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We consider the problem of reinforcement learning over episodes of a finite-horizon deterministic system and
as a solution propose optimistic constraint propagation (OCP), an algorithm designed to synthesize e�cient
exploration and value function generalization. We establish that when the true value function Q⇤ lies within
the hypothesis class Q, OCP selects optimal actions over all but at most dimE[Q] episodes, where dimE

denotes the eluder dimension. We establish further e�ciency and asymptotic performance guarantees that
apply even if Q⇤ does not lie in Q, for the special case where Q is the span of pre-specified indicator functions
over disjoint sets. We also discuss the computational complexity of OCP and present computational results
involving two illustrative examples.
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1. Introduction A growing body of work on e�cient reinforcement learning provides algo-
rithms with guarantees on sample and computational e�ciency (see [13, 6, 2, 30, 4, 9] and references
therein). This literature highlights the point that an e↵ective exploration scheme is critical to the
design of any e�cient reinforcement learning algorithm. In particular, popular exploration schemes
such as ✏-greedy, Boltzmann, and knowledge gradient (see [27]) can require learning times that
grow exponentially in the number of states and/or the planning horizon (see [38, 29]).
The aforementioned literature focusses on tabula rasa learning; that is, algorithms aim to learn

with little or no prior knowledge about transition probabilities and rewards. Such algorithms require
learning times that grow at least linearly with the number of states. Despite the valuable insights
that have been generated through their design and analysis, these algorithms are of limited practical
import because state spaces in most contexts of practical interest are enormous. There is a need for
algorithms that generalize from past experience in order to learn how to make e↵ective decisions
in reasonable time.
There has been much work on reinforcement learning algorithms that generalize (see, e.g.,

[5, 31, 32, 24] and references therein). Most of these algorithms do not come with statistical or
computational e�ciency guarantees, though there are a few noteworthy exceptions, which we now
discuss. A number of results treat policy-based algorithms (see [10, 3] and references therein), in
which the goal is to select high-performers among a pre-specified collection of policies as learning
progresses. Though interesting results have been produced in this line of work, each entails quite
restrictive assumptions or does not make strong guarantees. Another body of work focuses on
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model-based algorithms. An algorithm proposed by Kearns and Koller [12] fits a factored model
to observed data and makes decisions based on the fitted model. The authors establish a sample
complexity bound that is polynomial in the number of model parameters rather than the number of
states, but the algorithm is computationally intractable because of the di�culty of solving factored
MDPs. Lattimore et al. [15] propose a novel algorithm for the case where the true environment is
known to belong to a finite or compact class of models, and shows that its sample complexity is
polynomial in the cardinality of the model class if the model class is finite, or the ✏-covering-number
if the model class is compact. Though this result is theoretically interesting, for most model classes
of interest, the ✏-covering-number is enormous since it typically grows exponentially in the number
of free parameters. Ortner and Ryabko [20] establish a regret bound for an algorithm that applies
to problems with continuous state spaces and Hölder-continuous rewards and transition kernels.
Though the results represent an interesting contribution to the literature, a couple features of the
regret bound weaken its practical implications. First, regret grows linearly with the Hölder constant
of the transition kernel, which for most contexts of practical relevance grows exponentially in the
number of state variables. Second, the dependence on time becomes arbitrarily close to linear as
the dimension of the state space grows. Pazis and Parr [22] also consider problems with continuous
state spaces. They assume that the Q-functions are Lipschitz-continuous or Hölder-continuous and
establish a sample complexity bound. Though the results are interesting and significant, the sample
complexity bound is log-linear in the covering number of the state-action space, which also typically
grows exponentially in the number of free parameters for most practical problems. Reinforcement
learning in linear systems with quadratic cost is treated in Abbasi-Yadkori and Szepesvári [1]. The
method proposed is shown to realize regret that grows with the square root of time. The result
is interesting and the property is desirable, but to the best of our knowledge, expressions derived
for regret in the analysis exhibit an exponential dependence on the number of state variables, and
further, we are not aware of a computationally e�cient way of implementing the proposed method.
This work was extended by Ibrahimi et al. [8] to address linear systems with sparse structure. Here,
there are e�ciency guarantees that scale gracefully with the number of state variables, but only
under sparsity and other technical assumptions.
The most popular approach to generalization in the applied reinforcement learning literature

involves fitting parameterized value functions. Such approaches relate closely to supervised learning
in that they learn functions from state-action pairs to value, though a di↵erence is that value
is influenced by action and observed only through delayed feedback. One advantage over model
learning approaches is that, given a fitted value function, decisions can be made without solving a
potentially intractable control problem. We see this as a promising direction, though there currently
is a lack of theoretical results that provide attractive bounds on learning time with value function
generalization. A relevant paper along these lines is [16], which studies e�cient reinforcement
learning with value function generalization in the KWIK framework (see [17]) and reduces the
problem to e�cient KWIK online regression. However, the authors do not show how to solve the
general KWIK online regression problem e�ciently, and it is not even clear whether this is possible.
Thus, though the result of Li and Littman [16] is interesting, it does not provide a provably e�cient
algorithm for general reinforcement learning problems. However, it is worth mentioning that Li
et al. [17] has provided a solution to KWIK online regression with deterministic linear functions.
As we will discuss later, this can be seen as a special case of the coherent learning problems we
consider in Section 5.2.
An important challenge that remains is to couple exploration and value function generalization

in a provably e↵ective way, and in particular, to establish sample and computational e�ciency
guarantees that scale gracefully with the planning horizon and model complexity. In this paper, we
aim to make progress in this direction. To start with a simple context, we restrict our attention to
deterministic systems that evolve over finite time horizons, and we consider episodic learning, in
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which an agent repeatedly interacts with the same system. As a solution to the problem, we pro-
pose optimistic constraint propagation (OCP), a computationally e�cient reinforcement learning
algorithm designed to synthesize e�cient exploration and value function generalization. We estab-
lish that when the true value function Q⇤ lies within the hypothesis class Q, OCP selects optimal
actions over all but at most dim

E

[Q] episodes. Here, dim
E

denotes the eluder dimension, which
quantifies complexity of the hypothesis class. A corollary of this result is that regret is bounded
by a function that is constant over time and linear in the problem horizon and eluder dimension.
To put our aforementioned result in perspective, it is useful to relate it to other lines of work.

Consider first the broad area of reinforcement learning algorithms that fit value functions, such
as SARSA [25]. Even with the most commonly used sort of hypothesis class Q, which is made
up of linear combinations of fixed basis functions, and even when the hypothesis class contains
the true value function Q⇤, there are no guarantees that these algorithms will e�ciently learn to
make near-optimal decisions. On the other hand, our result implies that OCP attains near-optimal
performance in time that scales linearly with the number of basis functions. Now consider the more
specialized context of a deterministic linear system with quadratic cost and a finite time horizon.
The analysis of Abbasi-Yadkori and Szepesvári [1] can be leveraged to produce regret bounds that
scale exponentially in the number of state variables. On the other hand, using a hypothesis space
Q consisting of quadratic functions of state-action pairs, the results of this paper show that OCP
behaves near optimally within time that scales quadratically in the number of state and action
variables.
We also establish e�ciency and asymptotic performance guarantees that apply to agnostic rein-

forcement learning, where Q⇤ does not necessarily lie in Q. In particular, we consider the case
where Q is the span of pre-specified indicator functions over disjoint sets. Our results here add
to the literature on agnostic reinforcement learning with such a hypothesis class [28, 33, 7, 34].
Prior work in this area has produced interesting algorithms and insights, as well as bounds on
performance loss associated with potential limits of convergence, but no convergence or e�ciency
guarantees. These results build on and add to those reported in an earlier paper that we published
in proceedings of a conference [37].
In addition to establishing theoretical results, we present computational results involving two

illustrative examples: a synthetic deterministic Markov chain discussed in Van Roy and Wen [35]
and the inverted pendulum problem considered in Lagoudakis et al. [14]. We compare OCP against
least-squares value iteration (LSVI), a classical reinforcement learning algorithm. In both exper-
iments, the performance of OCP is orders of magnitude better than that of LSVI. It is worth
mentioning that in the inverted pendulum example, we consider a case in which there are small
magnitude stochastic disturbances additive to the control. This result shows that, though OCP
is motivated and developed in the framework of reinforcement learning in deterministic systems,
it might also work well in some reinforcement learning problems with stochastic environments,
especially when the magnitude of the stochastic disturbances is small.
Finally, it is worth pointing out that reinforcement learning algorithms are often used to approx-

imate solutions to large-scale dynamic programs, where the system models are known. In such
contexts, there is no need for statistical learning as challenges are purely computational. Neverthe-
less, reinforcement learning algorithms make up popular solution techniques for such problems, and
our algorithm and results also serve as contributions to the field of large-scale dynamic programs.
Specifically, prior approximate dynamic programming algorithms that know the system model and
fit a linear combination of basis functions to the value function, even when the optimal value
function is within the span, come with no guarantees that a near-optimal policy can be computed
e�ciently. In this paper, we establish such a guarantee for OCP.
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2. Episodic Reinforcement Learning in Deterministic Systems We consider a class of
reinforcement learning problems in which an agent repeatedly interacts with an unknown discrete-
time deterministic finite-horizon Markov decision process (MDP). Each interaction is referred to as
an episode, and the agent’s objective is to maximize the expected cumulative reward over episodes.
The system is identified by a sextuple M= (S,A,H,F,R,S), where S is the state space, A is the
action space, H is the horizon, F is a system function, R is a reward function and S is a sequence
of states. If action a2A is selected while the system is in state x2 S at period t= 0,1, · · · ,H � 1,
a reward of Rt(x,a) is realized; furthermore, if t < H � 1, the state transitions to Ft(x,a). Each
episode terminates at period H � 1, and then a new episode begins. The initial state of episode j
is the jth element of S.
To represent the history of actions and observations over multiple episodes, we will often index

variables by both episode and period. For example, xj,t and aj,t denote the state and action at
period t of episode j, where j = 0,1, · · · and t= 0,1, · · · ,H � 1. To count the total number of steps
since the agent started learning, we say period t in episode j is time jH + t.
A (deterministic) policy µ= (µ

0

, . . . , µH�1

) is a sequence of functions, each mapping S to A. For
each policy µ, define a value function V µ

t (x) =
PH�1

⌧=t R⌧ (x⌧ , a⌧ ), where xt = x, x⌧+1

= F⌧ (x⌧ , a⌧ ),
and a⌧ = µ⌧ (x⌧ ). The optimal value function is defined by V ⇤

t (x) = supµ V
µ
t (x). A policy µ⇤ is

said to be optimal if V µ⇤
= V ⇤. Throughout this paper, we will restrict attention to systems M=

(S,A,H,F,R,S) that admit optimal policies. Note that this restriction incurs no loss of generality
when the action space is finite.
It is also useful to define an action-contingent optimal value function: Q⇤

t (x,a) = Rt(x,a) +
V ⇤
t+1

(Ft(x,a)) for t < H � 1, and Q⇤
H�1

(x,a) =RH�1

(x,a). Then, a policy µ⇤ is optimal if µ⇤
t (x) 2

argmaxa2AQ⇤
t (x,a) for all (x, t).

This paper considers a reinforcement learning framework in which the agent initially knows the
state space S, the action space A, the horizon H, and possibly some prior information about the
value function, but does not know anything else about the system function F , the reward function
R, or the sequence of the initial states S. A reinforcement learning algorithm generates each action
aj,t based on observations made up to the tth period of the jth episode, including all states, actions,
and rewards observed in previous episodes and earlier in the current episode, as well as S, A,H, and
possible prior information. In each episode, the algorithm realizes reward R(j) =

PH�1

t=0

Rt (xj,t, aj,t).
Note that R(j)  V ⇤

0

(xj,0) for each jth episode. To quantify the performance of a reinforcement
learning algorithm, for any ✏� 0, we define the ✏-suboptimal sample complexity of that algorithm as
the number of episodes JL for which R(j) <V ⇤

0

(xj,0)� ✏. Moreover, we say a reinforcement learning
algorithm is sample e�cient in a given setting if for some reasonable choice of ✏, the worst-case
✏-suboptimal sample complexity of that algorithm is small for that setting. Note that if the reward
function R is bounded, with |Rt(x,a)|R for all (x,a, t), then a bound on ✏-suboptimal sample
complexity JL also implies a bound on regret over episodes experienced prior to time T , defined
by Regret(T ) =

PbT/Hc�1

j=0

(V ⇤
0

(xj,0)�R(j)). In particular, Regret(T ) 2RHJL + ✏bT/Hc.

3. Ine�cient Exploration Schemes Before proceeding, it is worth pointing out that for
the reinforcement learning problem proposed above, even in the tabula rasa case, a number of
popular exploration schemes give rise to unsatisfactory sample complexities. Boltzmann1 and ✏-
greedy exploration schemes (see, e.g., [23]), for example, lead to worst-case regret exponential in H
and/or |S|. Also, the knowledge gradient exploration scheme (see, e.g., [24] and [27]) can converge
to suboptimal policies, and even when the ultimate policy is optimal, the time required can grow

1 Notice that in this paper, we assume that the state transition model of the deterministic system is unknown. Some
literature (see [18] and references therein) considers settings in which the state transition model is known (but the
reward function is unknown), and shows that exploration schemes similar to Boltzmann exploration achieve regrets
polynomial in H (or equivalently, mixing time) and |S|.



Wen and Van Roy: E�cient Reinforcement Learning in Deterministic Systems
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!) 5

exponentially in H and/or |S|. Thus, even for the tabula rasa case, e�cient exploration schemes
are necessary for an algorithm to achieve a regret polynomial in H and |S|.
In the remainder of this section, we provide an example that takes tabular Q-learning with

Boltzmann exploration exponentially many episodes to learn an optimal policy. One can construct
such examples for ✏-greedy exploration similarly.
Example 1. Consider the deterministic system described in Figure 1. Specifically, in Figure

State%1%

%State%2%

t=0% t=1% t=2% t=H+2% t=H+1%

Figure 1. Deterministic system for which Boltzmann exploration is ine�cient

1, each node represents a state-time pair, and each arrow corresponds to a possible deterministic
state transition. We further assume that the rewards only depend on the state-time pair, with
Rt(x) = 0 if the node is red and Rt(x) = 1 if the node is green. Obviously, for this example, the
optimal policy is to follow the unique path to the green node.
Now assume that we apply the Q-learning algorithm with Boltzmann exploration to this example,

with initial Q-values Qt(x,a) = 0, 8(x,a, t). Thus, from the Q-learning algorithm, Qt(x,a) = 0,
8(x,a, t), will hold until the first visit to the green node. We also note that if Qt(x,a) = 0, 8(x,a, t),
then with Boltzmann exploration, the Q-learning algorithm will choose actions uniformly randomly
at every state-time pair. Thus, in this case, the probability that the algorithm will visit the green
node in one episode is 1/2H�1. Consequently, in expectation, it takes the algorithm 2H�1 episodes
to first visit the green node.

4. Optimistic Constraint Propagation Our reinforcement learning algorithm – optimistic
constraint propagation (OCP) – takes as input the state space S, the action space A, the horizon
H, and a hypothesis class Q of candidates for Q⇤. The algorithm maintains a sequence of subsets
of Q and a sequence of scalar “upper bounds”, which summarize constraints that past experience
suggests for ruling out hypotheses. Each constraint in this sequence is specified by a state x2 S, an
action a2A, a period t= 0, . . . ,H�1, and an interval [L,U ]✓<, and takes the form {Q2Q :L
Qt(x,a)U}. The upper bound of the constraint is U . Given a sequence C = (C

1

, . . . ,C|C|) of such
constraints and upper bounds U = (U

1

, . . . ,U|C|), for any i, j = 1, · · · , |C| s.t. i 6= j, we say Ci < Cj, or
constraint Ci has higher priority than Cj, if (1) Ui <Uj or (2) Ui =Uj and j > i. That is, priority is
assigned first based on upper bound, with smaller upper bound preferred, and then, in the event of
ties in upper bound, based on position in the sequence, with more recent experience (larger index)
preferred. A set QC is defined constructively by Algorithm 1. Note that if the constraints do not
conflict then QC = C

1

\ · · ·\ C|C|.
OCP, presented below as Algorithm 2, at each time t computes for the current state xj,t and each

action a the greatest state-action value Qt(xj,t, a) among functions in QC and selects an action that
attains the maximum. In other words, an action is chosen based on the most optimistic feasible
outcome subject to constraints. The subsequent reward and state transition give rise to a new
constraint that is used to update C. Note that the update of C is postponed until one episode is
completed.
As we will prove in Lemma 1, if Q⇤ 2Q then each constraint appended to C does not rule out

Q⇤, and therefore, the sequence of sets QC generated as the algorithm progresses is decreasing and
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Algorithm 1 Constraint Selection
Require: Q, C

QC Q
Sort constraints in C s.t. Ck1 < Ck2 < · · ·< Ck|C|
for ⌧ = 1 to |C| do

if QC \ Ck⌧ 6=? then
QC QC \ Ck⌧

end if
end for
return QC

Algorithm 2 Optimistic Contraint Propagation
Require: S, A, H, Q
Initialize C ?
for episode j = 0,1, · · · do

Set C0 C
for period t= 0,1, · · · ,H � 1 do

Apply aj,t 2 argmaxa2A supQ2QC
Qt(xj,t, a)

if t <H � 1 then
Uj,t supQ2QC

(Rt(xj,t, aj,t)+ supa2AQt+1

(xj,t+1

, a))
Lj,t infQ2QC (Rt(xj,t, aj,t)+ supa2AQt+1

(xj,t+1

, a))
else

Uj,t Rt(xj,t, aj,t), Lj,t Rt(xj,t, aj,t)
end if
C0 C0 _ {Q2Q : Lj,t Qt(xj,t, aj,t)Uj,t}

end for
Update C C0

end for

contains Q⇤ in its intersection. In the agnostic case, where Q⇤ may not lie in Q, new constraints can
be inconsistent with previous constraints, in which case selected previous constraints are relaxed
as determined by Algorithm 1.
Let us briefly discuss several contexts of practical relevance and/or theoretical interest in which

OCP can be applied.
• Finite state/action tabula rasa case. With finite state and action spaces, Q⇤ can be rep-
resented as a vector, and without special prior knowledge, it is natural to let Q=<|S|·|A|·H .

• Polytopic prior constraints. Consider the aforementioned example, but suppose that we
have prior knowledge that Q⇤ lies in a particular polytope. Then we can let Q be that polytope
and again apply OCP.

• Linear systems with quadratic cost (LQ). In this classical control model, if S = <n,
A=<m, and R is a positive semidefinite quadratic, then for each t, Q⇤

t is known to be a positive
semidefinite quadratic, and it is natural to let Q = QH

0

with Q
0

denoting the set of positive
semidefinite quadratics.

• Finite hypothesis class. Consider a context when we have prior knowledge that Q⇤ can be
well approximated by some element in a finite hypothesis class. Then we can let Q be that finite
hypothesis class and apply OCP. This scenario is of particular interest from the perspective of
learning theory. Note that this context entails agnostic learning, which is accommodated by
OCP.
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• Linear combination of features. It is often e↵ective to hand-select a set of features
�
1

, . . . ,�K , each mapping S⇥A to <, and, then for each t, aiming to compute weights ✓(t) 2<K

so that
P

k ✓
(t)
k �k approximates Q⇤

t without knowing for sure that Q⇤
t lies in the span of the

features. To apply OCP here, we would let Q=QH
0

with Q
0

= span(�
1

, . . . ,�K). Note that this
context also entails agnostic learning.

• State aggregation. This is a special case of the “linear combination of features” case dis-
cussed above. Specifically, for any t= 0,1, · · · ,H � 1, the state-action space at period t, Zt =
{(x,a, t) : x2 S, a2A}, is partitioned intoKt disjoint subsets Zt,1,Zt,2, · · · ,Zt,Kt , and we choose
as features indicator functions for partition Zt,k’s.

• Sigmoid. If it is known that rewards are only received upon transitioning to the terminal state
and take values between 0 and 1, it might be appropriate to use a variation of the aforementioned
feature based model that applies a sigmoidal function to the linear combination. In particular,
we could have Q=QH

0

with Q
0

= { (
P

k ✓k�k(·)) : ✓ 2<K}, where  (z) = ez/(1+ ez).
• Sparse linear combination of features. Another case of potential interest is whereQ⇤ can be
encoded by a sparse linear combination of a large number of features �

0

, · · · ,�K . In particular,
suppose that � = [�

0

, · · · ,�K ] 2 <|S||A|⇥K , and Q = QH
0

with Q
0

= {�✓ : ✓ 2<K ,k✓k
0

K
0

},
where k✓k

0

is the L
0

-“norm” of ✓ and K
0

⌧K.
It is worth mentioning that OCP, as we have defined it, assumes that an action a maximizing

supQ2QC
Qt(xj,t, a) exists in each iteration. Note that this assumption always holds if the action

space A is finite, and it is not di�cult to modify the algorithm so that it addresses cases where this
is not true. But we have not presented the more general form of OCP in order to avoid complicating
this paper.
Finally, we compare OCP with some classical reinforcement learning algorithms. It is worth

mentioning that in the finite state/action tabula rasa case, OCP is equivalent to the Q-learning algo-
rithm with learning rate 1 and initial Q-value Qt(x,a) =1, 8(x,a, t). Please refer to the appendix
for the justification of this argument. On the other hand, in the linear generalization/approximation
case with Q = span(�

1

, . . . ,�K)H , OCP is very di↵erent from the classical approaches where the
weights are estimated using either temporal-di↵erence learning (e.g. Q-learning with linear approx-
imation) or least squares (e.g. least-squares value iteration).

5. Sample E�ciency of Optimistic Constraint Propagation We now establish results
concerning the sample e�ciency (performance) of OCP. Our results bound the ✏-suboptimal sample
complexities of OCP for appropriate choices of ✏. Obviously, these sample complexity bounds
must depend on the complexity of the hypothesis class. As such, we begin by defining the eluder
dimension, as introduced in Russo and Van Roy [26], which is the notion of hypothesis class
complexity we will use.

5.1. Eluder Dimension Let Z = {(x,a, t) : x 2 S, a 2 A, t = 0, . . . ,H � 1} be the set of all
state-action-period triples, and let Q to denote a nonempty set of functions mapping Z to <. For
all (x,a, t) 2 Z and Z̃ ✓ Z, (x,a, t) is said to be dependent on Z̃ with respect to Q if any pair
of functions Q,Q̃ 2 Q that are equal on Z̃ are equal at (x,a, t). Further, (x,a, t) is said to be
independent of Z̃ with respect to Q if (x,a, t) is not dependent on Z̃ with respect to Q.
The eluder dimension dim

E

[Q] of Q is the length of the longest sequence of elements in Z such
that every element is independent of its predecessors. Note that dim

E

[Q] can be zero or infinity,
and it is straightforward to show that if Q

1

✓Q
2

then dim
E

[Q
1

] dim
E

[Q
2

]. Based on results of
Russo and Van Roy [26], we can characterize the eluder dimensions of various hypothesis classes
presented in the previous section.
• Finite state/action tabula rasa case. If Q=<|S|·|A|·H , then dim

E

[Q] = |S| · |A| ·H.
• Polytopic prior constraints. If Q is a polytope of dimension d in <|S|·|A|·H , then dim

E

[Q] = d.
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• Linear systems with quadratic cost (LQ). IfQ
0

is the set of positive semidefinite quadratics
with domain <m+n and Q=QH

0

, then dim
E

[Q] = (m+n+1)(m+n)H/2.
• Finite hypothesis space. If |Q|<1, then dim

E

[Q] |Q|� 1.
• Linear combination of features. If Q = QH

0

with Q
0

= span(�
1

, . . . ,�K), then dim
E

[Q] 
KH.

• State aggregation. This is a special case of a linear combination of features. If Q=QH
0

, and
Q

0

is the span of indicator functions for K partitions of the state-action space, then dim
E

[Q]
KH.

• Sigmoid. If Q=QH
0

with Q
0

= { (
P

k ✓k�k(·)) : ✓ 2<K}, then dim
E

[Q]KH.
• Sparse linear combination of features. If Q=QH

0

with Q
0

= {�✓ : ✓ 2<K ,k✓k
0

K
0

} and
2K

0

min{|S||A|,K}, and any 2K
0

⇥2K
0

submatrix of � has full rank, then dim
E

[Q] 2K
0

H.
We will establish this eluder dimension bound in the appendix.

5.2. Learning with a Coherent Hypothesis Class We now present results that apply
when OCP is presented with a coherent hypothesis class; that is, where Q⇤ 2Q. We refer to such
cases as coherent learning cases. Our first result establishes that OCP can deliver less than optimal
performance in no more than dim

E

[Q] episodes.

Theorem 1. For any system M = (S,A,H,F,R,S), if OCP is applied with Q⇤ 2 Q, then
|{j :R(j) <V ⇤

0

(xj,0)}| dim
E

[Q].

That is, Theorem 1 bounds the 0-suboptimal sample complexity of OCP in coherent learning cases.
This theorem follows from an “exploration-exploitation lemma” (Lemma 3), which asserts that in
each episode, OCP either delivers optimal reward (exploits) or introduces a constraint that reduces
the eluder dimension of the hypothesis class by one (explores). Consequently, OCP will experience
sub-optimal performance in at most dim

E

[Q] episodes. We outline the proof of Theorem 1 at the
end of this subsection and the detailed analysis is provided in the appendix. An immediate corollary
bounds regret.

Corollary 1. For any R, any system M= (S,A,H,F,R,S) with sup
(x,a,t) |Rt(x,a)|R, and

any T , if OCP is applied with Q⇤ 2Q, then Regret(T ) 2RHdim
E

[Q].

Note the regret bound in Corollary 1 does not depend on time T , thus, it is an O (1) bound.
Furthermore, this regret bound is linear in R, H and dim

E

[Q]. Thus, if dim
E

[Q] does not depend
on |S| or |A|, then this regret bound also does not depend on |S| or |A|. The following result
demonstrates that the bounds of the above theorem and corollary are sharp.

Theorem 2. For any R� 0, any K,H 0 = 1,2, · · · and any reinforcement learning algorithm µ̃
that takes as input a state space, an action space, a horizon and a coherent hypothesis class, there
exist a system M= (S,A,H,F,R,S) and a hypothesis class Q satisfying (1) sup

(x,a,t) |Rt(x,a)|R,
(2) H =H 0, (3) dim

E

[Q] =K and (4) Q⇤ 2Q such that if we apply µ̃ to M with input (S,A,H,Q),
then |{j :R(j) <V ⇤

0

(xj,0)}|� dim
E

[Q] and supT Regret(T )� 2RHdim
E

[Q].

A constructive proof of these lower bounds is provided at the end of this subsection. Following
our discussion in previous sections, we discuss several interesting contexts in which the agent knows
a coherent hypothesis class Q with finite eluder dimension.
• Finite state/action tabula rasa case. If we apply OCP in this case, then it will deliver sub-
optimal performance in at most |S| · |A| ·H episodes. Furthermore, if sup

(x,a,t) |Rt(x,a)|  R,
then for any T , Regret(T ) 2R|S||A|H2.

• Polytopic prior constraints. If we apply OCP in this case, then it will deliver sub-optimal
performance in at most d episodes. Furthermore, if sup

(x,a,t) |Rt(x,a)|  R, then for any T ,
Regret(T ) 2RHd.
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• Linear systems with quadratic cost (LQ). If we apply OCP in this case, then it will deliver
sub-optimal performance in at most (m+n+1)(m+n)H/2 episodes.

• Finite hypothesis class case. Assume that the agent has prior knowledge that Q⇤ 2Q, where
Q is a finite hypothesis class. If we apply OCP in this case, then it will deliver sub-optimal
performance in at most |Q|� 1 episodes. Furthermore, if sup

(x,a,t) |Rt(x,a)|R, then for any
T , Regret(T ) 2RH [|Q|� 1].

• Linear combination of features. Assume that Q⇤ 2 Q = QH
0

with Q
0

= span(�
1

, . . . ,�K).
If we apply OCP in this case, then it will deliver sub-optimal performance in at most KH
episodes. Furthermore, if sup

(x,a,t) |Rt(x,a)|R, then for any T , Regret(T ) 2RKH2. Notice
that this result can also be derived based on the KWIK online regression with deterministic
linear functions (see [17]).

• Sparse linear combination case. Assume that the agent has prior knowledge that Q⇤ 2Q,
where Q= {�✓ : ✓ 2<K ,k✓k

0

K
0

}H and 2K
0

min{|S||A|,K}, and any 2K
0

⇥2K
0

submatrix
of � has full rank. If we apply OCP in this case, then it will deliver sub-optimal performance
in at most 2K

0

H episodes. Furthermore, if sup
(x,a,t) |Rt(x,a)|R, then for any T , Regret(T )

4RK
0

H2.
Before proceeding, it is worth pointing out that one key feature of OCP, which distinguishes it

from other reinforcement learning algorithms and makes it sample e�cient when presented with a
coherent hypothesis class, is that it updates the feasible set of candidates for Q⇤ in a conservative
manner that never rues out Q⇤ and always uses optimistic estimates from this feasible set to guide
action.

5.2.1. Sketch of Proof for Theorem 1 We start by defining some useful notations. Specif-
ically, we use Cj to denote the C in episode j to distinguish C’s in di↵erent episodes, and use z as a
shorthand notation for a state-action-time triple (x,a, t). We first prove that if Q⇤ 2Q, then each
constraint appended to C does not rule out Q⇤, and thus we have Q⇤ 2QCj for any j = 0,1, · · · .

Lemma 1. If Q⇤ 2Q, then (a) Q⇤ 2QCj for all j = 0,1, · · · , and (b) Lj,t Q⇤
t (xj,t, aj,t) Uj,t

for all t and all j = 0,1, · · · .

Please refer to the appendix for the proof of Lemma 1. Notice that Lemma 1(b) implies that
no constraints are conflicting if Q⇤ 2 Q since Q⇤ satisfies all the constraints. For any episode
j = 0,1, · · · , we define Zj and t⇤j by Algorithm 3.

Algorithm 3 Definition of Zj and t⇤j
Initialize Z

0

 ?
for j = 0,1, · · · do

Set t⇤j  NULL
if 9t= 0,1, · · · ,H � 1 s.t. (xj,t, aj,t, t) is independent of Zj with respect to Q then

Set

t⇤j  last period t in episode j s.t. (xj,t, aj,t, t) is independent of Zj with respect to Q

and Zj+1

 
h

Zj, (xj,t⇤j
, aj,t⇤j

, t⇤j )
i

else
Set Zj+1

 Zj

end if
end for
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Note that by definition, in each episode j, Zj is a sequence (ordered set) of elements in Z.
Furthermore, each element in Zj is independent of its predecessors. Moreover, if t⇤j 6=NULL, then
it is the last period in episode j s.t. (xj,t, aj,t, t) is independent of Zj with respect to Q. As we will
show in the analysis, if t⇤j 6= NULL, another interpretation of t⇤j is that it is the first period (in
backward order) in episode j when the value of a new state-action-period triple is learned perfectly.
Based on the notions of Zj and t⇤j , we have the following technical lemma:

Lemma 2. 8j = 0,1, · · · and 8t= 0,1, · · · ,H � 1, we have
(a) 8z 2Zj and 8Q2QCj , we have Q(z) =Q⇤(z).
(b) If (xj,t, aj,t, t) is dependent on Zj with respect to Q, then (1) aj,t is optimal and (2) Qt(xj,t, aj,t) =

Q⇤
t (xj,t, aj,t) = V ⇤

t (xj,t), 8Q2QCj .

Please refer to the appendix for the proof of Lemma 2. Based on Lemma 2, we have the following
exploration/exploitation lemma, which states that in each episode j, OCP algorithm either achieves
the optimal reward (exploits), or updates QCj+1

based on the Q-value at an independent state-
action-time triple (explores).

Lemma 3. For any j = 0,1, · · · , if t⇤j 6=NULL, then (xj,t⇤j
, aj,t⇤j

, t⇤j ) is independent of Zj, |Zj+1

|=
|Zj|+ 1 and Qt⇤j

(xj,t⇤j
, aj,t⇤j

) =Q⇤
t⇤j
(xj,t⇤j

, aj,t⇤j
) 8Q 2QCj+1

(Exploration). Otherwise, if t⇤j =NULL,

then R(j) = V ⇤
0

(xj,0) (Exploitation).

Theorem 1 follows from Lemma 3. Please refer to the appendix for the detailed proofs for Lemma
3 and Theorem 1.

5.2.2. Constructive Proof for Theorem 2 We start by defining some useful terminologies
and notations. First, for any state space S, any time horizon H = 1,2, · · · , any action space A,
and any hypothesis class Q, we use M (S,A,H,Q) to denote the set of all finite-horizon determin-
istic system M’s with state space S, action space A, horizon H and Q⇤ 2Q. Notice that for any
reinforcement learning algorithm that takes S, A, H, Q as input, and knows that Q is a coher-
ent hypothesis class, M (S,A,H,Q) is the set of all finite-horizon deterministic systems that are
consistent with the algorithm’s prior information.
We provide a constructive proof for Theorem 2 by considering a scenario in which an adversary

adaptively chooses a deterministic system M2M (S,A,H,Q). Specifically, we assume that
• At the beginning of each episode j, the adversary adaptively chooses the initial state xj,0.
• At period t in episode j, the agent first chooses an action aj,t 2A based on some RL algorithm2,
and then the adversary adaptively chooses a set of state-action-time triples Zj,t ✓Z and specifies
the rewards and state transitions on Zj,t, subject to the constraints that (1) (xj,t, aj,t, t) 2Zj,t

and (2) these adaptively specified rewards and state transitions must be consistent with the
agent’s prior knowledge and past observations.

We assume that the adversary’s objective is to maximize the number of episodes in which the agent
achieves sub-optimal rewards. Then we have the following lemma:

Lemma 4. 8H,K = 1,2, · · · and 8R� 0, there exist a state space S, an action space A and a
hypothesis class Q with dim

E

[Q] =K such that no matter how the agent adaptively chooses actions,
the adversary can adaptively choose an M 2M (S,A,H,Q) with sup

(x,a,t) |Rt(x,a)|R such that

the agent will achieve sub-optimal rewards in at least K episodes, and supT Regret(T )� 2RHK.

Since the fact that an adversary can adaptively choose a “bad” deterministic system simply implies
that such a system exists, thus, Theorem 2 follows directly from Lemma 4.

2 In general, the RL algorithm can choose actions randomly. If so, all the results in Section 5.2.2 hold on the realized
sample path.
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Figure 2. Illustration of the state transition

Proof for Lemma 4 We provide a constructive proof for Lemma 4. Specifically, 8H,K = 1,2, · · ·
and 8R� 0, we construct the state space as S = {1,2, · · · ,2K}, and the action space as A= {1,2}.
Recall that Z = {(x,a, t) : x2 S, t= 0,1, · · · ,H � 1, and a2A}, thus, for S and A constructed
above, we have |Z|= 4KH. Hence, Q⇤, the optimal Q-function, can be represented as a vector in
<4KH .
Before specifying the hypothesis class Q, we first define a matrix � 2 <4KH⇥K as follows.

8(x,a, t)2Z, let �(x,a, t)2<K denote the row of � corresponding to the state-action-time triple
(x,a, t), we construct �(x,a, t) as:

�(x,a, t) =

8

>

>

<

>

>

:

(H � t)ek if x= 2k� 1 for some k= 1, · · · ,K, a= 1,2 and t= 1, · · · ,H � 1
�(H � t)ek if x= 2k for some k= 1, · · · ,K, a= 1,2 and t= 1, · · · ,H � 1
Hek if x= 2k� 1 or 2k for some k= 1, · · · ,K, a= 1 and t= 0
�Hek if x= 2k� 1 or 2k for some k= 1, · · · ,K, a= 2 and t= 0

(1)

where ek 2<K is a (row) indicator vector with a one at index k and zeros everywhere else. Obviously,
rank(�) =K. We choose Q= span [�], thus dim

E

[Q] = dim(span [�]) = rank(�) =K.
Now we describe how the adversary adaptively chooses a finite-horizon deterministic system

M2M (S,A,H,Q):
• For any j = 0,1, · · · , at the beginning of episode j, the adversary chooses the initial state in
that episode as xj,0 = (j mod K)⇥ 2+ 1. That is, x

0,0 = xK,0 = x
2K,0 = · · ·= 1, x

1,0 = xK+1,0 =
x
2K+1,0 = · · ·= 3, etc.

• Before interacting with the agent, the adversary chooses the following system function F 3:

Ft(x,a) =

8

<

:

2k� 1 if t= 0, x= 2k� 1 or 2k for some k= 1, · · · ,K, and a= 1
2k if t= 0, x= 2k� 1 or 2k for some k= 1, · · · ,K, and a= 2
x if t= 1, · · · ,H � 2 and a= 1,2

.

The state transition is illustrated in Figure 2.
• In episode j = 0,1, · · · ,K�1, the adversary adaptively chooses the reward function R as follows.
If the agent takes action 1 in period 0 in episode j at initial state xj,0 = 2j+1, then the adversary
set R

0

(2j+1,1) =R
0

(2j+2,1) =Rt(2j+1,1) =Rt(2j+1,2) =�R and R
0

(2j+1,2) =R
0

(2j+

3 More precisely, in this constructive proof, the adversary does not need to adaptively choose the system function F .
He can choose F beforehand.
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2,2) =Rt(2j + 2,1) =Rt(2j + 2,2) =R, 8t= 1,2, · · · ,H � 1. Otherwise (i.e. if the agent takes
action 2 in period 0 in episode j), then the adversary set R

0

(2j+1,1) =R
0

(2j+2,1) =Rt(2j+
1,1) =Rt(2j + 1,2) =R and R

0

(2j + 1,2) =R
0

(2j + 2,2) =Rt(2j + 2,1) =Rt(2j + 2,2) =�R.
Notice that the adversary completes the construction of the deterministic system M at the end
of episode K � 1.
Note that for the constructed deterministic system M, we have Q⇤ 2Q. Specifically, it is straight

forward to see that Q⇤ =�✓⇤, where ✓⇤ 2<K , and ✓⇤k, the kth element of ✓, is defined as ✓⇤k =�R
if ak�1,0 = 1 and ✓⇤k =R if ak�1,0 = 2, for any k = 1,2, · · · ,K. Thus, the constructed deterministic
system M2M (S,A,H,Q).
Finally, we show that the constructed deterministic system M satisfies Lemma 4. Obviously, we

have |Rt(x,a)|R, 8(x,a, t) 2Z. Furthermore, note that the agent achieves sub-optimal rewards
in the firstK episodes, thus, he will achieve sub-optimal rewards in at least K episodes. In addition,
the cumulative regret in the first K episodes is 2KHR, thus, supT Regret(T )� 2KHR.

5.3. Agnostic Learning in State Aggregation Case As we have discussed in Section 4,
OCP can also be applied in agnostic learning cases, where Q⇤ may not lie in Q. For such cases,
the performance of OCP should depend on not only the complexity of Q, but also the distance
between Q and Q⇤. In this subsection, we present results when OCP is applied in a special agnostic
learning case, where Q is the span of pre-specified indicator functions over disjoint subsets. We
henceforth refer to this case as the state aggregation case.
Specifically, we assume that for any t= 0,1, · · · ,H � 1, the state-action space at period t, Zt =

{(x,a, t) : x2 S, a2A}, can be partitioned into Kt disjoint subsets Zt,1,Zt,2, · · · ,Zt,Kt , and use
�t,k to denote the indicator function for partition Zt,k (i.e. �t,k(x,a, t) = 1 if (x,a, t) 2 Zt,k, and
�t,k(x,a, t) = 0 otherwise). We define K =

PH�1

t=0

Kt, and Q as

Q= span
�

�
0,1,�0,2, · · · ,�0,K0 ,�1,1, · · · ,�H�1,KH�1

 

. (2)

Note that dim
E

[Q] =K. We define the distance between Q⇤ and the hypothesis class Q as

⇢=min
Q2Q
kQ�Q⇤k1 =min

Q2Q
sup
(x,a,t)

|Qt(x,a)�Q⇤
t (x,a)|. (3)

The following result establishes that with Q and ⇢ defined above, the performance loss of OCP
is larger than 2⇢H(H +1) in at most K episodes.

Theorem 3. For any system M = (S,A,H,F,R,S), if OCP is applied with Q defined in
Eqn(2), then |{j :R(j) <V ⇤

0

(xj,0)� 2⇢H(H +1)}|K, where K is the number of partitions and ⇢
is defined in Eqn(3).

That is, Theorem 3 bounds the 2⇢H(H + 1)-suboptimal sample complexity of OCP in the state
aggregation case. Similar to Theorem 1, this theorem also follows from an “exploration-exploitation
lemma” (Lemma 7), which asserts that in each episode, OCP either delivers near-optimal reward
(exploits), or approximately determinesQ⇤

t (x,a)’s for all the (x,a, t)’s in a disjoint subset (explores).
We outline the proof for Theorem 3 at the end of this subsection, and the detailed analysis is
provided in the appendix. An immediate corollary bounds regret.

Corollary 2. For any R� 0, any system M= (S,A,H,F,R,S) with sup
(x,a,t) |Rt(x,a)|R,

and any time T , if OCP is applied with Q defined in Eqn(2), then Regret(T ) 2RKH+2⇢(H+1)T ,
where K is the number of partitions and ⇢ is defined in Eqn(3).

Note that the regret bound in Corollary 2 is O (T ), and the coe�cient of the linear term is 2⇢(H+1).
Consequently, if Q⇤ is close to Q, then the regret will increase slowly with T . Furthermore, the
regret bound in Corollary 2 does not directly depend on |S| or |A|.
We further notice that the threshold performance loss in Theorem 3 is O (⇢H2). The following

proposition provides a condition under which the performance loss in one episode is O (⇢H).
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Proposition 1. For any episode j, if QC ✓ {Q2Q : Lj,t Qt(xj,t, aj,t)Uj,t}, 8t= 0, · · · ,H�
1, then we have V ⇤

0

(xj,0)�R(j)  6⇢H =O (⇢H).

That is, if all the new constraints in an episode are redundant, then the performance loss in
that episode is O (⇢H). Note that if the condition for Proposition 1 holds in an episode, then QC
will not be modified at the end of that episode. Furthermore, if the system has a fixed initial state
and the condition for Proposition 1 holds in one episode, then it will hold in all the subsequent
episodes, and consequently, the performance losses in all the subsequent episodes are O (⇢H).
It is worth mentioning that the sample complexity bound and the regret bounds in this sub-

section are derived under the assumption that the partitions of the state-action spaces are given.
An important problem in practice is how to choose the optimal number K of the state-action
partitions. There are many approaches to choose K, and one approach is to formulate it as a regret
bound optimization problem. Specifically, assume that for any K � H, Q(K) is the hypothesis
class the agent constructs with K partitions. Let ⇢(K) be a known upper bound on the distance
minQ2Q(K)

kQ�Q⇤k1. Then from Corollary 2 , Regret(T ) 2RKH +2⇢(K)(H +1)T . Hence, the
problem of choosing an optimal K can be formulated as

min
K�H

2R̄KH +2⇢(K)(H +1)T,

which can be e�ciently solved by line search. Notice that whether or not the optimal K depends
on |S||A|, and/or how it grows with |S||A|, depends on if and how ⇢(K) depends on |S||A|. That
is, it depends on the agent’s capability to construct a good hypothesis class Q(K) for a given K,
which in turn might depend on the agent’s prior knowledge about the problem.

5.3.1. Sketch of Proof for Theorem 3 and Proposition 1 We start by briefly describing
how constraint selection algorithm updates QC’s for the function class Q specified in Eqn(2).
Specifically, let ✓t,k denote the coe�cient of the indicator function �t,k, 8(t, k). Assume that (x,a, t)
belongs to partition Zt,k, then, with Q specified in Eqn(4.1), LQt(x,a) U is a constraint on
and only on ✓t,k, and is equivalent to L  ✓t,k  U . By induction, it is straightforward to see in
episode j, QCj can be represented as

QCj =
n

✓ 2<K : ✓(j)t,k  ✓t,k  ✓
(j)

t,k, 8(t, k)
o

, (4)

for some ✓(j)t,k’s and ✓
(j)

t,k’s. Note that ✓(j)t,k can be �1 and ✓
(j)

t,k can be 1, and when j = 0, ✓
(0)

t,k =1
and ✓(0)t,k = �1. Furthermore, from the constraint selection algorithm, ✓

(j)

t,k is monotonically non-
increasing in j, 8(t, k). Specifically, if OCP adds a new constraint L ✓t,k U on ✓t,k in episode j,

we have ✓
(j+1)

t,k =min{✓(j)t,k,U}; otherwise, ✓(j+1)

t,k = ✓
(j)

t,k. Thus, if ✓
(j)

t,k <1, then ✓
(j0)
t,k <1, 8j0 � j.

For any episode j, we define Q"
j , the optimistic Q-function in episode j, as

Q"
j,t(x,a) = sup

Q2QCj

Qt(x,a), 8(x,a, t)2Z. (5)

Similarly, Q#
j , the pessimistic Q-function in episode j, is defined as

Q#
j,t(x,a) = inf

Q2QCj
Qt(x,a), 8(x,a, t)2Z. (6)

Clearly, if (x,a, t)2Zt,k, then we have Q"
j,t(x,a) = ✓

(j)

t,k, and Q#
j,t(x,a) = ✓(j)t,k. Moreover, (x,a, t)’s in

the same partition have the same optimistic and pessimistic Q-values.
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It is also worth pointing out that by definition of ⇢, if (x,a, t) and (x0, a0, t) are in the same
partition, then we have |Q⇤

t (x,a)�Q⇤
t (x

0, a0)| 2⇢. To see it, let Q̃2 argminQ2Q kQ�Q⇤k1, then we
have |Q̃t(x,a)�Q⇤

t (x,a)| ⇢ and |Q̃t(x0, a0)�Q⇤
t (x

0, a0)| ⇢. Since Q̃2Q and (x,a, t) and (x0, a0, t)
are in the same partition, we have Q̃t(x,a) = Q̃t(x0, a0). Then from the triangular inequality, we
have |Q⇤

t (x,a)�Q⇤
t (x

0, a0)| 2⇢.
The following lemma states that if Q"

j,t(x,a)<1, then it is “close” to Q⇤
t (x,a).

Lemma 5. 8(x,a, t) and 8j = 0,1, · · · , if Q"
j,t(x,a)<1, then |Q"

j,t(x,a)�Q⇤
t (x,a)| 2⇢(H� t).

Please refer to the appendix for the detailed proof of Lemma 5. Based on this lemma, we have the
following result:

Lemma 6. 8j = 0,1, · · · , if Q"
j,t(xj,t, aj,t) < 1 for any t = 0,1, · · · ,H � 1, then we have

V ⇤
0

(xj,0)�R(j)  2⇢H(H+1) =O (⇢H2). Furthermore, if the conditions of Proposition 1 hold, then
we have V ⇤

0

(xj,0)�R(j)  6⇢H =O(⇢H).

Please refer to the appendix for the detailed proof of Lemma 6. Obviously, Proposition 1 directly
follows from Lemma 6.
For any j = 0,1, · · · , we define t⇤j as the last period t in episode j s.t. Q"

j,t(xj,t, aj,t) =1. If
Q"

j,t(xj,t, aj,t) <1 for all t = 0,1, · · · ,H � 1, we define t⇤j = NULL. We then have the following
lemma:

Lemma 7. 8j = 0,1, · · · , if t⇤j 6= NULL, then 8j0  j, Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

) = 1, and 8j0 > j,

Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

)<1 (Exploration). Otherwise, if t⇤j =NULL, then V ⇤
0

(xj,0)�R(j)  2⇢H(H +1)

(Exploitation). Furthermore,
P1

j=0

1[t⇤j 6=NULL]K, where K is the number of partitions.

Again, please refer to the appendix for the proof of Lemma 7. Note that Theorem 3 directly follows
from Lemma 7.

6. Computational E�ciency of Optimistic Constraint Propagation We now briefly
discuss the computational complexity of OCP. As typical in the complexity analysis of optimization
algorithms, we assume that basic operations include the arithmetic operations, comparisons, and
assignment, and measure computational complexity in terms of the number of basic operations
(henceforth referred to as operations) per period.
First, it is worth pointing out that for a general hypothesis class Q and general action space A,

the per period computations of OCP can be intractable. This is because:
• Computing supQ2QC

Qt(xj,t, a), Uj,t and Lj,t requires solving a possibly intractable optimization
problems.

• Selecting an action that maximizes supQ2QC
Qt(xj,t, a) can be intractable.

Further, the number of constraints in C, and with it the number of operations per period, can grow
over time.
However, if |A| is tractably small and Q has some special structures (e.g. Q is a finite set or a

linear subspace or, more generally a polytope), then by discarding the “redundant” constraints in
C, OCP with a variant of the constraint selection algorithm will be computationally e�cient, and
the sample e�ciency results developed in Section 5 will still hold. Due to space limitations, we
only discuss the scenario where Q is a polytope of dimension d. Note that the finite state/action
tabula rasa case, the linear-quadratic case, and the state aggregation case are all special cases of
this scenario. Moreover, as we have discussed before, for the finite state/action tabula rasa case
and the linear-quadratic case, Q⇤ 2Q.
Specifically, if Q is a polytope of dimension d (i.e., within a d-dimensional subspace), then any

Q2Q can be represented by a weight vector ✓ 2<d, and Q can be characterized by a set of linear
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inequalities of ✓. Furthermore, the new constraints of the form Lj,t Qt(xj,t, aj,t)  Uj,t are also
linear inequalities of ✓. Hence, in each episode, QC is characterized by a polyhedron in <d, and
supQ2QC

Qt(xj,t, a), Uj,t and Lj,t can be computed by solving linear programming (LP) problems.
If we assume that each observed numerical value can be encoded by B bits, and LPs are solved by
Karmarkar’s algorithm [11], then the following proposition bounds the computational complexity.

Proposition 2. If Q is a polytope of dimension d, each numerical value in the problem data or
observed in the course of learning can be represented with B bits, and OCP uses Karmarkar’s algo-
rithm to solve linear programs, then the computational complexity of OCP is O ([|A|+ |C|] |C|d4.5B)
operations per period.

Proof Note that OCP needs to perform the following computation in one period:
1. Construct QC by constraint selection algorithm. This requires sorting |C| constraints by com-

paring their upper bounds and positions in the sequence (with O (|C| log |C|) operations), and
checking whether QC \ C⌧ 6=? for |C| times. Note that checking whether QC \ C⌧ 6=? requires
solving an LP feasibility problem with d variables and O (|C|) constraints.

2. Choose action aj,t. Note that supQ2QC
Qt(xj,t, a) can be computed by solving an LP with d

variables and O (|C|) constraints, thus aj,t can be derived by solving |A| such LPs.
3. Compute the new constraint Lj,t  Qt(xj,t, aj,t)  Uj,t. Note Uj,t can be computed by solving

|A| LPs with d variables and O (|C|) constraints, and Lj,t can be computed by solving one LP
with d variables and O (|C|+ |A|) constraints.

If we assume that each observed numerical value can be encoded by B bits, and use Karmarkar’s
algorithm to solve LPs, then for an LP with d variables and m constraints, the number of bits
input to Karmarkar’s algorithm is O (mdB), and hence it requires O (mBd4.5) operations to solve
the LP. Thus, the computational complexities for the first, second, third steps are O (|C|2d4.5B),
O (|A||C|d4.5B) and O (|A||C|d4.5B), respectively. Hence, the computational complexity of OCP is
O ([|A|+ |C|] |C|d4.5B) operations per period. q.e.d.

Notice that the computational complexity is polynomial in d, B, |C| and |A|, and thus, OCP
will be computationally e�cient if all these parameters are tractably small. Note that the bound
in Proposition 2 is a worst-case bound, and the O(d4.5) term is incurred by the need to solve
LPs. For some special cases, the computational complexity is much less. For instance, in the state
aggregation case, the computational complexity is O (|C|+ |A|+ d) operations per period.
As we have discussed above, one can ensure that |C| remains bounded by using variants of the

constraint selection algorithm (Algorithm 1) that only use a subset of the available constraints.
For instance, in the coherent learning case discussed in Section 5.2, we can use a constraint selec-
tion algorithm that only chooses the constraints that will lead to a strict reduction of the eluder
dimension of the hypothesis class. Obviously, with this constraint selection algorithm, |C| |C�1

|+
dimE (Q) always holds, where C�1

is the set of constraints defining Q. Similarly, in the state aggre-
gation case considered in Section 5.3, we can use a constraint selection algorithm that only chooses
the constraints that reduce the optimistic Q-values of disjoint subsets from from infinity to finite.
Obviously, with this constraint selection algorithm, |C| |C�1

|+K always holds, where K is the
number of partitions. Based on our analysis, it can be shown that with these constraint selection
algorithms, the performance bounds derived in Section 5 will still hold. Finally, for the general
agnostic learning case, one naive approach is to maintain a time window W , and only constraints
observed in episode j�W, · · · , j� 1 are used to construct QC in episode j.

7. Experiment Results In this section, we present computational results involving two illus-
trative examples: a synthetic deterministic Markov chain discussed in Van Roy and Wen [35] and
the inverted pendulum problem considered in Lagoudakis et al. [14]. We compare OCP against
least-squares value iteration (LSVI), a classical reinforcement learning algorithm.
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7.1. Learning in a Deterministic Chain First, we consider the following example described
in Van Roy and Wen [35] for which least-squares value iteration (LSVI) with Boltzmann exploration
or ✏-greedy exploration (see [35] for algorithm description) requires exponentially many episodes to
learn an optimal policy, even in a coherent learning context with a small number of basis functions.

x=0$ x=1$ x=2$ x=3$ x=N)2$ x=N)1$
Figure 3. Deterministic system for which LSVI with Boltzmann/✏-greedy exploration is ine�cient.

Example 2. Consider the deterministic system illustrated in Figure 3. Each node repre-
sents a state, and each arrow corresponds to a possible state transition. The state space is S =
{0,1, · · · ,N � 1} and the action space is A =

�

a(1), a(2)

 

. If the agent takes action a(1) at state
x= 0,1, · · · ,N � 2 (the red nodes), the the state transitions to y = [x� 1]+. On the other hand,
if the agent takes action a(2) at state x= 0,1, · · · ,N � 2, the state transitions to y = x+1. State
N �1 (the green node) is absorbing. We assume a reward of 0 is realized upon any transition from
a red node and a reward of 1 is realized upon any transition from the green node. We take the
horizon H to be equal to the number of states N . The initial state in any episode is 0.
Let �t,k be a feature mapping S⇥A to < for any t= 0,1, · · · ,H � 1 and any k= 1,2, · · · ,K. We

choose Qt = span(�t,1, . . . ,�t,K) and Q=Q
0

⇥ · · ·⇥QH�1

, and consider the coherent learning case
with Q⇤ 2Q. Van Roy and Wen [35] shows that when LSVI with Boltzmann/✏-greedy exploration
is applied to this problem, in expectation, it will take the agent at least 2|S|�1 episodes to first
reach the green node. In addition, its expected4 regret Regret(T ) is lower bounded by

Regret(T )�
�

2|S|�1� 1
�

⇣

1�
⇥

1� 2�(|S|�1)

⇤bT/Hc
⌘

,

which implies that lim infT!1Regret(T )� 2|S|�1�1. These lower bounds hold for any choice of K
and any choice of features.

In this experiment, we choose N = |S| =H = 50, and run the simulation for 75000 time steps
(i.e. 1500 episodes). Obviously, for this choice of N and T , the worst-case Regret(75000) for any
reinforcement learning algorithm is 1500. From the above lower bounds, if we apply LSVI with
Boltzmann/✏-greedy exploration to this problem, for any choice of features, in expectation it will
take the agent 5.63 ⇥ 1014 episodes (2.81 ⇥ 1016 time steps) to first reach the green node, and
Regret(75000) � 1500� 3⇥ 10�12, which is extremely close to the worst-case regret. This shows
that LSVI with Boltzmann/✏-greedy exploration is highly ine�cient in this case.
We now describe our experiment setup for OCP, for which we need to specify how to choose

features. We are interested in how the performance of OCP scales with K, the number of features
at each period t, and vary K = 2,4,6, · · · ,20. For a given K, we construct the features as follows:
for each period t= 0,1, · · · ,H�1, we choose �t,1 =Q⇤

t
5, �t,2 = 1, a vector of all ones, and if K > 2,

we sample �t,3, · · · ,�t,K i.i.d. from the Gaussian distribution N(0, I). For K = 2, we apply OCP to
Example 2 with the above-specified features. Notice that in this case, one simulation is su�cient
since the features, the OCP algorithm, and the dynamic system are all deterministic. On the other

4 Since Boltzmann exploration and ✏-greedy exploration are randomized exploration schemes, we should measure the
performance of LSVI with Boltzmann/✏-greedy exploration with expected regret. We use the same symbol Regret(T )
for the expected regret since the regret defined in this paper can be viewed as a special case of the expected regret.
5 Notice that this ensures that Q is a coherent hypothesis class.
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Figure 4. Experiment Results in Example 2

hand, for K > 2, we apply OCP to Example 2 for 100 times, and each time we resample feature
�t,3, · · · ,�t,K for all t. We then average the results of these 100 simulations.
The experiment results are demonstrated in Figure 4. Specifically, in Figure 4(a), we fix K = 20

and vary T = 50,100, · · · ,75000, and plot Regret(T ) as a function of T . In Figure 4(b), we fix
T = 75000 and vary K = 2,4, · · · ,20, and plot Regret(75000) as a function of K. From Theorem 1,
in this problem, the O(1) bound on Regret(T ) of OCP is HK = 50K. We also plot this O(1) upper
bound in the figures.
We now briefly discuss the experiment results. Note that in this problem, the realized regret in

an episode is either 0 or 1, depending on whether or not the agent reaches the green node in that
episode. Figure 4(a) shows that for K = 20, it takes the agent about 900 episodes to learn how
to reach the green node. Based on our discussion above, this result demonstrates the dramatic
e�ciency gains of OCP over LSVI with Boltzmann/✏-greedy exploration in this problem. On the
other hand, Figure 4(b) shows that Regret(75000) scales linearly with K. The experiment results
also indicate that the O(1) upper bound derived in Theorem 1 is not tight in this problem, but
the gap is small.

7.2. Inverted Pendulum We will now show that OCP significantly outperforms LSVI with
✏-greedy exploration in a reinforcement learning formulation of an inverted pendulum problem.
The system dynamics of an inverted pendulum on a cart are described in Equation (18) of Wang
et al. [36], which is

ẋ
1

=x
2

ẋ
2

=
g sin(x

1

)�↵mlx2

2

sin(2x
1

)/2�↵ cos(x
1

)u

4l/3�↵ml cos2(x
1

)
(7)

where x
1

is the angular position (in radians) of the pendulum from the vertical, x
2

is the angular
velocity, g= 9.8m/s2 is the gravity constant, m= 2kg is the mass of the pendulum, M = 8kg is the
mass of the cart, l= 0.5m is the length of the pendulum, ↵= 1/(m+M) = 0.1kg�1, and u is the
force applied to the cart (in Newtons). Note that ẋ

1

and ẋ
2

are respectively the derivatives of x
1

and x
2

with respect to time. Similarly as Lagoudakis et al. [14], we simulate this nonlinear system
with a step size 0.1s. The action space A= {�50,0,50}, but the actual input to the system can
be noisy. Specifically, when action a 2A is selected, the actual input to the system is u= a+ ⇠a,
where ⇠a is a random variable independently drawn from the uniform distribution unif(��, �) for
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some �� 0. The initial state of the system is (x
1

= 0, x
2

= ⇠
0

), where ⇠
0

is also independently drawn
from unif(��, �). Notice that this dynamic system is deterministic if �= 0.
We consider a reinforcement learning setting in which an agent learns to control the inverted

pendulum such that it does not fall for one hour while repeatedly interacting with it for 1000
episodes. The reward in each episode j is the length of time until the inverted pendulum falls,
capped at one hour. We also assume that the agent does not know the system dynamics or the
reward function. We apply OCP and LSVI with the same form of state aggregation to this problem.
In particular, the state space of this problem is

S = {(x
1

, x
2

) : x
1

2 (�⇡/2,⇡/2), x
2

2<}
[

{inverted pendulum is fallen}.

We grid the angular position space (�⇡/2,⇡/2) uniformly into 31 intervals; and grid the angular
velocity space as (�1,�xmax

2

), (xmax

2

,1) and 29 uniform intervals between �xmax

2

and xmax

2

, where
xmax

2

is the maximum angular velocity observed when the initial state is (0,0) and u= 50 for all the
time steps. S is partitioned as follows: the first partition only includes the special state “inverted
pendulum is fallen”, and all the other 961 partitions are Cartesian products of intervals of x

1

and
x
2

described above. We choose the basis functions as the indicator functions for each action-(state
space partition) pair,6 hence there are 2886 basis functions.
We demonstrate the experiment results for two cases: � = 0 and � = 2.5. For each case, we

apply OCP and LSVI with exploration rate ✏= 0.05,0.1,0.15 to it. We also show the performance
of a purely randomized policy as a baseline, under which each action in A is chosen uniformly
randomly at each time. The experiment results are averaged over 100 simulations. Figure 5 plots
the cumulative reward as a function of episode. Notice that the cumulative reward in the first J
episodes is bounded by J hours since the per-episode reward is upper bounded by one hour.
Figure 5(a) and 5(c) compare LSVI with ✏-greedy exploration with the purely randomized policy.

Notice that though LSVI significantly outperforms the purely randomized policy, its performance
is unsatisfactory since in both cases its cumulative reward at 1000 episodes is less than 2 hours,
indicating that in the first 1000 episodes the average time length until the pendulum falls is less
than 7.2 seconds. Figure 5(b) and 5(d) compare OCP with the best LSVI (✏= 0.1 in both cases).
We observe that in both cases, the performance of OCP is orders of magnitude better than that of
the LSVI. We also note that the performances of both OCP and LSVI are worse in the case with
� = 2.5 than the case with � = 0, since the stochastic disturbances make the inverted pendulum
problem more challenging.
Finally, we would like to emphasize that the system dynamics are stochastic in the case with

� = 2.5. However, the magnitude of the stochastic disturbances, 2.5, is small relative to the mag-
nitude of the control, 50. Thus, though OCP is motivated and developed in the framework of
reinforcement learning in deterministic systems, it might also perform well in some reinforcement
learning problems with stochastic environments (e.g. reinforcement learning in MDPs), especially
when the magnitude of the stochastic disturbances is small.

8. Conclusion We have proposed a novel reinforcement learning algorithm, called optimistic
constraint propagation (OCP), that synthesizes e�cient exploration and value function general-
ization for episodic reinforcement learning in deterministic systems. We have shown that when the
true value function Q⇤ lies in the given hypothesis class Q (the coherent learning case), OCP selects
optimal actions over all but at most dim

E

[Q] episodes, where dim
E

[Q] is the eluder dimension of
Q. We have also established sample e�ciency and asymptotic performance guarantees for the state
aggregation case, a special agnostic learning case where Q is the span of pre-specified indicator

6 The inverted pendulum problem is time-homogenous if it is not stopped by the time one hour. This motivates us
to use basis functions independent of the period t.
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(a)�= 0: LSVI vs Purely Randomized (b)�= 0: OCP vs Best LSVI

(c)�= 2.5: LSVI vs Purely Randomized (d)�= 2.5: OCP vs Best LSVI

Figure 5. Experiment Results in Inverted Pendulum Example

functions over disjoint sets. We have also discussed the computational complexity of OCP and pre-
sented computational results involving two illustrative examples. Our results demonstrate dramatic
e�ciency gains enjoyed by OCP relative to LSVI with Boltzmann or ✏-greedy exploration.
Finally, we briefly discuss some possible directions for future research. One possible direction is

to propose a variant of OCP for reinforcement learning in infinite-horizon discounted deterministic
systems. Note that for an infinite-horizon discounted problem with bounded rewards, its e↵ective
horizon is 1

1��
, where � 2 (0,1) is the discount factor. We conjecture that with this notion of

e↵ective horizon, similar sample complexity/regret bounds can be derived for the infinite-horizon
discounted problems. Another possible direction is to design provably sample e�cient algorithms
for the general agnostic learning case discussed in this paper. A more important problem is to
design e�cient algorithms for reinforcement learning in MDPs. Though many provably e�cient
algorithms have been proposed for the tabula rasa case of this problem (see [6, 30, 19, 21, 35]
and references therein), however, how to design such algorithms with value function generalization
is currently still open. Thus, one interesting direction for future research is to extend OCP, or a
variant of it, to this problem.

Appendix A: Equivalence of OCP and Q-Learning in the Tabula Rasa Case We
prove that in the finite state/action tabula rasa case, OCP is equivalent to Q-learning with learning
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rate 1 and initial Q-value Qt(x,a) =1. To see it, notice that in this setting, the OCP algorithm
imposes constraints on individual Q-values of all the state-action-period triples. Moreover, if we
define the optimistic Q-function in an arbitrary episode j as

Q"
t (x,a) = sup

Q2QC
Qt(x,a) 8(x,a, t),

then aj,t 2 argmaxa2AQ"
t (xj,t, a). Thus, the lower bound Lj,t’s do not matter in this setting since

there is no value function generalization across (x,a, t)’s.
Note that by definition of Q", Uj,t =Rt(xj,t, aj,t)+supa2AQ"

t+1

(xj,t+1

, a). Moreover, since Q⇤ 2Q
in this case, as we will prove in Lemma 1, there are no conflicting constraints. Hence, in the next
episode (episode j+1), the optimistic Q-function is updated as

Q"
t (x,a) 

⇢

min
�

Q"
t (x,a),Uj,t

 

if (x,a, t) = (xj,t, aj,t, t)
Q"

t (x,a) otherwise

Notice that the above equation implies that Q" is a non-increasing function in episode j. Thus, to
show OCP is equivalent to Q-learning, we only need to prove that Uj,t Q"

t (xj,t, aj,t) in episode
j. Obviously, we only need to consider the case when Q"

t (xj,t, aj,t) <1. Notice that this holds
trivially for t=H � 1, since when t=H � 1, Uj,t =Rt(xj,t, aj,t) always holds, and if Q"

t (xj,t, aj,t)<
1 then Q"

t (xj,t, aj,t) = Rt(xj,t, aj,t). On the other hand, if t < H � 1 and Q"
t (xj,t, aj,t) <1, then

Q"
t (xj,t, aj,t) =Uj0,t for some j0 < j. Note that by definition of Uj,t, we have Q

"
t (xj,t, aj,t) =Uj0,t �Uj,t

since Q"
t+1

is a non-increasing function in j.

Appendix B: Eluder Dimension for the Sparse Linear Case We start by defining some
useful terminologies and notations. For any ✓ 2<K , any lK and any index set I = {i

1

, i
2

, · · · , il}✓
{1,2, · · · ,K} with i

1

< i
2

< · · ·< il and |I|= lK, we use ✓I to denote the subvector of ✓ associated
with the index set I, i.e. ✓I =

⇥

✓i1 ,✓i2 · · · ,✓il
⇤T
.

For a sequence of vectors ✓(1),✓(2), · · ·2<K , we say ✓(k) is linearly l-independent of its predecessors
if there exists an index set I with |I|= l s.t. ✓(k)I is linearly independent of ✓(1)I ,✓(2)I , · · · ,✓(k�1)

I . Let
N = |S||A|, and use �T

j to denote the jth row of �. For any lK, we define rank[�, l], the l-rank of
�, as the length d of the longest sequence of �j’s such that every element is linearly l-independent
of its predecessors. Recall that Q

0

= {�✓ : ✓ 2<K ,k✓k
0

K
0

}, we have the following result:

Proposition 3. If 2K
0

K, then dim
E

[Q
0

] = rank[�,2K
0

].

Proof We use y= (x,a) to denote a state-action pair, and use �(y)T to denote the row of matrix
� associated with y. Based on our definitions of eluder dimension and l-rank, it is su�cient to
prove the following lemma:

Lemma 8. For any state-action pair y and for any set of state-action pairs Y =
�

y(1), y(2), · · · , y(n)
 

, y is independent of Y with respect to Q
0

if and only if �(y) is linearly 2K
0

-
independent of

�

�(y(1)),�(y(2)), · · · ,�(y(n))
 

.

We now prove the above lemma. Note that based on the definition of independence (see Section
5.1), y is independent of Y with respect to Q

0

if and only if there exist Q
1

,Q
2

2Q
0

s.t. Q
1

(y(i)) =
Q

2

(y(i)), 8i= 1,2, · · · , n, and Q
1

(y) 6=Q
2

(y). Based on the definition of function space Q
0

, there
exist two K

0

-sparse vectors ✓(1),✓(2) 2 <K s.t. Q
1

= �✓(1) and Q
2

= �✓(2). Thus, y is independent
of Y with respect to Q

0

if and only if there exist two K
0

-sparse vectors ✓(1),✓(2) 2<K s.t.

�(y(i))T (✓(1)� ✓(2)) = 0 8i= 1,2, · · · , n
�(y)T (✓(1)� ✓(2)) 6= 0



Wen and Van Roy: E�cient Reinforcement Learning in Deterministic Systems
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!) 21

Based on the definition ofK
0

-sparsity, the above condition is equivalent to there exists a 2K
0

-sparse
vector ✓ 2<K s.t.

�(y(i))T ✓ = 0 8i= 1,2, · · · , n
�(y)T ✓ 6= 0

To see it, note that if ✓(1),✓(2) are K
0

-sparse, then ✓= ✓(1)� ✓(2) is 2K
0

-sparse. On the other hand,
if ✓ is 2K

0

-sparse, then there exist two K
0

-sparse vectors ✓(1),✓(2) s.t. ✓= ✓(1)� ✓(2).
Since ✓ is 2K

0

-sparse, there exists a set of indices I s.t. |I|= 2K
0

and ✓i = 0, 8i /2 I. Thus, the
above condition is equivalent to

�(y(i))TI ✓I = 0 8i= 1,2, · · · , n
�(y)TI ✓I 6= 0,

which is further equivalent to �(y)I is linearly independent of �(y(1))I ,�(y(2))I , · · · ,�(y(n))I . Since
|I| = 2K

0

, from the definition of linear l-dependence, this is equivalent to �(y) is linearly 2K
0

-
independent of �(y(1)),�(y(2)), · · · ,�(y(n)). q.e.d.
We now show that if � satisfies a technical condition, then rank[�, l] = l. Specifically, for any

lmin{N,K}, we say � is l-full-rank if any submatrix of � with size l⇥ l has full rank. Based on
this notion, we have the following result:

Proposition 4. For any lmin{N,K}, if � is l-full-rank, then we have rank[�, l] = l.

Proof Consider any sequence of matrix rows �(1),�(2), · · · ,�(l+1) with length l + 1, and any
index set I with |I|= l. Since � is l-full-rank, thus �(1)

I ,�(2)

I , · · · ,�(l)
I 2<l are linearly independent

(hence forms a basis in <l). Thus, �(l+1)

I is linearly dependent on �(1)

I ,�(2)

I , · · · ,�(l)
I 2<l. Since this

result holds for any I with |I|= l, thus �(l+1) is linearly l-dependent on �(1),�(2), · · · ,�(l) 2 <K .
Furthermore, since this result holds for any sequence of matrix rows with length l+1, thus we have
rank[�, l] l.
On the other hand, since � is l-full-rank, choose any sequence of matrix rows �(1),�(2), · · · ,�(l)

with length l and any index set I with |I|= l, �(1)

I ,�(2)

I , · · · ,�(l)
I are linearly independent. Thus,

�(1),�(2), · · · ,�(l) is a sequence of matrix rows s.t. every element is linearly l-independent of its
predecessors. Thus, rank[�, l]� l. So we have rank[�, l] = l. q.e.d.
Thus, if 2K

0

min{N,K} and � is 2K
0

-full-rank, then we have dim
E

[Q
0

] = rank [�,2K
0

] = 2K
0

.
Consequently, we have dim

E

[Q] = dim
E

[QH
0

] = 2K
0

H.

Appendix C: Detailed Proof for Theorem 1

C.1. Proof for Lemma 1
Proof for Lemma 1 We prove this lemma by induction on j and choose the induction hypothesis

as follows: 8j = 0,1, · · · , we have (1) Q⇤ 2 QCj and (2) Lj0,t  Q⇤
t (xj0,t, aj0,t)  Uj0,t for all t =

0,1, · · · ,H � 1 and all j0 = 0,1, · · · , j� 1.
First, we notice that the induction hypothesis is true for j = 0. To see it, notice that when

j = 0, (2) holds trivially since j� 1< 0; and (1) also holds since by definition QC0 =Q, and hence
Q⇤ 2Q=QC0 . We now prove that if the induction hypothesis holds for episode j, then it also holds
for episode j+1. We first show that (2) holds for episode j+1, which is su�cient to prove

Lj,t Q⇤
t (xj,t, aj,t)Uj,t 8t= 0,1, · · · ,H � 1.

We prove the above inequality by considering two di↵erent cases. First, if t=H � 1, then we have
Uj,t = Lj,t = Rt(xj,t, aj,t) = Q⇤

t (xj,t, aj,t), and hence the above inequality trivially holds. On the
other hand, if t <H � 1, then we have

Uj,t = Rt(xj,t, aj,t)+ sup
Q2QCj

sup
a2A

Qt+1

(xj,t+1

, a)

� Rt(xj,t, aj,t)+ sup
a2A

Q⇤
t+1

(xj,t+1

, a) =Q⇤
t (xj,t, aj,t),
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where the inequality follows from the induction hypothesis Q⇤ 2QCj , and the last equality follows
from the Bellman equation. Similarly, we also have

Lj,t = Rt(xj,t, aj,t)+ inf
Q2QCj

sup
a2A

Qt+1

(xj,t+1

, a)

 Rt(xj,t, aj,t)+ sup
a2A

Q⇤
t+1

(xj,t+1

, a) =Q⇤
t (xj,t, aj,t).

Hence, (2) holds for episode j+1. Since Q⇤ 2Q and (2) holds for episode j+1, then by definition
of QCj+1

, we have Q⇤ 2QCj+1
. Thus, the induction hypothesis also holds for episode j+1. Hence,

we have completed the proof for Lemma 1. q.e.d.

C.2. Proof for Lemma 2
Proof for Lemma 2 We prove this lemma by induction on j. First, notice that if j = 0, then from

Algorithm 3, we have Z
0

=?. Thus, Lemma 2(a) holds for j = 0.
Second, we prove that if Lemma 2(a) holds for episode j, then Lemma 2(b) holds for episode j and

Lemma 2(a) holds for episode j+1. To see why Lemma 2(b) holds for episode j, notice that from
Lemma 1, we have Q⇤ 2QCj ✓Q. Furthermore, from the induction hypothesis, 8z 2Zj and 8Q 2
QCj , we haveQ(z) =Q⇤(z). Since (xj,t, aj,t, t) is dependent on Zj with respect toQ, then 8Q2QCj ✓
Q, we have that Qt(xj,t, aj,t) = Q⇤

t (xj,t, aj,t). Hence we have supQ2QCj
Qt(xj,t, aj,t) = Q⇤

t (xj,t, aj,t),

furthermore, from the OCP algorithm, we have supQ2QCj
Qt(xj,t, aj,t)� supQ2QCj

Qt(xj,t, a), 8a2A,

thus we have

Q⇤
t (xj,t, aj,t) = sup

Q2QCj

Qt(xj,t, aj,t)� sup
Q2QCj

Qt(xj,t, a)�Q⇤
t (xj, a), 8a2A,

where the last inequality follows from the fact that Q⇤ 2 QCj . Thus, aj,t is optimal and
Q⇤

t (xj,t, aj,t) = V ⇤
t (xj,t). Thus, Lemma 2(b) holds for episode j.

We now prove Lemma 2(a) holds for episode j + 1. We prove the conclusion by considering
two di↵erent scenarios. If t⇤j =NULL, then Zj+1

= Zj and QCj+1
✓QCj . Thus, obviously, Lemma

2(a) holds for episode j + 1. On the other hand, if t⇤j 6=NULL, we have QCj+1
✓QCj and Zj+1

=
h

Zj, (xj,t⇤j
, aj,t⇤j

, t⇤j )
i

. Based on the induction hypothesis, 8z 2 Zj and 8Q 2QCj+1
✓QCj , we have

Q(z) =Q⇤(z). Thus, it is su�cient to prove that

Qt⇤j
(xj,t⇤j

, aj,t⇤j
) =Q⇤

t⇤j
(xj,t⇤j

, aj,t⇤j
), 8Q2QCj+1

. (8)

We prove Eqn(8) by considering two di↵erent cases. First, if t⇤j =H � 1, it is su�cient to prove
that QH�1

(xj,H�1

, aj,H�1

) =RH�1

(xj,H�1

, aj,H�1

), 8Q 2QCj+1
, which holds by definition of QCj+1

(see OCP algorithm, and recall that from Lemma 1, no constraints are conflicting if Q⇤ 2Q). On
the other hand, if t⇤j < H � 1, it is su�cient to prove that for any Q 2 QCj+1

, Qt⇤j
(xj,t⇤j

, aj,t⇤j
) =

Rt⇤j
(xj,t⇤j

, aj,t⇤j
)+V ⇤

t⇤j+1

(xj,t⇤j+1

). Recall that OCP algorithm add a constraint Lj,t⇤j
Qt⇤j

(xj,t⇤j
, aj,t⇤j

)
Uj,t⇤j

to QCj+1
(and again, recall that no constraints are conflicting if Q⇤ 2 Q). Based on the

definitions of Lj,t⇤j
and Uj,t⇤j

, it is su�cient to prove that

V ⇤
t⇤j+1

(xj,t⇤j+1

) = sup
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a) = inf
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a). (9)

We first prove that V ⇤
t⇤j+1

(xj,t⇤j+1

) = supQ2QCj
supa2AQt⇤j+1

(xj,t⇤j+1

, a). Specifically, we have that

sup
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a) = sup
a2A

sup
Q2QCj

Qt⇤j+1

(xj,t⇤j+1

, a) = sup
Q2QCj

Qt⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

) = V ⇤
t⇤j+1

(xj,t⇤j+1

),
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where the second equality follows from the fact that aj,t⇤j+1

2 argmaxa2A supQ2QCj
Qt⇤j+1

(xj,t⇤j+1

, a)

and the last equality follows from the definition of t⇤j and Part (b) of the lemma for episode
j (which we have just proved above, and holds by the induction hypothesis). Specifically, since
t⇤j is the last period in episode j s.t. (xj,t, aj,t, t) is independent of Zj with respect to Q. Thus,
(xj,t⇤j+1

, aj,t⇤j+1

, t⇤j +1) is dependent on Zj with respect to Q. From Lemma 2(b) for episode j, we
have V ⇤

t⇤j+1

(xj,t⇤j+1

) =Qt⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

) for any Q2QCj . Thus, supQ2QCj
Qt⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

) =

V ⇤
t⇤j+1

(xj,t⇤j+1

) = infQ2QCj
Qt⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

). On the other hand, we have that

inf
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a)� sup
a2A

inf
Q2QCj

Qt⇤j+1

(xj,t⇤j+1

, a)� inf
Q2QCj

Qt⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

) = V ⇤
t⇤j+1

(xj,t⇤j+1

),

where the first inequality follows from the max-min inequality, the second inequality follows from
the fact that aj,t⇤j+1

2A, and we have just proved the last equality above. Hence we have

V ⇤
t⇤j+1

(xj,t⇤j+1

) = sup
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a)� inf
Q2QCj

sup
a2A

Qt⇤j+1

(xj,t⇤j+1

, a)� V ⇤
t⇤j+1

(xj,t⇤j+1

).

Thus, Eqn(9) holds. Hence, Lemma 2(a) holds for episode j+1, and by induction, we have proved
Lemma 2. q.e.d.

C.3. Proof for Lemma 3
Proof for Lemma 3 Note that from Algorithm 3, if t⇤j = NULL, then 8t = 0,1, · · · ,H � 1,

(xj,t, aj,t, t) is dependent on Zj with respect to Q. Thus, from Lemma 2(b), aj,t is optimal 8t =
0,1, · · · ,H � 1. Hence we have R(j) =

PH�1

t=0

Rt(xj,t, aj,t) = V ⇤
0

(xj,0).
On the other hand, t⇤j 6= NULL, then from Algorithm 3, (xj,t⇤j

, aj,t⇤j
, t⇤j ) is independent of Zj

and |Zj+1

| = |Zj|+ 1. Note (xj,t⇤j
, aj,t⇤j

, t⇤j ) 2 Zj+1

, hence from Lemma 2(a), 8Q 2QCj+1
, we have

Qt⇤j
(xj,t⇤j

, aj,t⇤j
) =Q⇤

t⇤j
(xj,t⇤j

, aj,t⇤j
). q.e.d.

C.4. Proof for Theorem 1 Based on Lemma 3
Proof for Theorem 1 Notice that 8j = 0,1, · · · , R(j)  V ⇤

0

(xj,0) by definition. Thus, from Lemma
3, R(j) <V ⇤

0

(xj,0) implies that t⇤j 6=NULL. Hence, for any j = 0,1, · · · , we have 1
⇥

R(j) <V ⇤
0

(xj,0)
⇤


1
⇥

t⇤j 6=NULL
⇤

. Furthermore, notice that from the definition of Zj, we have 1
⇥

t⇤j 6=NULL
⇤

=
|Zj+1

|� |Zj|, where | · | denotes the length of the given sequence. Thus for any J = 0,1, · · · , we have

J
X

j=0

1
⇥

R(j) <V ⇤
0

(xj,0)
⇤


J
X

j=0

1
⇥

t⇤j 6=NULL
⇤

=
J
X

j=0

[|Zj+1

|� |Zj|] = |ZJ+1

|� |Z
0

|= |ZJ+1

|, (10)

where the last equality follows from the fact that |Z
0

|= |?|= 0. Notice that by definition (see Algo-
rithm 3), 8j = 0,1, · · · , Zj is a sequence of elements in Z such that every element is independent of
its predecessors with respect to Q. Hence, from the definition of eluder dimension, we have |Zj|
dim

E

[Q], 8j = 0,1, · · · . Combining this result with Eqn(10), we have
PJ

j=0

1
⇥

R(j) <V ⇤
0

(xj,0)
⇤


|ZJ+1

|  dim
E

[Q], 8J = 0,1, · · · . Finally, notice that
PJ

j=0

1 [Vj <V ⇤
0

(xj,0)] is a non-decreasing

function of J , and is bounded above by dim
E

[Q]. Thus, limJ!1
PJ

j=0

1
⇥

R(j) <V ⇤
0

(xj,0)
⇤

=
P1

j=0

1
⇥

R(j) <V ⇤
0

(xj,0)
⇤

exists, and satisfies
P1

j=0

1
⇥

R(j) <V ⇤
0

(xj,0)
⇤

 dim
E

[Q]. Hence we have
�

�

�

j : R(j) <V ⇤
0

(xj,0)
 

�

� dim
E

[Q]. q.e.d.

Appendix D: Detailed Proof for Theorem 3 and Proposition 1
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D.1. Proof for Lemma 5
Proof for Lemma 5 We prove Lemma 5 by induction on j. Note that when j = 0, 8(x,a, t),

Q"
j,t(x,a) =1. Thus, Lemma 5 trivially holds for j = 0.
We now prove that if Lemma 5 holds for episode j, then it also holds for episode j + 1, for

any j = 0,1, · · · . To prove this result, it is su�cient to show that for any (x,a, t) whose associated
optimistic Q-value has been updated in episode j (i.e. Q"

j,t(x,a) 6=Q"
j+1,t(x,a)), if the new optimistic

Q-value Q"
j+1,t(x,a) is still finite, then we have |Q"

j+1,t(x,a)�Q⇤
t (x,a)| 2⇢(H � t).

Note that if Q"
j,t(x,a) 6= Q"

j+1,t(x,a), then (x,a, t) must be in the same partition Zt,k as
(xj,t, aj,t, t). Noting that supQ2QCj

supb2AQt+1

(xj,t+1

, b) = supb2AQ"
j,t+1

(xj,t+1

, b), from the discus-

sion in Section 5.3, we have

Q"
j+1,t(x,a) = ✓

(j+1)

t,k =

⇢

RH�1

(xj,H�1

, aj,H�1

) if t=H � 1
Rt(xj,t, aj,t)+ supb2AQ"

j,t+1

(xj,t+1

, b) if t <H � 1

We now prove |Q"
j+1,t(x,a)�Q⇤

t (x,a)| 2⇢(H�t) by considering two di↵erent scenarios. First, if t=
H�1, then Q"

j+1,t(x,a) =RH�1

(xj,H�1

, aj,H�1

) =Q⇤
H�1

(xj,H�1

, aj,H�1

). From our discussion above,
we have |Q⇤

t (x,a)�Q⇤
H�1

(xj,H�1

, aj,H�1

)| 2⇢, which implies that |Q⇤
t (x,a)�Q"

j+1,t(x,a)| 2⇢=
2⇢(H� t). On the other hand, if t <H�1, then Q"

j+1,t(x,a) =Rt(xj,t, aj,t)+supb2AQ"
j,t+1

(xj,t+1

, b).
If Q"

j+1,t(x,a)<1, then Q"
j,t+1

(xj,t+1

, b)<1, 8b2A. Furthermore, from the induction hypothesis,
Q"

j,t+1

(xj,t+1

, b) <1, 8b 2 A, implies that 8b 2 A,
�

�Q"
j,t+1

(xj,t+1

, b)�Q⇤
t+1

(xj,t+1

, b)
�

�  2⇢(H � t�
1). On the other hand, from the Bellman equation at (xj,t, aj,t, t), we have that Q⇤

t (xj,t, aj,t) =
Rt(xj,t, aj,t)+ supb2AQ⇤

t+1

(xj,t+1

, b). Thus,

�

�Q"
j+1,t(x,a)�Q⇤

t (xj,t, aj,t)
�

� =

�

�

�

�

sup
b2A

Q"
j,t+1

(xj,t+1

, b)� sup
b2A

Q⇤
t+1

(xj,t+1

, b)

�

�

�

�

 sup
b2A

�

�Q"
j,t+1

(xj,t+1

, b)�Q⇤
t+1

(xj,t+1

, b)
�

� 2⇢(H � t� 1).

Moreover, since (x,a, t) and (xj,t, aj,t, t) are in the same partition, we have |Q⇤
t (x,a)�Q⇤

t (xj,t, aj,t)|
2⇢, consequently, we have

�

�Q"
j+1,t(x,a)�Q⇤

t (x,a)
�

� 2⇢(H � t). Thus, Lemma 5 holds for episode
j+1. By induction, we have proved Lemma 5. q.e.d.

D.2. Proof for Lemma 6
Proof for Lemma 6 Notice that from OCP algoriothm, 8t = 0,1, · · · ,H � 1, we have

Q"
j,t(xj,t, aj,t) � Q"

j,t(xj,t, a), 8a 2 A. Thus, if Q"
j,t(xj,t, aj,t) <1 for any t, then Q"

j,t(xj,t, a) <1,
8(a, t). Consequently, from Lemma 5, we have that 8(a, t),

�

�Q⇤
t (xj,t, a)�Q"

j,t(xj,t, a)
�

� 2⇢(H � t).
Thus, for any t, we have

Q⇤
t (xj,t, aj,t)+ 2⇢(H � t)�Q"

j,t(xj,t, aj,t)�Q"
j,t(xj,t, a)�Q⇤

t (xj,t, a)� 2⇢(H � t), 8a2A,

which implies that Q⇤
t (xj,t, aj,t)� supa2AQ⇤

t (xj,t, a)� 4⇢(H � t) = V ⇤
t (xj,t)� 4⇢(H � t), 8t.

We first prove that V ⇤
0

(xj,0) � R(j)  2⇢H(H + 1). Note that combining the above inequality
with Bellman equation, we have that Rt(xj,t, aj,t) � V ⇤

t (xj,t) � V ⇤
t+1

(xj,t+1

) � 4⇢(H � t) for any
t < H � 1 and RH�1

(xj,H�1

, aj,H�1

)� V ⇤
H�1

(xj,H�1

)� 4⇢. Summing up these inequalities, we have
V ⇤
0

(xj,0)�R(j)  2⇢H(H +1).
We now prove that V ⇤

0

(xj,0) � R(j)  6⇢H if the conditions of Proposition 1 hold. Note that
the conditions of Proposition 1 imply that Uj,t � Q"

j,t(xj,t, aj,t) � Q#
j,t(xj,t, aj,t) � Lj,t for any t.

Note that by definition, Uj,H�1

=Lj,H�1

=RH�1

(xj,H�1

, aj,H�1

), and for t <H � 1, we have Uj,t =
Rt(xj,t, aj,t)+Q"

j,t+1

(xj,t+1

, aj,t+1

), and

Lj,t �Rt(xj,t, aj,t)+ sup
a2A

Q#
j,t+1

(xj,t+1

, a)�Rt(xj,t, aj,t)+Q#
j,t+1

(xj,t+1

, aj,t+1

),
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where the first inequality follows from the definition of Lj,t and max-min inequality, and
the second inequality follows from the fact that aj,t+1

2 A. Combining the above inequali-
ties, we have Q#

j,0(xj,0, aj,0) �
PH�1

t=0

Rt(xj,t, aj,t) = R(j) � Q"
j,0(xj,0, aj,0) � Q#

j,0(xj,0, aj,0). Thus
we have Q"

j,0(xj,0, aj,0) = Q#
j,0(xj,0, aj,0) = R(j) < 1. So from Lemma 5,

�

�R(j)�Q⇤
0

(xj,0, aj,0)
�

� =
�

�Q"
j,0(xj,0, aj,0)�Q⇤

0

(xj,0, aj,0)
�

�  2⇢H. Thus, R(j) � Q⇤
0

(xj,0, aj,0) � 2⇢H. Furthermore, from the
above analysis, Q⇤

0

(xj,0, aj,0)� V ⇤
0

(xj,0)� 4⇢H. Thus we have R(j) � V ⇤
0

(xj,0)� 6⇢H. q.e.d.

D.3. Proof for Lemma 7
Proof for Lemma 7 8j = 0,1, · · · , if t⇤j = NULL, then by definition of t⇤j and Lemma 6, we

have V ⇤
0

(xj,0) � R(j)  2⇢H(H + 1). On the other hand, if t⇤j 6= NULL, then by definition of t⇤j ,
Q"

j,t⇤j
(xj,t⇤j

, aj,t⇤j
) =1. We now show that Q"

j0,t⇤j
(xj,t⇤j

, aj,t⇤j
)<1 for all j0 > j, and Q"

j0,t⇤j
(xj,t⇤j

, aj,t⇤j
) =

1 for all j0  j.

Assume that (xj,t⇤j
, aj,t⇤j

, t⇤j ) belongs to partition Zt⇤j ,k
, thus Q"

j0,t⇤j
(xj,t⇤j

, aj,t⇤j
) = ✓

(j0)
t⇤j ,k

, 8j0. Based on

our discussion above, ✓
(j0)
t⇤j ,k

is monotonically non-increasing in j0. Thus, Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

) is monoton-

ically non-increasing in j0, and hence for any j0  j, we have Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

) =1. Furthermore, to

prove that Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

)<1 for all j0 > j, it is su�cient to prove that Q"
j+1,t⇤j

(xj,t⇤j
, aj,t⇤j

)<1.

From OCP, the algorithm will add a new constraint Lj,t⇤j
 Qt⇤j

(xj,t⇤j
, aj,t⇤j

)  Uj,t⇤j
. We

first prove that Uj,t⇤j
< 1. To see it, notice that if t⇤j = H � 1, then Uj,t⇤j

= Uj,H�1

=
RH�1

(xj,H�1

, aj,H�1

) < 1. On the other hand, if t⇤j < H � 1, then by definition Uj,t⇤j
=

Rt⇤j
(xj,t⇤j

, aj,t⇤j
) + Q"

j,t⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

). From the definition of t⇤j , Q"
j,t⇤j+1

(xj,t⇤j+1

, aj,t⇤j+1

) < 1,

thus Uj,t⇤j
< 1. Consequently, Q"

j+1,t⇤j
(xj,t⇤j

, aj,t⇤j
) = ✓

(j+1)

t⇤j ,k
= min{✓(j)t⇤j ,k

,Uj,t⇤j
}  Uj,t⇤j

< 1. Thus,

Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

)<1 for all j0 > j.

Thus, if we consider Q"
j0,t⇤j

(xj,t⇤j
, aj,t⇤j

) = ✓
(j0)
t⇤j ,k

as a function of j0, then this function transits from

infinity to finite values in episode j. In summary, t⇤j 6=NULL implies that ✓
(j0)
t⇤j ,k

transits from infinity

to finite values in episode j. Since other ✓
(j0)
t,k ’s might also transit from1 to finite values in episode

j, thus 1[t⇤j 6=NULL] is less than or equal to the number of ✓
(j0)
t,k ’s transiting from1 to finite values

in episode j. Note that from the monotonicity of ✓
(j0)
t,k , for each partition, this transition can occur

at most once, and there are K partitions in total. Hence we have
P1

j=0

1[t⇤j 6=NULL]K. q.e.d.

References
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