the proximity between µ and the mean of
the density generated by belief propagation after s iterations. Nevertheless, our experimen-
tal results suggest that belief propagation converges fairly quickly. The notion that belief
propagation might compute the mean of a posterior distribution more quickly than tradi-
tional approaches raises a tantalizing possibility that the algorithm and potential variants
might be able to accelerate the solution of many similar tasks in numerical computation.
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A Lemmas on Matrix Algebra

In this section, we collect together some useful lemmas on matrix algebra. These results will
be used throughout the appendices. The first lemma states an inequality due to Bellman
[4].

Lemma 9 If A is a symmetric positive definite matrix, then for all x and y

(

x′Ax
)

(

y′A−1y
)

≥
(

x′y
)2

.

It is easy to see that matrix inversion and the δ operator do not commute. The next
lemma reflects possible consequences of reordering.

Lemma 10 If A is a symmetric positive definite matrix, then

(

δ
(

A−1
))−1

≤ δ (A) .

Proof: By letting x = y = ei, where ei is the unit vector whose ith component is equal to
one, we have

Aii

(

A−1
)

ii
=
(

x′Ax
)

(

y′A−1y
)

≥
(

x′y
)2

= 1,

where the inequality follows from Lemma 9. It follows that

1

(A−1)ii
≤ Aii,

for all i, which immediately leads to the desired result.
The next lemma states an inequality due to Bergstrom [4].

Lemma 11 Let A and B be symmetric positive definite matrices. Let A(i) and B(i) denote
the sub-matrices (also symmetric positive definite) obtained by deleting the ith row and
column. Then,

|A|

|A(i)|
+

|B|

|B(i)|
≤

|A + B|

|A(i) + B(i)|
,

where |M | denotes the determinant of a matrix M .

Next, we have a lemma that reflects potential consequences of distributing a certain
combination of matrix inversions and the δ operator among addends in a sum.

Lemma 12 Let A and B be symmetric positive definite matrices. Then,

(

δ
(

A−1
))−1

+
(

δ
(

B−1
))−1

≤
(

δ
(

(A + B)−1
))−1

.
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Proof: For any nonsingular matrix A, it is well-known [27] that

(

A−1
)

ii
=
|A (i) |

|A|

for all i. It therefore follows from Lemma 11 that

1

(A−1)ii
+

1

(B−1)ii
≤

1
(

(A + B)−1
)

ii

for all i. Equivalently,

(

δ
(

A−1
))−1

+
(

δ
(

B−1
))−1

≤
(

δ
(

(A + B)−1
))−1

.

B Proof of Lemmas 2 and 3

This appendix contains the proof of Lemmas 2 and 3. We first prove the following result,
which will be used to prove Lemma 3.

Lemma 13 For all D ∈ D, F1(D) and F2(D) are positive definite diagonal matrices.

Proof: It suffices to prove this result for F1(D). The proof for F2(D) is similar. Since
Σ−1

1 − I is positive definite (Assumption 1(b)), AΣ1,D is well-defined and positive definite
for all D ∈ D. In addition, it follows from Lemma 10 that

(δ (AΣ1,D))−1 ≤ δ
(

A−1
Σ1,D

)

,

which implies that

(δ (AΣ1,D))−1 ≤ δ
(

Σ−1
1

)

+ D−1 − I.

Therefore,

(δ (AΣ1,D))−1 + I −D−1 ≤ δ
(

Σ−1
1

)

,

or equivalently,
(

(δ (AΣ1,D))−1 + I −D−1
)−1

≥
(

δ
(

Σ−1
1

))−1
.

Using the definition of F1, it follows that

F1(D) ≥
(

δ
(

Σ−1
1

))−1
,

which implies that F1(D) is a positive definite diagonal matrix.

Here is the proof of Lemma 3.

Proof: It suffices to prove this result for T1. The proof for T2 is similar. Recall that
for any density g,

T1g = α

((

π
p∗1g

p0

)

p0

g

)
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Consider a density g ∈ G with g ∼ N (µg,Σg). Since Σ−1
1 −I is positive definite (Assumption

1(b)), AΣ1,Σg is positive definite. Thus, it follows from Lemma 1 that

α

(

p∗1g

p0

)

∼ N
(

AΣ1,Σg

(

Σ−1
1 µ1 + Σ−1

g µg

)

, AΣ1,Σg

)

,

which implies that

α

(

π
p∗1g

p0

)

∼ N
(

AΣ1,Σg

(

Σ−1
1 µ1 + Σ−1

g µg

)

, δ
(

AΣ1,Σg

)

)

.

It follows from the definition of F1 (Σg) and Lemma 13 that the matrix

(

δ
(

AΣ1,Σg

))−1
+ I − Σ−1

g

is well-defined and positive definite. Application of Lemma 1 implies that T1g is a Gaussian
density whose covariance matrix is given by

(

(

δ
(

AΣ1,Σg

))−1
+ I − Σ−1

g

)−1
,

which is simply F1 (Σg). Lemma 1 also tells us that the mean of the density T1g is given by

F1 (Σg)
(

(

δ
(

AΣ1,Σg

))−1
AΣ1,Σg

(

Σ−1
1 µ1 + Σ−1

g µg

)

− Σ−1
g µg

)

,

or equivalently,

F1 (Σg)
(

(

δ
(

AΣ1,Σg

))−1
AΣ1,Σg − I

)

Σ−1
g µg + Fg (Σg)

(

δ
(

AΣ1,Σg

))−1
AΣ1,ΣgΣ

−1
1 µ1.

Since

F1 (Σg) =
(

(

δ
(

AΣ1,Σg

))−1
+ I − Σ−1

g

)−1
,

it follows that

(

δ
(

AΣ1,Σg

))−1
= (F1 (Σg))

−1 + Σ−1
g − I = A−1

F1(Σg),Σg
.

Using this fact, the mean of the density T1g can be written as

F1 (Σg)
(

A−1
F1(Σg),Σg

AΣ1,Σg − I
)

Σ−1
g µg + Fg (Σg)A−1

F1(Σg),Σg
AΣ1,ΣgΣ

−1
1 µ1,

which is simply H1 (µg,Σg). Therefore,

T1g ∼ N (H1 (µg,Σg) ,F1 (Σg)) .

It is obvious that Lemma 2 is a direct corollary of Lemma 3 and 13.
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C Proof of Lemma 4

(a) Continuity : Continuity of the operator F on its domain D × D follows immediately
from its definition.

(b) Monotonicity: Let B2 = X−1
2 − Y −1

2 , and note that B2 ≥ 0 since X2 ≤ Y2. Starting
with the definition of AΣ1,X2 , we have

A−1
Σ1,X2

= Σ−1
1 + X−1

2 − I = Σ−1
1 + Y −1

2 − I + B2 = A−1
Σ1,Y2

+ B2,

which implies that

AΣ1,X2 =
(

A−1
Σ1,Y2

+ B2

)−1
.

Since B2 ≥ 0, Lemma 12 (Appendix A) asserts that

(δ (AΣ1,X2))
−1 ≥ (δ (AΣ1,Y2))

−1 +
(

δ
(

B−1
2

))−1
,

and since B2 is diagonal,

(δ (AΣ1,X2))
−1 ≥ (δ (AΣ1,Y2))

−1 + X−1
2 − Y −1

2 .

It follows that

(δ (AΣ1,X2))
−1 + I −X−1

2 ≥ (δ (AΣ1,Y2))
−1 + I − Y −1

2 ,

which implies that (F1 (X2))
−1 ≥ (F1 (Y2))

−1, or equivalently, F1(X2) ≤ F1(Y2). An anal-
ogous argument shows that F2(X1) ≤ F2(Y1). Hence, F (X1, X2) ≤ F (Y1, Y2).

(c) Boundedness: It follows from the definition of AΣ1,D2 , that

(δ (AΣ1,D2))
−1 =

(

δ

(

(

Σ−1
1 + D−1

2 − I
)−1

))−1

=
(

δ
(

(U + V )−1
))−1

,

where U = Σ−1
1 − I and V = D−1

2 . From Assumption 1(b), we know that U is positive
definite. It follows from Lemma 10 and 12 (Appendix A) that

(

δ
(

U−1
))−1

+
(

δ
(

V −1
))−1

≤ (δ (AΣ1,D2))
−1 ≤ δ (U + V ) .

Since V = D−1
2 is diagonal,

(

δ
(

U−1
))−1

+ D−1
2 ≤ (δ (AΣ1,D2))

−1 ≤ δ
(

Σ−1
1

)

− I + D−1
2 ,

and since U is positive definite,

D−1
2 < (δ (AΣ1,D2))

−1 ≤ δ
(

Σ−1
1

)

− I + D−1
2 .

It follows that
I < (δ (AΣ1,D2))

−1 + I −D−1
2 ≤ δ

(

Σ−1
1

)

.
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Since F1(D2) =
(

(δ (AΣ1,D2))
−1 + I −D−1

2

)−1
, we have

(

δ
(

Σ−1
1

))−1
≤ F1 (D2) < I.

An analogous argument shows that

(

δ
(

Σ−1
2

))−1
≤ F2 (D1) < I,

Hence,
(

D1, D2

)

≤ F(D1, D2) < (I, I) ,

where D1 =
(

δ
(

Σ−1
1

))−1
and D2 =

(

δ
(

Σ−1
2

))−1
.

(d) Scaling: We will begin by establishing that

βδ (AΣ1,D2) ≤ δ (AΣ1,βD2) .

By definition, we have

AΣ1,D2 =
(

Σ−1
1 − I + D−1

2

)−1
=
(

β
(

Σ−1
1 − I

)

+ D−1
2 + (1− β)

(

Σ−1
1 − I

))−1
.

Application of Lemma 12 (Appendix A) implies that

(δ (AΣ1,D2))
−1 ≥

(

δ

(

(

β
(

Σ−1
1 − I

)

+ D−1
2

)−1
))−1

+ (1− β)

(

δ

(

(

Σ−1
1 − I

)−1
))−1

,

Since Σ−1
1 − I is positive definite (Assumption 1(b)), we have

(δ (AΣ1,D2))
−1 ≥

(

δ

(

(

β
(

Σ−1
1 − I

)

+ D−1
2

)−1
))−1

,

which implies that

δ (AΣ1,D2) ≤ δ

(

(

β
(

Σ−1
1 − I

)

+ D−1
2

)−1
)

.

However,

δ

(

(

β
(

Σ−1
1 − I

)

+ D−1
2

)−1
)

=
1

β
δ

(

(

Σ−1
1 − I + (βD2)

−1
)−1

)

=
1

β
δ (AΣ1,βD2) ,

which implies that
βδ (AΣ1,D2) ≤ δ (AΣ1,βD2) .

The bound on βδ(AΣ1 ,D2) implies that

(δ (AΣ1,βD2))
−1 ≤

1

β
(δ (AΣ1,D2))

−1 .
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It follows that

(F1 (βD2))
−1 = (δ (AΣ1,βD2))

−1 + I − (βD2)
−1

≤
1

β
(δ (AΣ1,D2))

−1 + I −
1

β
D−1

2

<
1

β
(δ (AΣ1,D2))

−1 +
1

β
I −

1

β
D−1

2

=
1

β
(F1 (D2))

−1

Therefore,
βF1 (D2) < F1 (βD2) .

An analogous argument shows that

βF2 (D1) < F2 (βD1) ,

and the result follows.

D Proof of Lemma 7

The proof of Lemma 7 relies on the following two results. Because they are of standard
flavor we state them without proof.

Lemma 14 Let {yk}, {αk}, and {βk} be sequences of non-negative real numbers such that

yk+1 ≤ αkyk + βk,

for all k ≥ 0. If
lim

k→∞
αk = α∗ and lim

k→∞
βk = 0,

where 0 < α∗ < 1, then limk→∞ yk = 0.

Lemma 15 If A is any matrix such that ρ (A) 6= 0 and ρ (A) < 1, then there exist a
constant C such that

‖An‖ ≤ Cρ (A)n

for all n.

Here is the proof of Lemma 7.

Proof: Let us first assume that ρ (A) 6= 0. Let the sequence {xk} be defined by

xk+1 = Axk + b,

for all k ≥ 0 with x0 = x0. It follows that

xk+1 − xk+1 = A (xk − xk) + (Ak −A) xk + (bk − b)
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for all k ≥ 0. Using the above recursion, one can show that

xk+1 − xk+1 =
k
∑

i=0

Ai (Ak−i −A) xk−i + Ai (bk−i − b) ,

which implies that

‖xk+1 − xk+1‖ ≤
k
∑

i=0

‖Ai‖‖Ak−i −A‖‖xk−i‖+ ‖Ai‖‖bk−i − b‖

≤
k
∑

i=0

‖Ai‖‖Ak−i −A‖‖xk−i − xk−i‖+

k
∑

i=0

‖Ai‖‖Ak−i −A‖‖xk−i‖+ ‖Ai‖‖bk−i − b‖

≤ C

(

k
∑

i=0

ρ (A)i ‖Ak−i −A‖‖xk−i − xk−i‖

)

+

C

(

k
∑

i=0

ρ (A)i ‖Ak−i −A‖‖xk−i‖+ ρ (A)i ‖bk−i − b‖

)

where the last inequality follows from Lemma 15. Define the sequence {zk} by

zk+1 = C

(

k
∑

i=0

ρ (A)i ‖Ak−i −A‖‖xk−i − xk−i‖

)

+

C

(

k
∑

i=0

ρ (A)i ‖Ak−i −A‖‖xk−i‖+ ρ (A)i ‖bk−i − b‖

)

.

From the definition of zk, it follows that

zk+1 = ρ (A) zk + C

(

‖Ak −A‖‖xk − xk‖+ ‖Ak −A‖‖xk−i‖+ ‖bk − b‖

)

≤

(

ρ (A) + C‖Ak −A‖

)

zk + C

(

‖Ak −A‖‖xk−i‖+ ‖bk − b‖

)

where the last inequality follows from the fact that

‖xk − xk‖ ≤ zk,

for all k ≥ 0. Since the sequence {Ak} converges to A, it follows that

lim
k→∞

ρ (A) + C‖Ak −A‖ = ρ (A) < 1.

Moreover, since ρ (A) < 1, the sequence {xk} converges. Thus,

lim
k→∞

C

(

‖Ak −A‖‖xk−i‖+ ‖bk − b‖

)

= 0.

It follows from Lemma 14 that the sequence {zk} converges to 0. Since ‖xk − xk‖ ≤ zk for
all k, and the sequence {xk} converges, it follows that the sequence {xk} also converges.
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Thus, we have established convergence of the sequence {xk} when ρ (A) 6= 0. The proof for
the case when ρ (A) = 0 is similar. The only modification is in the result of Lemma 15. In
this case, we have

‖An‖ ≤ Cρ (A)n

for sufficiently large n. It is now easy to see that the above argument still works in this
case.

E Proof of Proposition 2

The proof of Proposition 2 relies on the following three lemmas. The first relates stability
of ρ(TΣ1,Σ2) to that of its two sub–matrices.

Lemma 16 If

ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

< 1,

then ρ (TΣ1,Σ2) < 1.

Proof: Recall that the matrix TΣ1,Σ2 is defined by

TΣ1,Σ2 =

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

.

Let M be a diagonal matrix defined by

M =





A
1/2
C∗

1 ,C∗

2
0

0 A
1/2
C∗

1 ,C∗

2



 .

The definition of TΣ1,Σ2 and M implies that

MTΣ1,Σ2M
−1 =





0 A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I 0



 .

It is easy to see that

ρ
(

MT2
Σ1,Σ2

M−1
)

= ρ
((

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

)(

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

))

∨

ρ
((

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

)(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

))

.

Since A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
and A

−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
are symmetric, and ρ (AB) = ρ (B ′A′)

for all matrices A and B, we have

ρ
((

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

) (

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

))

= ρ
((

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

)(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

))

.
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Hence,

ρ
(

MT2
Σ1,Σ2

M−1
)

= ρ
((

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

) (

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

))

≤
∥

∥

∥

(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

) (

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

)∥

∥

∥

2

≤
∥

∥

∥A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

∥

∥

∥

2

∥

∥

∥A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

∥

∥

∥

2

= ρ
(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

)

ρ
(

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

)

where the last equality follows from the symmetry of A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
and A

−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2

A
−1/2
C∗

1 ,C∗

2
. Note that

ρ
(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

)

= ρ
(

A
1/2
C∗

1 ,C∗

2

(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

A
−1/2
C∗

1 ,C∗

2

)

.

Since eigenvalues are invariant under similarity transformations,

ρ
(

A
−1/2
C∗

1 ,C∗

2
AΣ1,C∗

2
A
−1/2
C∗

1 ,C∗

2
− I

)

= ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

.

An analogous argument shows that

ρ
(

A
−1/2
C∗

1 ,C∗

2
AC∗

1 ,Σ2A
−1/2
C∗

1 ,C∗

2
− I

)

= ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

.

Therefore,

ρ
(

MT2
Σ1,Σ2

M−1
)

≤ ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

.

The result then follows from the fact that

ρ
(

MT2
Σ1,Σ2

M−1
)

= ρ
(

T2
Σ1,Σ2

)

= (ρ(TΣ1,Σ2))
2 .

For any positive reals a and b, we have 0 < a/(a + b) < 1. The next lemma generalizes
this result to the case of positive definite matrices.

Lemma 17 Suppose that A and B are symmetric positive definite matrices. Let C =
A (A + B)−1. If λ is an eigenvalue of C, then 0 < λ < 1.

Proof: Note that C is well-defined since A + B is a symmetric positive definite matrix. Let
λ be an eigenvalue of C with an associated eigenvector u, which may be a complex vector.
By definition,

Cu = A (A + B)−1 u = λu

Thus,

u = λ (A + B)A−1u

= λ
(

I + BA−1
)

u

Pre-multiplying the above equation by B−1, it follows that

B−1u = λ
(

B−1 + A−1
)

u.
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After pre-multiply the above equation by uH , the conjugate transpose of u, we have

uHB−1u = λ
(

uHB−1u + uHA−1u
)

.

From linear algebra, if R is any real symmetric matrix, then for any vector x (possibly
complex), xHRx is always a real number. Thus, λ is a real number. This implies that u is
a real vector. Hence, the above equation can be written as

u′B−1u = λ
(

u′A−1u + u′B−1u
)

Since A and B are symmetric positive definite matrices, so are A−1 and B−1. It follows
that 0 < λ < 1.

The final lemma shows convergence of the mean vectors when Σ1 = Σ2.

Lemma 18 If Σ1 = Σ2 = Σ, then the sequence of covariance matrices converge to a unique
fixed point (C,C) in D ×D and C ≤ δ (Σ). Moreover, ρ (TΣ1,Σ2) < 1.

Proof: Recall from Theorem 1 that the sequence of covariance matrices converges to the
unique fixed point (C∗

1 , C∗
2 ) of F in D×D. Let us first show that C∗

1 = C∗
2 . Since (C∗

1 , C∗
2 )

is the fixed point of F , it follows that (C∗
1 , C∗

2 ) satisfy

C∗
1 = F1 (C∗

2 ) =

(

(

δ
(

AΣ1,C∗

2

))−1
+ I − (C∗

2 )−1
)−1

,

and

C∗
2 = F2 (C∗

1 ) =

(

(

δ
(

AC∗

1 ,Σ2

))−1
+ I − (C∗

1 )−1
)−1

.

Since Σ1 and Σ2 are equal, it follows from symmetry that C∗
1 = C∗

2 = C for some C in D.
Thus,

C−1 = δ

(

(

Σ−1 + C−1 − I
)−1

)−1

+ I − C−1.

Since C < I (Lemma 4(c)), C−1 − I is positive definite. Hence, it follows from Lemma 12
(Appendix A) that

C−1 ≥ (δ (Σ))−1 +

(

δ

(

(

C−1 − I
)−1

))−1

+ I − C−1 = (δ (Σ))−1 ,

which implies that C ≤ δ(Σ).
Recall that the matrix TΣ1,Σ2 is defined by

TΣ1,Σ2 =

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

.

Since Σ1 = Σ2 = Σ and C∗
1 = C∗

2 = C, we have that

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I = A−1

C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I =
(

2C−1 − I
)

AΣ,C − I.
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Moreover,
(

2C−1 − I
)

AΣ,C − I =
(

2C−1 − I
) (

Σ−1 + C−1 − I
)−1

− I

= 2

(

C−1 −
1

2
I

)(

Σ−1 −
1

2
I + C−1 −

1

2
I

)−1

− I

Using the fact that Σ−1 − 1
2I (Assumption 1(b)) and C−1 − 1

2I (Lemma 4(c)) are positive
definite, it follows from Lemma 17 that all eigenvalues of the matrix

(

C−1 −
1

2
I

)(

Σ−1 −
1

2
I + C−1 −

1

2
I

)−1

are in (0, 1). This implies that

ρ

(

2

(

C−1 −
1

2
I

)(

Σ−1 −
1

2
I + C−1 −

1

2
I

)−1

− I

)

< 1,

or equivalently

ρ
((

2C−1 − I
)

AΣ,C − I
)

< 1.

Therefore,

ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

= ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

= ρ
((

2C−1 − I
)

AΣ,C − I
)

< 1.

It follows from Lemma 16 that ρ (TΣ1,Σ2) < 1.

Proof of Proposition 2
It is not hard to verify that Σ1 and Σ2 satisfy Assumption 1. Let (C,C) denotes the

unique fixed point of the sequences of covariance matrices under belief propagation when
the covariance matrices of p∗1 and p∗2 are Σ (Lemma 18). It follows from Theorem 1 that C
satisfies the following equation

(

C−1 + C−1 − I
)−1

= δ

(

(

Σ−1 + C−1 − I
)−1

)

.

Also, let the matrix TΣ,Σ be defined by

TΣ,Σ =

(

0 A−1
C,CAΣ,C − I

A−1
C,CAΣ,C − I 0

)

Now, let C∗
1 and C∗

2 be defined by

C∗
1 =

(

C−1 + γI
)−1

, and C∗
2 =

(

C−1 − γI
)−1

It is a standard fact in linear algebra [27] that for any symmetric positive definite matrix
Σ, Σii ≤ λmax (Σ) for all i. Since C ≤ δ(Σ) (Lemma 18), it follows that C ∗

1 and C∗
2 are

positive definite. Moreover,
(

(C∗
1 )−1 + (C∗

2 )−1 − I
)−1

=
(

C−1 + C−1 − I
)−1

= δ

(

(

Σ−1 + C−1 − I
)−1

)

= δ

(

(

Σ−1
1 + (C∗

2 )−1 − I
)−1

)

,
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where the last equality follows from the definition of Σ1 and C∗
2 . A similar argument shows

that
(

(C∗
1 )−1 + (C∗

2 )−1 − I
)−1

= δ

(

(

(C∗
1 )−1 + Σ−1

2 − I
)−1

)

.

It follows from Theorem 1 that (C∗
1 , C∗

2 ) is the unique fixed point of the sequences of
covariance matrices generated by belief propagation when the covariance matrices of p∗1 and
p∗2 are Σ1 and Σ2, respectively. We also know from Theorem 2 that the associated sequence
of mean vectors will converge if ρ (TΣ1,Σ2) < 1 where

TΣ1,Σ2 =

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

However, it is immediate from the definition of (Σ1,Σ2) and (C∗
1 , C∗

2 ) that

AC∗

1 ,C∗

2
= AC,C , AΣ1,C∗

2
= AΣ,C , and AC∗

1 ,Σ2 = AΣ,C .

Thus, TΣ,Σ = TΣ1,Σ2 . Since ρ (TΣ,Σ) < 1 by Lemma 18, the desired result follows.

F Proof of Proposition 3

Our proof of Proposition 3 relies on two lemmas. The first deals with eigenvalues of a
product of a symmetric positive definite matrix and a positive definite diagonal matrix –
quantities that appear in the definition of Li and Ui.

Lemma 19 Let A be a symmetric positive definite matrix, and let D be a positive definite
diagonal matrix. Then,

λmin

(

A−1D
)

= min
‖u‖2=1

u′Du

u′Au
,

and

λmax

(

A−1D
)

= max
‖u‖2=1

u′Du

u′Au
.

Proof: It suffices to prove this result for λmin
(

A−1D
)

. The proof for λmax
(

A−1D
)

is similar.
Since A is a symmetric positive definite matrix,

A = UΛU ′,

for some orthogonal matrix U and positive definite diagonal matrix Λ. For any real number
p, let the matrix Ap be defined by

Ap = UΛpU ′.

The reader can easily verify that the normal rules of exponentiation apply in this case.
From linear algebra, if K is any symmetric positive definite matrix, then

λmin (K) = min
‖v‖2=1

v′Kv = min
v 6=0

v′Kv

v′v
.
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Since eigenvalues are preserved under similarity transformation,

λmin

(

A−1D
)

= λmin

(

A1/2A−1DA−1/2
)

= λmin

(

A−1/2DA−1/2
)

= min
v 6=0

v′A−1/2DA−1/2v

v′v

where the last equality follows from the fact that A−1/2DA−1/2 is a symmetric positive
definite matrix. Hence,

λmin

(

A−1D
)

= min
v 6=0

v′A−1/2DA−1/2v

v′v

= min
v 6=0

v′A−1/2DA−1/2v

v′A−1/2AA−1/2v

= min
u6=0

u′Du

u′Au

where the last equality follows from the identification u = A−1/2v and the fact that A−1/2 is
nonsingular. Since the ratio on the right-hand side of the above equation is scale-invariant,

λmin

(

A−1D
)

= min
‖u‖2=1

u′Du

u′Au
.

A second lemma provides a bound on the fixed point (C ∗
1 , C∗

2 ) of F .

Lemma 20 For i = 1, 2, we have

(δ (Σi))
−1 ≤ (C∗

i )−1 ≤ δ
(

Σ−1
i

)

.

Proof: Since (C∗
1 , C∗

2 ) is the fixed point of F , it follows that

C∗
1 =

(

(

δ
(

AΣ1,C∗

2

))−1
+ I − (C∗

2 )−1
)−1

and C∗
2 =

(

(

δ
(

AC∗

1 ,Σ2

))−1
+ I − (C∗

1 )−1
)−1

.

Using the definition of AΣ1,C∗

2
, we have

(C∗
1 )−1 = δ

(

(

Σ−1
1 + (C∗

2 )−1 − I
)−1

)−1

+ I − (C∗
2)−1 .

Since C∗
2 < I (Lemma 4(c)), (C∗

2 )−1 − I is a positive definite diagonal matrix. Thus, it
follows from Lemma 10 (Appendix A) that

(C∗
1 )−1 ≤ δ

(

Σ−1
1

)

+ δ
(

(C∗
2 )−1 − I

)

+ I − (C∗
2)−1 = δ

(

Σ−1
1

)

.

Application of Lemma 12 (Appendix A) implies that

(C∗
1 )−1 ≥ (δ (Σ1))

−1 +

(

δ

(

(

(C∗
2 )−1 − I

)−1
))−1

+ I − (C∗
2 )−1 = (δ (Σ1))

−1 .
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Therefore,

(δ (Σ1))
−1 ≤ (C∗

1 )−1 ≤ δ
(

Σ−1
1

)

.

The result for C∗
2 can be established via entirely analogous means.

Equipped with our lemmas, we now move on to prove Proposition 3.

Proof of Proposition 3
Recall that the matrix TΣ1,Σ2 is defined by

TΣ1,Σ2 =

(

0 A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I 0

)

.

We will first find an upper bound for the eigenvalues of A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
and A−1

C∗

1 ,C∗

2
AC∗

1 ,Σ2 .

Any matrix A and its transpose A′ possess the same eigenvalues. It therefore suffices to
consider the eigenvalues of AΣ1,C∗

2
A−1

C∗

1 ,C∗

2
and AC∗

1 ,Σ2A
−1
C∗

1 ,C∗

2
.

Let λ be any eigenvalue of AΣ1,C∗

2
A−1

C∗

1 ,C∗

2
with an associated eigenvector v such that

‖v‖2 = 1. By definition,
AΣ1,C∗

2
A−1

C∗

1 ,C∗

2
v = λv,

which implies that

λ =
v′A−1

C∗

1 ,C∗

2
v

v′A−1
Σ1,C∗

2
v

=
v′
(

(C∗
1 )−1 + (C∗

2 )−1 − I
)

v

v′
(

Σ−1
1 + (C∗

2 )−1 − I
)

v
.

It follows from Lemma 20 that

v′
(

(δ (Σ1))
−1 + (C∗

2 )−1 − I
)

v

v′
(

Σ−1
1 + (C∗

2 )−1 − I
)

v
≤ λ ≤

v′
(

δ
(

Σ−1
1

)

+ (C∗
2 )−1 − I

)

v

v′
(

Σ−1
1 + (C∗

2 )−1 − I
)

v
,

which implies that

min
‖u‖2=1

u′
(

(δ (Σ1))
−1 + (C∗

2 )−1 − I
)

u

u′
(

Σ−1
1 + (C∗

2 )−1 − I
)

u
≤ λ ≤ max

‖u‖2=1

u′
(

δ
(

Σ−1
1

)

+ (C∗
2 )−1 − I

)

u

u′
(

Σ−1
1 + (C∗

2 )−1 − I
)

u
.

Since (C∗
2 )−1 − I is positive definite (Lemma 4(c)) and

min
‖u‖2=1

u′
(

(δ (Σ1))
−1 + (C∗

2 )−1 − I
)

u

u′
(

Σ−1
1 + (C∗

2 )−1 − I
)

u
≤ 1 ≤ max

‖u‖2=1

u′
(

δ
(

Σ−1
1

)

+ (C∗
2 )−1 − I

)

u

u′
(

Σ−1
1 + (C∗

2 )−1 − I
)

u
,

we have

min
‖u‖2=1

u′ (δ (Σ1))
−1 u

u′Σ−1
1 u

≤ λ ≤ max
‖u‖2=1

u′δ
(

Σ−1
1

)

u

u′Σ−1
1 u

.

From Lemma 19 and the definition of L1 and U1 given in Proposition 3, it follows that

1− L1 = λmin

(

Σ1 (δ (Σ1))
−1
)

≤ λ ≤ λmax

(

Σ1δ
(

Σ−1
1

))

= U1 + 1.
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Since λ is arbitrary, we conclude that all eigenvalues of A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
are between 1 − L1

and U1+1. An analogous argument shows that all eigenvalues of A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 are bounded

by 1− L2 and U2 + 1. Using the fact that Li and Ui are non-negative for i = 1, 2 (Lemma
19), it follows that

ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

≤ (L1 ∨ U1) ,

and
ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

≤ (L2 ∨ U2) .

Consequently, if
∏2

i=1 (Li ∨ Ui) < 1, then

ρ
(

A−1
C∗

1 ,C∗

2
AΣ1,C∗

2
− I

)

ρ
(

A−1
C∗

1 ,C∗

2
AC∗

1 ,Σ2 − I
)

< 1,

and the desired result follows from Lemma 16.

G Proof of Proposition 4

Let

U1
Σ1,Σ2

= inf







γ ∈ < : max
‖u‖2=1

u′
(

δ
(

Σ−1
i

)

− Σ−1
i

)

u

u′Σ−1
i u + γ − 1

< 1, i = 1, 2







,

and let
UΣ1,Σ2 = 1 ∨ U1

Σ1,Σ2
.

Since Σ1 and Σ2 are symmetric positive definite matrices, it is follows that U 1
Σ1,Σ2

, and thus

UΣ1,Σ2 , is well defined. Furthermore, it is easy to verify that Σβ
1 and Σβ

2 satisfy Assumption
1 for all β > UΣ1,Σ2 . It follows from Lemma 19 (Appendix F) that

λmax

(

Σβ
1 δ

(

(

Σβ
1

)−1
))

− 1 = λmax

(

(

Σ−1
1 + (β − 1)I

)−1
δ
(

Σ−1
1 + (β − 1)I

)

)

− 1

= max
‖u‖2=1

u′δ
(

Σ−1
1

)

u + β − 1

u′Σ−1
1 u + β − 1

− 1

= max
‖u‖2=1

u′
(

δ
(

Σ−1
i

)

− Σ−1
i

)

u

u′Σ−1
i u + β − 1

Thus, for all β > UΣ1,Σ2 ,

0 ≤ λmax

(

Σβ
1 δ

(

(

Σβ
1

)−1
))

− 1 < 1.

A similar argument shows that

0 ≤ λmax

(

Σβ
2 δ

(

(

Σβ
2

)−1
))

− 1 < 1.

Application of Lemma 19 (Appendix F) also implies that

λmin

(

Σβ
1

(

δ
(

Σβ
1

))−1
)

= min
‖u‖2=1

u′
(

δ
(

Σβ
1

))−1
u

u′
(

Σβ
1

)−1
u

.
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Thus, it follows from Lemma 10 (Appendix A) that

0 < λmin

(

Σβ
1

(

δ
(

Σβ
1

))−1
)

≤ min
‖u‖2=1

u′δ

(

(

Σβ
1

)−1
)

u

u′
(

Σβ
1

)−1
u

≤ 1,

from which it follows that

0 ≤ 1− λmin

(

Σβ
1

(

δ
(

Σβ
1

))−1
)

< 1.

A similar argument shows that

0 ≤ 1− λmin

(

Σβ
2

(

δ
(

Σβ
2

))−1
)

< 1.

Hence, for all β > UΣ1,Σ2 ,

2
∏

i=1

(

1− λmin

(

Σβ
i

(

δ
(

Σβ
i

))−1
))

∨

(

λmax

(

Σβ
i δ

(

(

Σβ
i

)−1
))

− 1

)

< 1.

The desired result follows from Proposition 3.

H Proof of Proposition 5

For any symmetric positive definite matrix K, let δmax (K) denote the largest diagonal
element of K. Since

λmin (K) = min
‖u‖2=1

u′Ku and λmax (K) = max
‖u‖2=1

u′Ku,

it follows that
λmin (K) ≤ δmax (K) ≤ λmax (K) .

Application of Lemma 19 and the above inequality implies that

λmax

(

Σ1δ
(

Σ−1
1

))

= max
‖u‖2=1

u′δ
(

Σ−1
1

)

u

u′Σ−1
1 u

≤
max‖u‖2=1 u′δ

(

Σ−1
1

)

u

min‖u‖2=1 u′Σ−1
1 u

=
δmax

(

Σ−1
1

)

λmin

(

Σ−1
1

)

≤
λmax

(

Σ−1
1

)

λmin

(

Σ−1
1

)

=
λmax (Σ1)

λmin (Σ1)
.
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An analogous argument shows that

λmin

(

Σ1 (δ (Σ1))
−1
)

= min
‖u‖2=1

u′ (δ (Σ1))
−1 u

u′Σ−1
1 u

≥
min‖u‖2=1 u′ (δ (Σ1))

−1 u

max‖u‖2=1 u′Σ−1
1 u

=
1/δmax (Σ1)

λmax

(

Σ−1
1

)

≥
1/λmax (Σ1)

λmax

(

Σ−1
1

)

=
λmin (Σ1)

λmax (Σ1)
.

For i = 1, 2, let Li and Ui be defined as in Proposition 3. Since

L1 = 1− λmin

(

Σ1 (δ (Σ1))
−1
)

and U1 = λmax

(

Σ1δ
(

Σ−1
1

))

− 1,

it follows that

L1 ∨ U1 ≤

(

1−
λmin (Σ1)

λmax (Σ1)

)

∨

(

λmax (Σ1)

λmin (Σ1)
− 1

)

=
λmax (Σ1)

λmin (Σ1)
− 1.

Using exactly the same argument as above, one can show that

L2 ∨ U2 ≤
λmax (Σ2)

λmin (Σ2)
− 1.

Suppose that
λmin (Σ1)

λmax (Σ1)
+

λmin (Σ2)

λmax (Σ2)
> 1.

After multiplying the above inequality by λmax (Σ1)λmax (Σ2) /λmin (Σ1)λmin (Σ2), we have

λmax (Σ1)

λmin (Σ1)
+

λmax (Σ2)

λmin (Σ2)
>

λmax (Σ1)

λmin (Σ1)

λmax (Σ2)

λmin (Σ2)
.

Therefore,
λmax (Σ1)

λmin (Σ1)

λmax (Σ2)

λmin (Σ2)
−

λmax (Σ1)

λmin (Σ1)
−

λmax (Σ2)

λmin (Σ2)
+ 1 < 1,

or equivalently,
(

λmax (Σ1)

λmin (Σ1)
− 1

)(

λmax (Σ2)

λmin (Σ2)
− 1

)

< 1.

This implies that
2
∏

i=1

(Li ∨ Ui) < 1.

The desired result follows from Proposition 3.
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