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In a series of seven studies, this paper examines acoustic characteristics of the spontaneous
speech production of the English dative alternation (gave the book to the boy/ the boy the
book) as a function of the probability of the choice between alternating constructions. Prob-
abilistic effects on the acoustic duration were observed in the acoustic signal at the choice
point (the first word that commits the speaker to one of the alternatives), before the choice
point, but not after the choice point. These findings speak in favor of the simultaneous
operation of production mechanisms consistent with both information-smoothing theories
and availability-based models of speech production: they are incompatible with a number
of competing theoretical accounts. Finally, we outline the statistical modeling procedure of
multimodel inference suitable for addressing our multiple working hypotheses and the
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ultimate question of the explanatory role of probability.
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Introduction

Grammars code best what speakers do most—that is,
grammars provide the most economical expressions for
the speech functions that speakers utilize most often (Du
Bois, 1985, pp. 362-363). This core idea has been mathe-
matically developed and empirically investigated at least
as early as Zipf (1929, 1935): higher-probability linguistic
units are more likely to be easier to pronounce, lexically
shorter and phonetically more reduced. The data that sup-
port the idea reflect linguistic changes on very different
time scales. On the one hand, in both writing and spontane-
ous speech speakers tend to use reduced (covert or cliti-
cized) rather than overt or full word forms in more
probable syntactic contexts (e.g., Krug, 1998; Bybee &
Scheibman, 1999; Roland, Elman, & Ferreira, 2006; Frank
& Jaeger, 2008; Jaeger, 2010). For example, the use of don’t
is reduced compared to do not, and I think you lost is re-
duced compared to I think that you lost. These reduced
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forms, which linguists commonly regard as lexically stored
grammatical alternatives or allomorphs, often arise from
diachronic changes in the usage of speaker populations
over historical time through processes of sound change
and grammaticalization (Bybee, 2001; Bybee & Hopper,
2001). On the other hand, a strikingly similar relation to
probability appears in the gradient phonetic properties of
the acoustic speech signal on the timescale of milliseconds:
numerous studies have shown a positive correlation be-
tween the contextual probability of a phoneme, syllable,
morpheme, or word in spontaneous speech and its reduc-
tion in acoustic salience, typically duration or intensity
(e.g., Aylett & Turk, 2004, 2006; Bell, Brenier, Gregory,
Girand, & Jurafsky, 2009; Bell, Jurafsky, Fosler-Lussier, Gir-
and, & Gildea, 2003; Fidelholtz, 1975; Gahl & Garnsey,
2004, 2006; Jurafsky, Bell, Fosler-Lussier, Girand, & Ray-
mon, 1998; Jurafsky, Bell, Gregory, & Raymond, 2001; Pluy-
maekers, Ernestus, & Baayen, 2005; Tily et al., 2009; Van
Son & Pols, 2003; Van Son & Van Santen, 2005; Whalen,
1991). Unlike cases of syntactic variation and allomorphy,
these phonetic reductions constitute variation on continu-
ous scales. Yet the findings of recent work suggest that they
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may be conditioned by the same kinds of high-level con-
struction probabilities as syntactic variation (Gahl & Garn-
sey, 2004, 2006; Tily et al., 2009). How do these very
different kinds of ‘reduction’—the alternative discrete
grammaticalized constructions, and the continuous acous-
tic compressions and expansions during speech produc-
tion—follow from the same probabilistic theory?

Several theories postulate direct linkages between con-
tinuous phonetic variation and higher-level grammatical
probabilities. One of the most recent and thorough of the
phonetic studies of word reduction (Bell et al., 2009)
adopts and modifies the widely accepted standard staged
model of production (building on Bock & Levelt, 1994
and much subsequent work). The modified model assumes
that lexical access is slowed or speeded by frequency-
driven activation, and proposes “a mechanism of fluent
speech that helps coordinate lexical access and/or phono-
logical encoding and the execution of the articulatory plan”
(Bell et al., 2009: 106-7). However, in their analyses of evi-
dence for the proposed model, the authors admit that “pre-
dictability from neighboring words is not distinguished
from predictability from syntactic constructions” (Bell
et al. 2009: 107), a point that has been underscored else-
where in the literature (Gahl & Garnsey, 2004, 2006) and
shown to matter empirically (Levy & Jaeger, 2007; Tily
et al., 2009). So we cannot tell from this and similar studies
whether word duration variation is in fact sensitive to syn-
tactic construction probabilities. The latter are potentially
long-distance effects not necessarily spanned in adjacent
words that influence the coordination of lexical access
with articulation.

Another kind of theory predicts a direct linkage be-
tween continuous phonetic variation and higher-level con-
struction frequencies: (multilevel) exemplar theory (cf.
Bybee, 2002, 2007, 2010; Gahl and Yu, 2006; Walsh, Moe-
bius, Wade, & Schuetze, 2010). Theories of this kind vary in
the role attributed to mechanisms such as repetition and
automatization of articulatory routines (proposed in By-
bee’s work) or to the threshold activation of dual constitu-
ent and unitary exemplars (proposed by Walsh et al,
2010). But they share the proposal that syntactic construc-
tions are stored in memory together with fine-grained
phonetic information; more frequently encountered exem-
plars of a construction can gradually shape the stored rep-
resentations, leading to sound changes (including but not
limited to reduction) and grammaticalization. To mention
just one of many examples, New Zealand English has been
undergoing a sound change in its vowels, notably raising &
and centralizing 1, so that black widow pronounced by a
New Zealander sounds to speakers of American English
much like “bleck wuddow”. Hay and Bresnan (2006) stud-
ied this centralization in the words hand and give in a spo-
ken corpus of New Zealand English. They found that the
vowel in give is more likely to be centralized when it oc-
curs in the context of more frequent dative construction
types such as abstract uses of give (give me a hand, give
her a chance), compared to concrete transfer uses (give us
presents, give us a plate full of food). Similarly, the vowel
in hand is more likely to be raised ([e®] or [€]) when the
word designates the limb, which is the more frequent
use. They relate these findings to multilevel exemplar

models that store phonetically detailed instances of con-
structions. It must be noted, however, that multilevel syn-
tactic representation and variation are just beginning to be
explored in this general conceptual framework, and the
storage of productive combinatorial syntactic exemplars
faces theoretical and practical computational challenges
(cf. Daelemans & van den Bosch, 2005; Bod, 2006; Walsh
et al., 2010).

Yet another class of theories that predict phonetic ef-
fects of construction probability derives from the idea of
information-smoothing (e.g., Aylett & Turk, 2004, 2006;
Jurafsky et al.,, 2001; Van Son & Pols, 2003; Van Son &
Van Santen, 2005). These theories propose that the infor-
mation content of a unit, defined as the binary logarithm
of the inverse of the probability of the unit (Shannon,
1948), is smoothed over the acoustic signal in order to
optimize communication: more informative units (which
are less predictable) are expanded in the signal and less
informative units (which are more predictable) are com-
pressed. The core ideas have been applied to texts (Genzel
& Charniak, 2002), to eye-tracking data (Keller, 2004), and
to syntactic variation in speech under the rubric of
“Uniform Information Density” (UID) (Jaeger, 2006; Levy
& Jaeger, 2007; Jaeger, 2010).

Notably, UID applies these information-theoretic
concepts from phonetic reduction research to “all levels
of linguistic representation” (Jaeger, 2010: 24). As a “com-
putational theory” that characterizes functional relations
at an abstract level (Marr, 1982), it does not postulate spe-
cific mechanisms of production, although it makes specific
empirical predictions about the locus of production effects.
And although the works supporting this theory apply it to
all levels of linguistic representation, the inquiry into con-
struction probabilities has mainly focused on the choice
between lexically stored discrete alternative word forms
or allomorphs such as clitics and null complementizers
(e.g., Gomez Gallo, Jaeger, & Smyth, 2008; Gries, 2003; Jae-
ger, 2010; Frank & Jaeger, 2008; Roland et al., 2006), rather
than gradient phonetic reduction and continuous acoustic
variables.

One study of phonetic effects of high-level construction
probabilities is Gahl and Garnsey (2004, 2006). In an exper-
imental task in which participants read out loud from writ-
ten texts, Gahl and Garnsey measured phonetic reduction
in contexts of differing probabilities of complement types
(direct object or sentential complement) given a verb that
can take alternative complement types (such as He believed
the rumor yesterday, He believed the rumor was false). They
found that in sentences in which the verbs are biased to-
ward either one or the other type of complement, speakers’
pronunciations of the verb and its arguments are shorter
when the sentence matches the verb bias than when it does
not. However, among several caveats to this work noted in
subsequent work with one of the co-authors, the experi-
mental task differs from spontaneous speech in combining
both comprehension and production, and hence “the ob-
served effect may have resulted from comprehension diffi-
culty, rather than directly reflecting the workings of the
language production system” (Tily et al., 2009, p. 151).

In the subsequent study of gradient acoustic reduction
by Tily et al. (2009), word duration is reported to be
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sensitive to construction probability in spontaneous
speech production: for example, the spoken preposition
to in dative constructions like he brought the pony to my
children or give a backpack to me is reported to vary in dura-
tion as a function of the probability of this construction
compared to its alternative paraphrase as a double object
construction (respectively he brought my children the pony,
give me a backpack), even after adjusting for low-level tran-
sitional probabilites between words. By the time that
speakers begin articulating the words of the immediately
postverbal phrase—the pony or my children after brought—
they have committed to overtly expressing the construc-
tion type they have chosen (prepositional or double-
object) in describing the event; therefore the reported
variation in duration of the preposition to occurs relatively
far downstream in the flow of spontaneous speech from
the point of choice between the alternative constructions,
where the information derived from their relative proba-
bilities is available to be smoothed in the acoustic signal
(see below). We were not able to replicate the findings
(see Study 3 below).

The state of the art in previous research has demon-
strated that low-level continuous phonetic variation is sen-
sitive to high-level construction probabilities. In the
present paper we revisit some of the prior findings and
investigate (i) whether the effects are localized in a way
consistent with theoretical predictions and (ii) whether
the higher-level probabilities themselves make an inde-
pendent contribution or merely serve as a summary mea-
sure of the individual factors that influence construction
outcome. This investigation is based on a corpus sample
of spontaneously spoken sentences. In order to distinguish
among theoretical predictions of the loci of effects, we ex-
tend our dataset beyond the scope of previous studies to
multiple data points in the incremental unfolding of spon-
taneously spoken sentences. Finally, we use powerful but
elegant statistical modeling methods to address the issue
of whether probability has a role in itself or serves merely
as a summary statistic for individual accessibility factors.

Theoretical predictions

Information smoothing—the idea that speakers accom-
modate the amount of information in the acoustic signal
by modulating properties of this signal—has been advo-
cated as a pervasive operational mechanism of speech pro-
duction in a number of conceptually related proposals,
such as the Smooth Signal Redundancy hypothesis (Aylett
& Turk, 2004, 2006), the Probabilistic Reduction hypothesis
(Jurafsky et al., 2001), or research on speech efficiency
(Pluymaekers et al., 2005; Van Son & Pols, 2003; Van Son
& Van Santen, 2005). We focus here on one version of the
theory, Uniform Information Density, described in the
Introduction.

Uniform Information Density (UID): Uniform Information
Density theory applies the theory of information smooth-
ing to higher-level syntactic probabilities. But where do
these syntactic probabilities come from? The answer is
that they are inherent in syntactic variation: wherever var-
iation exists, it provides a choice between alternatives; the

relative frequencies of the alternants in a sample of lan-
guage provide the most basic estimate of their probability
of occurrence in the language, all else being equal. While
phonetic variation is present in every segment during
speech, the large size of higher-level syntactic structures
during the incremental production of sentences limits the
loci of syntactic variation in the speech stream. According
to the UID, these loci are where the speaker smooths syn-
tactic information over the signal during incremental
word-by-word production to avoid peaks and troughs in
information density (Levy & Jaeger, 2007; Jaeger, 2010).
For example, variation in postverbal complement struc-
tures occurs in the immediate postverbal position, where
the speaker commits to articulating one of the alternants.
The ‘choice point’ is operationalized here as the part of
the acoustic stream where the speaker’s commitment to
articulating one of the variants is manifest, from the speak-
er’s point of view.!

Smoothing of the information carried by a syntactic
choice consists of distributing the information over the sig-
nal as uniformly as possible. At a choice point, therefore,
the speaker will tend to lengthen (or shorten) the relative
acoustic duration of the word that commits her to articu-
lating a less (or more) probable syntactic variant. More
probable speech units encode less information and are eas-
ier to reconstruct from context, so reducing the amount of
signal associated with these units is less likely to jeopar-
dize successful communication. Conversely, a less probable
unit by virtue of encoding more information needs to be
more salient—typically, stretched over production time—
to ensure that speech perception is not overly effortful
for the hearer and the unit’s transmission is successful.

While information smoothing at the lowest phonetic
levels can flow continuously, smoothing of syntactic infor-
mation on this theory is expected to occur word by word at
the choice points during incremental production where the
speaker controls the articulation of syntactic variants. For
this reason, UID predicts syntactic reduction effects in pro-
duction only at such ‘choice points’ (Jaeger, 2010, p. 26,
Fig. 1a & b; p. 28). As Frank and Jaeger (2008, p. 940)
emphasize, “Since UID makes predictions about speakers’
choices, we are only interested in cases where speakers
actually have a choice between two different realizations
of the target ....” This point is further illustrated by an ex-
plicit theoretical model of top-down stochastic incremen-
tal sentence production (Levy & Jaeger, 2007, Eq. (2) &
Fig. 2).

As noted above, although UID has been claimed to apply
to all levels of linguistic representation, its applications to
syntactic information have focused primarily on the choice
between lexically stored discrete alternative word forms or
allomorphs such as clitics and null complementizers,

! Unlike the comprehender, the speaker is assumed to know what
message she is formulating, and hence lexical variation between hom-
onyms, for example, need not affect the speaker’s commitment to the
syntactic formulation of her message. Of course, the speaker could
conceivably delay her own commitment when the first word of both
alternative constructions is the same, as is postverbal the in give the dog the
bone, give the bone to the dog. But by the time dog or bone is articulated in
this example, construction choice has been made and is manifest for the
speaker regardless of any uncertainty for the comprehender.
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rather than continuous acoustic measures such as dura-
tion. The specific loci of temporal duration effects it pre-
dicts provide a strong test of the theory.

Syntactic reduction in the sense of Levy and Jaeger
(2007) can only take place (by definition) where there is
variation in the choice of full and reduced word forms—
hence at “choice points” as defined above. But (syntacti-
cally conditioned) phonetic reduction is not limited in this
way; it can apply more broadly with all types of syntactic
variation, including variations of word order rather than
word forms. For these cases as well, we assume that syn-
tactic information will be smoothed across the speech sig-
nal at the point where the speaker’s commitment to
articulating one of the syntactic variants is manifest, from
the speaker’s point of view—the choice point again. Articu-
latory theory (e.g., Browman & Goldstein, 1992) tells us
that words can be compressed or expanded during speech
production by dynamically modifying the spatiotemporal
structure of their stored articulatory routines. Since these
must be executed sequentially word by word during incre-
mental production, and since higher-level syntax has a rel-
atively small effect on phonetic reduction (Bell et al., 2009;
Tily et al., 2009), the speaker gains the most communica-
tive leverage in smoothing syntactic information just
where the word choice manifests the syntactic choice.
Starting earlier before the choice point, where an abstract
syntactic construction choice may have been covertly
made, or later, where the construction choice is already
made, are communicatively inefficient.

The dative alternation in spontaneous American English
provides a convenient illustration. This alternation is a syn-
tactic choice in which the alternatives (ditransitive, or NP NP
I'll give Tom the book and prepositional, or NP PP I'll give the
book to Tom) differ in their word order but not in their core
meaning (for discussion see Bresnan, Cueni, Nikitina, &
Baayen, 2007; Bresnan & Nikitina, 2009; Fellbaum, 2005;
Bresnan & Ford, 2010). The choice between alternatives
depends on multiple and often conflicting properties of
the verb give, the recipient Tom and the theme the book
(Arnold, Losongco, Wasow, & Ginstrom, 2000; Bock & Irwin,
1980; Bock, Loebell, & Morey, 1992; Collins, 1995; Gries,
2005; Hawkins, 1994; McDonald, Bock, & Kelly, 1993;
Lapata, 1999; Prat-Sala & Branigan, 2000; Snyder, 2003;
Thompson, 1990, 1995; Wasow, 2002). For instance, the
probability of a ditransitive construction is increased when
the first phrase following the verb is a pronoun, is definite, is
mentioned in prior discourse, is animate, or is short.
Incorporating these and other variables such as the previous
occurrence of a parallel structure (Weiner & Labov, 1983;
Bock, 1986; Gries, 2005; Pickering, Branigan, & McLean,
2002), a probability model of the dative alternation predicts
the choice of construction for dative verbs in spoken English
with very high accuracy (Bresnan et al., 2007).

The evidence thus suggests that the differences in alter-
native constructions are preferences, not categorical regu-
larities. To give an example, the probability of the
prepositional dative afford some time to the military or help-
ing elderly people is estimated at 89%, and that of its coun-
terpart afford the military or helping elderly people some
time at 11%. For the dative alternation, the choice point—
or the point in articulation when the speaker manifests

her commitment to one of the available variants during
incremental speech production (Ferreira, 1996)—is typi-
cally the first word of the proximate object (e.g., some in af-
ford some time to the military or helping elderly people). On
UID, the word that serves as the point of choice between
the dative alternants for the speaker is where a lower or
higher construction probability of the selected alternant
would yield a more or less salient realization of the word.
Importantly, UID predicts no effect of the dative construc-
tion probability past the choice point. As soon as the speak-
er begins articulating the first words of the recipient some
time or the theme the military or helping elderly people, the
order of upcoming objects is solidified and fully determined
as either a theme, or a preposition plus a recipient, respec-
tively. During word-by-word incremental production, then,
the probability of the spoken alternant becomes exactly 1
after the choice point, and that of the rejected alternant be-
comes exactly 0. Hence no variability is expected in the
articulation of the remainder of the selected construction
that can be attributed to its dative construction probability.

These predictions of UID contrast with those of certain
other theories, under the simplest assumptions. For exam-
ple, the exemplar theories discussed in the Introduction
could treat the entire syntactic construction under produc-
tion as a potential locus for the effect of construction prob-
ability during incremental production (although further
development and elaboration of the syntactic exemplars
assumed in these theories could result in different predic-
tions). Thus, one could expect that all, or at least multiple,
words across the preferred construction afford some time to
the military or helping elderly people would be realized
acoustically in the way that reflects a higher probability
of this construction as compared to its alternant. (This
expectation would generally hold true even if one allows
for the possibility that construction probability affects
the realization of different words within the multi-word
dative to a different degree.)

For example, in explaining the reasoning that led to
their predictions concerning duration, Gahl and Garnsey
(2004, p. 754) write (emphasis added):

Previous research has shown that high-frequency and
high-probability words tend to be short. By extension,
we hypothesized that words and phrases instantiating
high-probability syntactic structures would also be short.
Sentential complements—and hence, clause bound-
aries—have a higher probability following SC-bias verbs
than following DO-bias verbs, and direct objects have a
higher probability following DO-bias verbs than follow-
ing SC-bias verbs. We reasoned that, in bias-matching
contexts, the lengthening typically observed near clause
boundaries and phrase-finally might be offset by phonetic
reduction found in high-probability items generally. As a
result, we hypothesized that the lengthening near pro-
sodic boundaries would be observed to a greater extent
in bias-violating contexts than in bias-matching ones.

The prediction that “words and phrases instantiating
high-probability syntactic structures would also be short”
and thereby offset prosodic boundary lengthening effects,
we will refer to as broad-scope, in contrast to the specific
prediction of UID at the choice point, as in Table 1A and B.
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Table 1

The timeline of effects of syntactic probability on the ease of incremental production at different syntactic positions in the dative construction (verb, proximate
object, distant object), as predicted by the Uniform Information Density theory and theories that make broad-scope predictions of construction-probability

effects.

Verb Proximate Object
At the choice point

Before the choice point

(Preposition +) Distant Object
After the choice point

A. UID None
B. Broad scope Probability of the spoken alternant

Probability of the spoken alternant None
Probability of the spoken alternant

Probability of the spoken alternant

Gahl and Garnsey (2004, p. 769) observe that exemplar-
based models most readily accommodate their findings of
phonetic effects of high-level construction probabilities.
Their broad-scope predictions of an extended temporal lo-
cus of the probabilistic effects of syntactic construction are
compatible with their own findings described in the Intro-
duction, which go beyond the word-to-word transitions at
the point of the postverbal clause or phrase boundary to
the duration of the entire postverbal noun phrase (Gahl &
Garnsey, 2004, p. 754 & 763). And they are compatible
with the subsequent report that words past the choice
point—the preposition to in the prepositional dative and
the first word of the distant object in the ditransitive da-
tive—were realized longer in the less probable dative con-
structions (Tily et al., 2009). The predictions are also in line
with the finding of Wagner Cook, Jaeger, and Tanenhaus
(2009) that the entire utterance containing a dative con-
struction elicits more gesturing and disfluencies (also con-
firmed in Tily et al. (2009)) if the construction is of a
relatively low probability.

The contrasting UID and broad-scope predictions for the
case of the dative alternation are summarized in Table 1A
and B, respectively. In the present work we tested these
contrasting predictions of the loci of construction probabil-
ity effects by investigating word durations at multiple syn-
tactic positions in the incremental acoustic production of
English datives.

Method
Materials

We performed a time-locked comparison of theoretical
predictions using the set of 2328 sentences with datives
extracted from the Switchboard corpus of spontaneous
spoken US English (Godfrey, Holliman, & McDaniel, 1992;
Greenberg, Hollenback, & Ellis, 1996) and annotated by
Bresnan et al., (2007), Bresnan and Nikitina (2009), and
Recchia (2007), described most fully by Bresnan and Ford
(2010). The Switchboard corpus is a collection of 240 h of
spontaneous dialogs recorded as telephone conversations
between pairs of speakers. A list of topics was suggested
to speakers, though they were not required to maintain
that topic throughout the conversation. The speakers were
not familiar with each other. The choice of spontaneous
speech in the present and previous studies of Bresnan
and colleagues provides relative ecological validity in com-
parison to speech production conditioned by experimental
tasks. This study builds on Bresnan et al.’s (2007) statistical
model of the construction probability of the dative alterna-

tion as a function of multiple factors, and on Tily et al.’s
(2009) investigation of the effects of construction probabil-
ity on the acoustic duration and the rate of disfluencies in
the production of preposition to in the NP PP datives and in
the production of the distant object (recipient) of the NP PP
dative. Our use of the same data source that Bresnan et al.
(2007) and Tily et al. (2009) based their observations on
ensures direct comparability between the present and
the earlier studies.

Dependent variables

The time-aligned transcript of the Switchboard corpus
produced by Deshmukh, Ganapathiraju, Gleeson, Hamaker,
and Picone (1998) provides an estimate of the acoustic
duration for each word in each sentence based upon an im-
proved resegmentation of the corpus. In a series of five
studies we consider as the dependent variable the acoustic
duration of the following (words within) syntactic
constituents:

1. The first (recipient) object in the NP NP dative (e.g., John
wrote him a letter).

2. The first (theme) object in the NP PP dative (e.g., She
gave a book to them).

3. The preposition to in the NP PP dative (e.g., She gave a
book to them).

4. The second (theme) object in the NP NP dative (e.g., John
wrote him a letter).

5. The second (recipient) object in the NP PP dative (e.g.,
She gave a book to them).

The distribution of the raw durational data in each data-
set is skewed (see Studies 1-5 below for descriptive statis-
tics). We conducted Box-Cox tests to establish what power
transformation would be optimal in rendering the distribu-
tion closer to normality (Box & Cox, 1964; for a detailed
discussion in psycholinguistic literature, see Kliegl, Mas-
son, & Richter, 2010). The Box-Cox power transformation
is defined as y(1) = y‘/ﬂ, if 2+#0, and y(2)=log (y), if . =0,
where /1 is the power coefficient. The method implemented
as the function boxcox in the library MASS in R (Venables
& Ripley, 2002) estimates the optimal value for 4 for the gi-
ven linear regression model. An optimal value of 2 close to
—1 indicates the reciprocal transformation of the skewed
variable, an optimal value of O indicates the logarithmic
transformation, while an optimal value close to 1 suggests
that no transformation is warranted (Kliegl et al., 2010).
We estimated the optimal values of A for each of the five
data sets by providing linear regression models (fitted
using the 1m function in R) with untransformed acoustic




V. Kuperman, J. Bresnan/Journal of Memory and Language 66 (2012) 588-611 593

durations as dependent variables and multiple predictors
(see below for the detailed descriptions) as the input for
the function boxcox. The respective optimal values of /1
for the given studies enumerated above were: 0.3, 0.3,
0.2, 0.0, 0.0. As all values of /. were close to zero, we log-
transformed acoustic durations in all datasets to avoid
skewness, attenuate the disproportional influence of outli-
ers and approximate the normal distribution of production
data.

Critical predictors

Measures of syntactic probability: Our critical predictor is
the probability of each instance of the alternative dative
constructions used by the speakers, estimated by the statis-
tical model of Bresnan et al. (2007) on the basis of multiple
structural, semantic and pragmatic characteristics of dative
verbs and their objects (see the list below in this section).
To give an example, the probability of an NP PP alternative
is 0.89 for the prepositional dative afford some time to the
military or helping elderly people and only 0.008 for the
double object dative allot each of us enough time to go out.
Since the model’s probability in Bresnan et al. is defined
with respect to the NP PP alternative, we either used this
probability directly in utterances with the NP PP order of
constituents (p = 0.89 in the first example), or its inverse
in the utterances with the NP NP realization of dative
(1-p=1-0.008=0.992 in the second example). The
resulting probability measure (labeled as Prob) ranges from
0 to 1 and its distribution is highly skewed such that high-
probability outcomes are (unsurprisingly) very common.
The mean value of construction probability is extremely
high for ditransitive or NP NP datives (mean =0.953,
SD =0.127; min=0.008, 1st quartile=0.972, 2nd quar-
tile = 0.995, 3rd quartile = 0.998, max = 0.999), and slightly
lower for prepositional or NP PP datives (mean = 0.830,
SD =0.251; min=0.005, 1st quartile=0.757, 2nd quar-
tile = 0.937, 3rd quartile = 0.996, max = 0.999).

Components of syntactic probability: We aimed to assess
whether variables that reliably predicted the binary syn-
tactic choice in dative alternation (Bresnan et al., 2007)
would have an effect on the acoustic signal associated with
the production of alternants. The variables were dubbed
here as “components of probability”. In sum, the following
components were considered: length, definiteness, given-
ness, person, animacy, pronominality and number of the
recipient (coded as length.rec gauged in orthographic
words; def.rec with values “def” and “indef”; given.rec with
values “given” and “ngiven”; person.rec with a value “local”
when referring to interlocutors in the dialog I or you and
with a value “non-local” for other referents; animacy.rec
with values “a” and “ina”; pron.rec with values “pron”
and “npron” for pronominal and lexical nouns; and num-
ber.rec with values “singular” and “plural”). A similar set
of the theme properties was considered: length.theme,
def.theme, given.theme, person.theme, animacy.theme,
pron.theme, number.theme with values as defined above.
We also took into account syntactic parallelism in the dia-
log (whether or not a dative construction of the same type
was present in the same dialogue), and semantic class of
the verb.

Control variables

Frequency-based controls: It is a robust finding in the
production literature that the frequency of occurence of
word N co-determines its acoustic realization, such that
more frequent words are pronounced with less acoustic
salience, for instance, shorter (e.g., Fidelholtz, 1975;
Rhodes, 1996; Zipf, 1929). Also probabilities of word N gi-
ven the preceding word and, separately, the following
word are known to co-determine the acoustic duration of
word N: the higher the probability (frequency) of a back-
ward or forward bigram of word N, the more acoustically
reduced word N is (cf. Bell et al., 2003, 2009; Gregory, Ray-
mond, Bell, Fosler-Lussier, & Jurafsky, 1999; Jurafsky et al.,
2001). We obtained target word frequency as well as back-
ward and forward bigram probabilities from the Web 1T
ngram corpus (Brants & Franz, 2006). If the bigram from
the Switchboard dataset was not registered in the Brants
and Franz corpus, we assigned the frequency of 1 to the bi-
gram,; all unigrams were attested in the corpus. Following
up on findings of Jaeger and Post (2010), we also included
frequency of the upcoming word and the probability of the
upcoming word given preceding word in the list of predic-
tors. We log-transformed (base e) all frequency-based
measures to remove skewness from their distributions.

Acoustic controls: Speech rate was defined as the num-
ber of phonemes realized per second. To avoid a circular
use of the dependent variable in the calculation of speech
rate (SpeechRate), we obtained this measure by subtracting
the duration of the target word from the total duration of
the utterance and subtracting the word’s number of pho-
nemes from the total count of phonemes in the utterance,
and dividing the latter by the former. We also took into ac-
count the length of the target word (in phonemes) labeled.
Since the immediate phonological environment may alter
acoustic characteristics of production, we coded whether
or not the target word ended in a vowel and whether or
not the following word began with a vowel. Furthermore,
we coded the position of the stressed syllable in the word,
the presence of the consonant cluster at the end of the
word, and the average diphone frequency for the word.
All phonological information was extracted from the CEL-
EX lexical database (Baayen, Piepenbrock, & Gulikers,
1995) or, in the case this source lacked the necessary infor-
mation, added manually.

Other controls: We coded the ordinal word position of
the verb in the sentence, as it may codetermine the
amount of syntactic and semantic information available
at the position in which the realization of the dative con-
struction begins. Finally, the total number of words in
the utterance was computed, as the overall complexity of
planning and producing a larger utterance may have con-
sequences for the production effort at each word (Quené,
2008; Yuan, Liberman, & Cieri, 2006).

Prosodic factors might influence acoustic durations as
well. There is evidence (Selkirk, 2003) that prosodic phras-
ing is mainly driven by syntactic structure, also specifically
in English datives (Anttila, Adams, & Speriosu, 2010).
Heads (including functional heads) form a prosodic phrase
with their lexical complements. In this sense, all the syn-
tactic positions that we examine are controlled for their
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positions within prosodic units. Verbs as heads were in the
beginning of respective phonological phrases. First words
of the proximate object, as well as prepositions, were lo-
cated within phonological phrases. The one-word distant
objects (accounting for over 90% of respective data sets)
were at the end of those prosodic phrases. Thus, in each
study the position within the phonological phrase was held
constant across all data points. As phonological words are
often tied to the boundaries of syntactic constituents, our
measures of lengths of syntactic objects afford a certain le-
vel of control over the position of a lexical word in the pho-
nological word, and of the size of the prosodic unit.

Data trimming

Lengths of recipient and of theme showed skewed Zip-
fian distributions and varied widely between the dative
alternatives: the average recipient length was 1.104 words
(SD = 0.436) in NP NP datives and 1.850 words (SD = 1.144)
in NP PP datives, while the average length of the theme
was 3.742 words (SD =2.861) in NP NP datives and 1.591
words (SD = 1.144) in NP PP datives. We set off the maxi-
mum length as 15 words for the theme (original range
1-46) and 6 words for the recipient (original range 1-
16). The resulting data set accounts for over 90% of the
probability mass for each variable and excluded dispropor-
tionately long syntactic objects (see Roland, 2009). To re-
move skewness even further, we log-transformed lengths
of the theme and recipient. We also standardized log
lengths (by subtracting the mean log length from the given
log length and dividing the difference by one standard
deviation).

From the original dataset of 2328 utterances, we ex-
cluded utterances with coding errors as well as those
utterances in which disfluencies (pauses, fillers, or repeti-
tions) immediately preceded the verb or occurred at any
position within or up to two words after the dative con-
struction: the total of 311 data points (13%) were removed.
Finally, in each of the 5 datasets, we additionally excluded
data points where any numerical covariate (speech rate,
backward and forward bigram and word frequency) is fur-
ther than 3 standard deviations away from the log mean.
Depending on the data set, this step of the trimming proce-
dure removed 5-7% of the data points. Finally, in each data
set we removed words with acoustic durations that were 3
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or more standard deviations away from the mean duration.
This step shaved off additional 0-2% of the total of data
points across data sets. The sizes of resulting data sets for
respective dependent variables are reported in Table 2.

Most of our studies involve both a large number of pre-
dictors (construction probability and its components, as
well as multiple controls) and a relatively small number
of observations (with the minimum N =235). As models
with a low observation/predictor ratio are susceptible of
overfitting the data, Harrell (2001, p. 61) recommends that
the ratio is kept no lower than at 10 or 20 observations per
coefficient in the statistical model. To avoid overfitting, we
lowered the number of predictors in our models using the
following methods. First, we did not enter in the model
those control variables that showed a weak Spearman’s
pairwise rank correlation with the respective dependent
variable (|p| < 0.1). This step consistently filtered out vari-
ables with low predictivity of acoustic duration (e.g., utter-
ance length, position of stress, quality of the segment
preceding or following the target word, and such). In this
we followed the statistical literature (e.g., Freedman,
1983; Lukacs, Burnham, & Anderson, 2010) for the demon-
stration that explanatory variables with no relation to the
response may result in spurious effects, especially when
the sample size is small relative to the number of models
fitted and the stepwise model selection procedure is ap-
plied. Second, we applied principal component analysis in
the regression model (Harrell, 2001) to highly collinear fre-
quency-based controls and phonological word length, and
only used as predictors those principal components that
accounted for at least 5% of the variance in the original col-
linear space (1-3 principal components across models).
Third, binary variables with less than 5% of data points rep-
resenting one of their levels were excluded from consider-
ation as predictors in respective models.

Statistical modeling

We use linear mixed-effects regression models with
crossed random effects, implemented in package 1me4 of
the statistical software R (R Development Core Team,
2007), that allow for the simultaneous consideration of
multiple covariates, while keeping under statistical control
the between-speaker and between-item variance (cf.
Baayen, 2008; Baayen, Davidson, & Bates, 2008; Bates &

Summary of the effects of construction probability and its components on acoustic durations of words across the dative construction. Sample sizes N are
reported after the trimming procedures were applied. Model-averaged estimates of regression coefficients () and standard errors (G), and the t-test based p-
values are reported for those predictors that reach significance at the 0.05 level. ES stands for effect size, a model-estimated contrast in acoustic durations of

words showing the maximum and the minumum values of the predictor.

NP NP (double)

NP PP (prepositional)

At the choice point

Study 1, recipient (first object): N=1317

Probability ( = —0.453; 6 = 0.145; p =.003; ES = —109 ms)
Length.theme (8 = 0.051; 6 = 0.014; p =.001; ES = 58 ms)

After the choice point
NA

Study 4, theme (second object): N = 889

Study 2, theme (first object): N =235
Probability (f = —0.431; ¢ = 0.186; p =.028; ES=—61 ms)

Study 3, preposition to: N = 422

Study 5, recipient (second object): N = 286
Length.theme (f = 0.085; & = 0.040; p =.042; ES = 41 ms)
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Sarkar, 2007; Pinheiro & Bates, 2000). All models include
speaker and (except for the model for the duration of to
where word is held constant) word as random effects: both
random intercepts significantly (p <0.001) improve the
performance of the models as established by likelihood ra-
tio tests. We report the outputs of these models below. In a
separate set of analyses, we also included in each model
the random by-speaker slopes or contrasts for all predic-
tors in that model. In this way we effectively model all
sources of random variation between speakers and target
words with respect to our predictors. The observed pat-
terns converged perfectly in terms of the polarity and sta-
tistical significance (at the 0.05 level) of effects with the
results reported here.

Because of the large number of predictors and controls
required to answer the crucial theoretical questions, the
problem of model selection loomed very large in the pres-
ent work. The widely accepted practice of selecting a single
best-performing model as an approximation of the infor-
mation about full reality present in the data fails to ac-
count for model uncertainty—the existence of acceptable
alternative models of the same data, each telling a different
story. We therefore decided to employ an information-the-
oretic method of multimodel inference developed by Burn-
ham and Anderson (2002, 2004). This method estimates
the strength of evidence for each model in the set of possi-
ble models, ranging from one having zero predictors (the
intercept-only model) to the model with the full list of pre-
dictors. A set of n predictors generates a model set consist-
ing of 2" models. The strength of evidence for the model is
defined as the amount of information lost when that model
is used to approximate full reality or truth, or equivalently,
the distance between the model and full reality (Burnham
& Anderson, 2004): the required metric is provided by the
information-theoretic measure of the Kullback-Leibler
(KL) distance (Kullback & Leibler, 1951).

Multimodel inference crucially takes into account the
distribution of the strengths of evidence over the model
set and factors this distribution in when estimating infer-
ential statistics for and the relative importance of predic-
tors. Basing estimates on the entire model set rather than
any particular model or subset safeguards researchers
from founding their interpretations on estimated model
parameters that are potentially specific to either the model
selection algorithm or to a single model. It also obviates
the need for multiple comparisons between models and/
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or variables, which are inherent in some model selection
algorithms and as such may require corrections for nomi-
nal significance levels. The motivation and mathematical
foundations of this approach, as well as the criticism of
the methods of single best model selection are exhaus-
tively presented in Burnham and Anderson (2002, 2004)
and Lukacs et al. (2010). In the Appendix, we outline in de-
tail the multimodel inference procedure (Burnham &
Anderson, 2002, 2004) that we used for statistical data
analyses in all studies. We also discuss there how the mul-
timodel inference technique handles collinearity, a crucial
issue for our analyses that simultaneously consider such
correlated variables as construction probability and its
components. In what follows, we report the outcomes of
the multimodel inference procedure for all of the studies
that we conducted.

Results and discussion

Below we present statistical analyses for the five studies
that probe a range of timepoints at and past the choice
point during the incremental production of alternating da-
tive constructions. Our main emphasis is on the time-
course of effects that the critical predictors (construction
probability and its component predictors) register in the
acoustic signal, as diagnostics for a range of proposed
speech production theories. The effects of critical predic-
tors that reached significance at the 0.05 level under our
multimodel inference procedure (see Appendix) are sum-
marized across studies in Table 2, while the detailed mod-
eling outputs for particular studies are reported in Tables
3-7. For each predictor, we report the model-averaged
estimates of its regression coefficient (§) and standard er-
ror (o), as well as the boundaries of the 95% confidence
interval and p-values based on t-tests, with the number
of models fitted to the dependent variable minus one as
degrees of freedom. We also report for each critical predic-
tor the cumulative probability or the relative importance it
accrues in the model set of the respective study.

At the choice point

Studies 1 and 2 target the point in the production of da-
tives where speakers realize their choice between alterna-
tive placements of constituents. On UID account, it is at

Outcome of the multimodel inference procedure for the duration of the initial word of the first (recipient) object in the NP NP dative, N = 1317. Model-averaged

estimates of regression coefficients () and standard errors () are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and
HiCI), the predictor’s p-value, and its cumulative probability. Marked in bold are predictors with p-values below 0.05.

Predictor B 9 LoCl HiCl p Cumul.Prob
Intercept 5.708 0.170 5.374 6.041 <.001 NA
SpeechRate -0.029 0.004 —0.036 -0.021 <.001 NA
VerbPos 0.001 0.001 —0.001 0.003 40 NA
PC1 0.001 0.003 —0.005 0.006 37 NA
PC2 —0.030 0.009 —0.047 -0.012 .002 NA
given.theme = ngiven —0.000 0.047 —0.091 0.091 .40 0.20
def.theme = indef -0.017 0.032 —0.081 0.046 34 0.29
pron.theme = pron —0.092 0.049 -0.189 0.004 .07 0.74
length.of.theme 0.051 0.014 0.024 0.077 .001 1
Prob -0453 0.145 -0.738 -0.168 .003 1
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Table 4

Outcome of the multimodel inference procedure for the duration of the initial word of the first (theme) object in the NP PP dative, N = 235. Model-averaged

estimates of regression coefficients () and standard errors () are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and
HiClI), the predictor’s p-value, and its cumulative probability. Marked in bold are predictors with p-values below 0.05.

Predictor B o LoClI HiCl p Cumul.Prob
Intercept 5311 0.386 4.554 6.067 <.001 NA
SpeechRate —0.043 0.011 —0.064 -0.023 <.001 NA

PC1 0.020 0.009 0.003 0.038 .034 NA

PC2 —0.005 0.036 -0.077 0.066 39 NA

PC3 0.113 0.130 -0.143 0.368 38 NA
given.rec = ngiven -0.141 0.075 —0.287 0.005 0.07 0.10
given.theme = ngiven —0.043 0.210 —0.454 0.368 0.39 0.10
pron.theme = pron 0.381 0.214 —0.038 0.800 0.08 0.46

Prob -0431 0.186 -0.796 —0.066 0.028 0.64

Table 5

Outcome of the multimodel inference procedure for the duration of the preposition to in the NP PP dative, N = 422. Model-averaged estimates of regression

coefficients () and standard errors (&) are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and HiCl), the predictor’s

p-value, and its cumulative probability.

Predictor B o LoClI HiCl p Cumul.Prob
Intercept 4.898 0.271 4.368 5.429 NA
SpeechRate —0.028 0.013 —0.053 —0.003 .039 NA
VerbPos 0.003 0.003 —0.004 0.010 242 NA
PC1 -0.016 0.023 —0.061 0.028 312 NA
PC2 0.001 0.040 -0.079 0.080 398 NA
given.rec = ngiven -0.135 0.106 —0.343 0.073 177 0.24
given.theme = ngiven 0.171 0.124 -0.073 0.415 154 0.19
def.rec = indef 0.045 0.105 —-0.161 0.250 364 0.15
def.theme = indef 0.036 0.132 -0.223 0.296 384 0.19
pron.rec = pron —-0.102 0.116 —0.330 0.126 271 0.24
pron.theme = pron 0.030 0.174 -0.312 0.371 393 0.19
length.rec 0.016 0.048 -0.079 0.111 377 0.14
length.theme —0.002 0.049 —0.098 0.093 398 0.11
Prob —0.193 0.171 —0.528 0.142 211 0.32
Table 6

Outcome of the multimodel inference procedure for the duration of the second (theme) object in the NP NP dative, N = 889. Model-averaged estimates of
regression coefficients () and standard errors (G) are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCl and HiCl), the

predictor’s p-value, and its cumulative probability.

Predictor B o LoCl HiCl p Cumul.Prob
Intercept 5.598 3.144 —-0.565 11.760 <.001 NA
SpeechRate —-0.022 0.007 —-0.035 —-0.008 .003 NA
VerbPos -0.013 0.199 —0.404 0377 .398 NA
PC1 —-0.008 0.118 —-0.238 0.222 .340 NA
PC2 0.008 0.161 —-0.308 0.323 400 NA
given.rec = ngiven 0.021 0.074 -0.124 0.165 383 0.13
given.theme = ngiven —0.055 0.070 -0.192 0.082 293 0.20
def.theme = indef 0.099 0.198 -0.289 0.487 352 0.20
pron.rec = pron -0.063 0.067 -0.195 0.069 .256 0.18
length.rec 0.013 0.018 —-0.022 0.048 .307 0.18
length.theme —0.006 0.019 —-0.043 0.031 379 0.12
Prob -0.196 0.176 -0.541 0.149 214 0.26

this point that speakers accommodate in the acoustic sig-
nal the information density associated with the choice,
such that a less probable (more informative) alternative
would show an increased amount of signal (slower or more
disfluent speech, or a higher prevalence of gestures accom-
panying speech, e.g., Jaeger, 2010; Wagner Cook et al.,
2009).

Study 1: Initial word of the first (recipient) object in the NP NP
dative

For our purpose of comparing acoustic durations, the
variability in the length and the syntactic complexity of
recipients in the NP NP datives is staggering. To circumvent
this problem, we zoomed in on the initial word of the first
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Table 7

Outcome of the multimodel inference procedure for the duration of the second (recipient) object in the NP PP dative, N = 286. Model-averaged estimates of

regression coefficients () and standard errors (G) are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and HiCI), the
predictor’s p-value (based on the t-test with the number of models in the set minus one, as degrees of freedom), and its cumulative probability. Marked in bold

are predictors with p-values below 0.05.

Predictor B 9 LoCl HiCl p Cumul.Prob
Intercept 4.763 0.237 4.299 5.227 <.001 NA
SpeechRate —0.008 0.010 -0.027 0.012 .289 NA
VerbPos —0.004 0.003 —0.009 0.001 .164 NA
PC1 0.161 0.065 0.033 0.289 .019 NA
PC2 —0.026 0.032 —0.090 0.038 .286 NA
given.rec = ngiven —0.096 0.124 —0.340 0.148 295 0.23
given.theme = ngiven 0.058 0.086 -0.110 0.226 318 0.19
pron.rec = pron —0.101 0.229 —0.549 0.347 362 0.15
pron.theme = pron 0.014 0.100 —0.182 0.211 394 0.14
length.rec —0.028 0.066 -0.157 0.102 364 0.13
length.theme 0.085 0.040 0.007 0.163 .042 0.72
Prob 0.173 0.141 -0.103 0.450 187 0.33

(recipient) object in the NP NP dative. We selected mono-
syllabic function words, with at least 10 occurrences in this
syntactic position. Seven pronouns satisfied these selection
criteria, it, her, him, me, us, them and you, which left us with
1317 data points after the standard trimming procedure.
The acoustic duration of target words ranged from 40 to
480 ms (mean = 138; SD = 68). Virtually all selected recipi-
ents (1312 out of 1317) consisted of a single pronoun (e.g.,
the full recipient being her rather than her coat), so we ex-
cluded the length, pronominality and definiteness of recip-
ients from the list of predictors. Our choice of recipients
also ensured that no pair of the objects in any construction
began with the same word, as in gave the boy the book. (If
this were the case, then the point of choice between alter-
nating constructions might shift to the second word of
the recipient, rather than the initial word that we zoom in
on.) Two principal components (PC1 and PC2) account for
89% of variance in the frequency-based independent mea-
sures and phonological word length, and were entered into
the model along with speech rate as fixed predictors. A set
of five critical predictors formed the model space for the
multimodel inference; see Table 3. No other variable passed
the pre-screening requirements.

Construction probability is a significant predictor of the
acoustic duration of the initial word of recipient
[ = —0.453; ¢ = 0.145; p = 0.003]. Initial words of recipi-
ents in the NP NP constructions that have a higher probabil-
ity of this constituent order are realized faster: the contrast
in the recipient’s acoustic duration between the most and
least probable construction is estimated at 109 ms. We note
that the effect is mostly driven by the 25% (330 datapoints)
of cases with the lowest probability (range: 0.008-0.980),
as the datapoints from the 26th to the 100th percentiles
have the probability of the NP NP realization at the ceiling
(range: 0.981-0.999). Even if confined to the subset of the
data showing a substantial variability in syntactic probabil-
ity, the effect is noteworthy. It supports the claims of UID
(Levy & Jaeger, 2007; Jaeger, 2010) that information carried
by the syntactic structure is accommodated in the acoustic
signal at the choice point, in such a way that the realization
of a less probable (more informative) choice comes with an
inflated acoustic duration of the speech unit (here, the

word), revealing the speaker’s commitment to the spoken
alternant, and not to the rejected one. The observed proba-
bilistic effect is also compatible with those probabilistic ap-
proaches that would argue for a broader scope of acoustic
reduction effects.

We also observed a strong effect of the (standardized
log) length of theme on the acoustic duration of the recipi-
ent [f=0.051;6 = 0.014; p = 0.001]. Recipients have a
longer realization if followed by longer themes: the dura-
tional contrast between constructions with the longest
and the shortest themes is estimated at 58 ms. Both the
length of theme and construction probability have the
highest possible cumulative probability of 1 and thus are
strongly supported as important predictors of the acoustic
duration in this data set. Construction probability and the
length of theme are correlated: in this data set, Pearson’s
r=0.4. As we demonstrate in the Appendix, given the rel-
atively weak magnitude of both effects on acoustic dura-
tion and our choice of multimodel inference as the
analytical technique, this fact did not pose a problem for
the accuracy of model estimates or the statistical infer-
ences in this and other studies.

Study 2: Word in the initial position in the first object (theme)
in the NP PP dative

In order to assess the effects of probability and its com-
ponents on the first object (theme) in the NP PP construc-
tion and to avoid the excessive variability in the length of
the theme, we selected a subset of monosyllabic function
words with at least 10 occurrences in the syntactic position
under consideration. The subset includes six pronouns and
determiners (a, her, it, that, the, them), yielding the total of
235 datapoints. Acoustic durations of target words range
from 40 to 340 ms (mean = 109; SD = 53). Three principal
components (PC1, PC2 and PC3) account for 94% of vari-
ance in the frequency-based independent measures and
phonological word length, and these were entered into
the model along with speech rate as fixed predictors. A
set of eight critical predictors form the model space for
the multimodel inference, see Table 4: no other variable
passed the pre-screening requirements.
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Construction probability exerts a statistically significant
influence on the acoustic duration of the initial word of the
theme object [f = —0.431;6 = 0.186; p = 0.027]. Again,
themes that are more likely to occur in the theme + recipi-
ent (NP PP) order are pronounced shorter: the durational
contrast between the most and the least probable con-
structions is estimated at 61 ms. Similarly to Study 1, how-
ever, most of the effect is driven by the constructions in the
lower half of the probability range (range: 0.008-0.9510),
as the construction probability in the upper half is virtually
at the ceiling (probability range: 0.9512-0.9999). Con-
struction probability has a moderate weight of support
given the data and the candidate models: its cumulative
probability is 0.64. This implies that one or more well-
performing models in the model set does not include con-
struction probability as a predictor. In fact the best-
performing model does not include any of the critical
predictors and is composed of the intercept, PC1 and
SpeechRate. Yet construction probability shows the great-
est weight of support given the data and the candidate
models, as compared to other critical predictors (ranging
from 0.10 to 0.46). It is also the only one to pass the infer-
ential significance threshold of 0.05.

In sum, Studies 1 and 2 both reveal the negative corre-
lation of construction probability with the acoustic dura-
tion of the word at the point where the choice between
dative alternants is made. The more difficult (longer) pro-
duction of the less probable alternant is also in line with
the increased rate of disfluencies and gestures that produc-
tion of datives revealed in Wagner Cook et al. (2009) and
(for disfluencies) in Tily et al. (2009). Likewise, our findings
are compatible with Gahl and Garnsey’s (2004) report that
direct objects of the verbs were pronounced shorter if they
were constituents in the syntactic construction of the type
biased by the verb. Our results confirm the predictions of
UID that identifies the choice point as the locus for the
speaker’s (rational) behavior aimed at maximizing the effi-
ciency of speech communication. Study 1 additionally sug-
gests the simultaneous operation of (i) whatever
mechanisms produce the effect of construction probability
and (ii) the mechanisms responsible for the concurrent ef-
fect of the complexity of the upcoming theme.

After the choice point

As shown in the ‘Theoretical predictions’ discussion,
UID makes distinctive predictions for role of construction
probability (or information density) in the post-choice syn-
tactic positions. Studies 3-5 probe words in syntactic posi-
tions past the choice point for dative alternation, and test
whether or not their production is affected by the con-
struction probability.

Study 3: Preposition to in the NP PP construction

This study follows up on Tily et al.’s (2009) examination
of the acoustic duration of the preposition in the NP PP
construction as a function of construction probability. We
expand on their study by additionally examining the ef-
fects of components of construction probability. After trim-

ming, our data set consisted of 422 data points: this
number differs from the 446 cases in Tily et al.’s data set,
as we applied an additional trimming criterion of removing
constructions with overly long recipients (>6 words) and
themes (>15 words). Acoustic durations of instances of to
range from 20 to 400 ms (mean = 108; SD = 73). Since this
study focuses on a single word, most predictors that tap
into lexical variability are immaterial here. We entered
into our models speech rate and two principal components
that account for over 90% of variance in relevant fre-
quency-based measures as fixed predictors, i.e., those
present in each model. A set of nine critical predictors
form the model space for multimodel inference, see
Table 5: no other variable, including those coding the
phonological environment, passed the pre-screening
requirements.

Neither construction probability nor its components
reach statistical significance as predictors of the acoustic
duration of the preposition. The observed null effect of
construction probability [p=0.167] runs counter to the
earlier finding of Tily et al. (2009) obtained from the same
data set that is used here. In what follows, we review the
discrepancies in the data trimming and analysis to identify
our failure to replicate an earlier result.

Tily et al. (2009) used (a) more liberal criteria for data
trimming than the present work (see above), (b) a slightly
different set of other predictors (e.g., no principal compo-
nents for frequency-based measures) than in the present
study; (c) linear regression models rather than the linear
mixed-effects model with a random effects structure, and
(d) raw acoustic durations as the dependent variables,
and not the log-transformed durations as in the present
work. Discrepancies (a), (b) and (c) proved to be inconse-
quential. When fitted to raw acoustic duration of preposi-
tion in our data set of 422 data points, both linear
regression models and linear mixed-effects regression
models showed significant effects of construction probabil-
ity that were just above the 0.05 threshold of significance.
The marginally significant effects held true whether the Tily
et al.’s set of predictors is used or the one that we identified
as relevant [e.g., Tily et al.’s set of predictors, 422 data
points, linear model: = —0.026; SE = 0.014; p = 0.059;
mixed-effects model: 3= —0.026; SE = 0.014; p = 0.059,
where p-values were obtained using the pvals.fnc func-
tion with 10,000 simulations]. Our reanalysis with the same
array of predictors as in Tily et al. estimated the contrast in
the acoustic duration of to between the most and the least
probable NP PP construction at 25 ms, which is virtually
identical to the 20 ms-constrast in Tily et al. (2009).

The important discrepancy between the present work
and Tily et al. ensues from our use of log-transformed
acoustic durations and not the raw ones as in Tily et al.
The logarithmic transformation of duration renders the ef-
fect of construction probability not significant (p > 0.2). We
also fitted a model that had both acoustic duration and
probability log-transformed: the effect of log probability
is not reliable either (p > 0.3). We remind the reader that
the logarithmic transformation is indicated by the Box-
Cox test as a power transformation that would attenuate
skewness in the distribution of acoustic durations and
would render the distribution closer to normality, as
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required for the improved accuracy of parameters in
regression models (see ‘Data trimming’ above). The quan-
tile-quantile plot (not shown) demonstrates that the dis-
tribution of log-transformed durations is indeed closer to
normal than the distribution of raw durations.

We conclude that the effect of construction probability
on the acoustic duration of the preposition reported in Tily
et al. (2009) may have been due to the disproportionate
influence of extreme values in the skewed distribution of
raw durations, and is not replicated because the influence
of those values was attenuated in our study with the help
of the logarithmic transformation.

Study 4: Second object (theme) in the NP NP dative

This study considered the second (theme) object in the
NP NP constructions (the book in I gave Tom the book.).
Since themes vary widely in their length as the second ob-
ject in the NP NP dative, we opted for considering only the
initial word of the theme. The set was restricted to 12
monosyllabic function words (pronouns and determiners)
with a minumum of 10 occurrences: a, an, any, more, one,
some, that, the, this, three, two, and your yielding a total of
889 observations. Acoustic durations range from 20 to
640 ms (mean = 119; SD = 111). Two principal components
(PC1 and PC2) account for 91% of variance in the fre-
quency-based independent measures and phonological
word length, and were entered into the model along with
speech rate, and verb position in the utterance. A set of se-
ven critical predictors formed the model space for the mul-
timodel inference, see Table 6: no other variable passed the
pre-screening requirements.

Construction probability showed an effect in the ex-
pected negative direction, but failed to reach statistical sig-
nificance in the multimodel inference procedure
[ = —0.2048; ¢ = 0.1752; p = 0.201]. This runs counter to
the findings in Tily et al. (2009): for a possible source of dis-
crepancies with the present work see our discussion in
Study 3. No other critical predictor reached statistical sig-
nificance either.

Study 5: Second object (recipient) in the NP PP dative

In this study we considered the first words of the reci-
pient object in the NP PP construction (Tom in I gave the
book to Tom.). We selected a subset of 10 pronouns and
determiners that had at least 10 occurrences in the data-
set: a, her, him, it, me, my, the, them, us, you: 286 observa-
tions in total. Acoustic durations range from 20 to 420
ms (mean=137; SD=87). One principal component
(PC1) accounts for 92% of variance in the frequency-based
independent measures and phonological word length, and
was entered into the model along with speech rate, and a
set of seven critical predictors, see Table 7: no other vari-
able passed the pre-screening requirements.

Construction probability did not register a significant
effect on the acoustic duration of the recipient’s first word
[p=0.187]. The multimodel analysis reveals, however, a
reliable effect of the length of theme [B= 0.085;
0 = 0.040; p = 0.042]. This variable also surfaced as the
most likely candidate, out of critical variables, for being in-

cluded in the best-approximating model (its relative
importance is 0.72). If the recipient is preceded by a longer
theme, its acoustic duration is longer: the estimated dura-
tional contrast between the longest (15 words) and the
shortest (1 word) theme is 41 ms. Importantly, since
themes precede recipients in NP PP constructions, the ef-
fect in question is the lagging effect of the already-pro-
duced linguistic material on the current production.
Lagging effects are well established in comprehension
but have been only recently described in production stud-
ies of syntactic alternation (see the effect of lemma fre-
quency of the matrix verb on complementizer that-
mentioning in Roland et al., 2006; Jaeger, 2010). One com-
mon explanation for such effects is the notion of “spill-
over”. Speakers are assumed to have a limited capacity of
cognitive resources recruited in speech production. If this
capacity overflows for speech unit N, its processing diffi-
culty may spill over to the following unit N+ 1 and make
its production more effortful. Thus, the relatively long
theme of the NP PP dative may lead to processing overload
during the production of the theme and a deficient plan-
ning of the upcoming recipient. The deficit in planning
and/or the processing overload accumulated during the
theme production may spill over to the production of the
recipient and make it more effortful (longer).

To summarize Studies 3-5, we have not confirmed the
effects of construction probability on the acoustic duration
of any word past the point at which the speaker commits
to articulating a dative alternant (i.e., the first object of
the dative verb). Taken together with Studies 1 and 2,
our data have shown that the probability of dative con-
struction choice is reliably related to word durations in
incremental spontaneous speech. Moreover, the effects
are narrowly localized at the postverbal ‘choice point’ in
the way theoretically predicted by UID, in contrast to other
theories which are currently compatible with a broad con-
structional scope for syntactic probabilistic effects on pho-
netic variation.

The role of probability: further predictions

While our results shed light on the time-course of prob-
abilistic effects, questions remain about the explanatory
power of the probability of syntactic choice between
semantically equivalent alternants. The probability of the
syntactic outcome is a complex function of multiple fac-
tors, mostly the ones indexing relative accessibility (see be-
low) of syntactic constituents whose order is under choice.
Logistic regression models of the probabilities of syntactic
alternations reach high accuracy in estimating those prob-
abilities as a mathematical function of the weighted sum of
accessibility factors (Bresnan et al.,, 2007; Gries, 2003;
Hinrichs & Szmrecsanyi, 2007; Jaeger, 2010; Roland et al.,
2008): e.g., 94% in Bresnan et al.’s (2007) study on English
datives; 84% in Gries (2003) study of English particle
placement; and 86% (out of the maximum of 90%) in
Roland et al.’s (2006) study of the English direct object/
sentential complementizer ambiguity. (The lower bounds
of accuracy for these three studies were 78%, 52% and
73% respectively.)
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Could it be these components of the probability mod-
els—the accessibility factors—that actually carry the
behavioral effects seen in the data? If so, construction
probability would be a mere mediator variable masking
the direct causal links between accessibility of syntactic
constituents and the speech production behavior.

Alternatively, perhaps the accessibility of representa-
tions of alternating syntactic constituents can only affect
production behavior to the extent that accessibility affects
the probability (information content) of those syntactic
constituents (cf. Levy (2008) for a similar argument in
comprehension behavior). No direct causal link between
accessibility factors and the ease of production is expected
under this account.

Finally, might both construction probability and one or
more accessibility factors make independent contributions
to the observed variability in behavior? This finding would
be in line with the accruing evidence that speech produc-
tion can be simultaneously affected both by the probability
of the produced speech unit and the effects of accessibility
of upcoming units: for demonstrations at the morpheme
and word level see Kuperman, Pluymaekers, Ernestus,
and Baayen (2007) and Jaeger and Post (2010), at the syn-
tactic level see Gahl and Garnsey (2004) as well as the
“continuous articulatory planning” proposal of Pluymae-
kers et al. (2005).

In order to address these questions we must first con-
sider the theoretical predictions of accessibility-based the-
ories for the locus of word duration effects in the
production of alternative dative constructions. In this sec-
tion we draw out these predictions and present two addi-
tional word duration studies that we performed on data
points before the choice points in the dative constructions
to further test the predictions. In the General discussion
the implications of all seven studies for the three questions
above are then considered together.

Accessibility: Experimental and corpus-based work has
established a significant influence of the conceptual and
informational accessibility of arguments on the choice be-
tween alternating constructions. For instance, the choice
between an overt and a covert complementizer (this is
the friend (that) I told you about) has been argued to depend
on the accessibility (availability) of the subject (pronoun I)
under planning: a less available constituent is more likely
to elicit the overt complementizer that (cf. Jaeger, 2010;
Roland et al., 2006; Torres Cacoullos & Walker, 2009). Sim-
ilarly, the choice of active or passive constructions (the girl
hit the ball, the ball was hit by the girl) is a function of such
indices of accessibility as animacy of syntactic constituents
(Bock et al., 1992) and the prior mention of either one of
constituents or the active/passive construction in recent
discourse (Bock, 1982, 1986; Bock & Griffin, 2000; Bock &
Irwin, 1980; Bock & Loebell, 1990; Prat-Sala & Branigan,
2000). In dative constructions too, the probabilities of syn-
tactic alternants are to a large extent determined by acces-
sibility of syntactic constituents in these alternants
(Bresnan et al., 2007; Gries, 2003; Roland, Dick, & Elman,
2007). As previously mentioned, a more accessible (short-
er, animate, pronominal, discourse-given, etc.) constituent
is more likely to occur before a less accessible one (Bresnan
et al., 2007).

To account for the wealth of accessibility effects, Ferre-
ira and Dell, 2000, p. 289 propose the Principle of Immedi-
ate Mention: driven by the pressure of efficiently
producing fluent speech, speakers tend to choose syntactic
structures that “permit quickly selected lemmas to be
mentioned as soon as possible” and buy the time to re-
trieve the less available material. Depending on the cir-
cumstances of speech production, the spoken structure
may then be the one that is generally less accessible and
dispreferred: in this case an inflated duration of the pre-
ceding spoken unit is expected. This principle accounts
for both types of phenomena mentioned above: the pre-
ferred early placement of accessible constituents in pas-
sive, dative and other alternations, as well as the lower
likelihood of overt complementizers.

Importantly, in the situation of syntactic choice, avail-
ability effects are expected to take place when syntactic
constituents (such as theme and recipient objects in the
dative construction) are assessed for their relative accessi-
bility and their alignment is planned for subsequent pro-
duction. In other words, the Principle of Immediate
Mention predicts the effects of constituent accessibility
to precede the production of either syntactic constituent
and to occur prior to the choice point, for example at
the dative verb (give in give Tom the book). See Table 8C
for the summary of predictions. (Table 8A and B includes
predictions of the approaches outlined above in Table 1A
and B.) This early temporal locus makes the availability-
based account of speech production readily distinguish-
able from information-theoretical approaches which place
their respective loci further downstream. As discussed in
‘Theoretical predictions’ above, the UID predicts the prob-
ability of the choice to affect production only at the
choice point, while the broad-scope probabilistic predic-
tions are for potential effects of probability on all words
and phrases that instantiate the constructions of interest,
which would include their head verbs (see Gahl & Garn-
sey, 2004, p. 754; Hay & Bresnan, 2006).

The extensive literature on accessibility effects on the
phonological, morphological and lexical levels suggests
that availability of upcoming syntactic arguments will
influence production even in the absence of syntactic
choice, that is past the choice point. We may expect then
accessibility of the distant object (the theme in the NP
NP dative or the recipient in the NP PP dative) to affect pro-
duction of the proximate object (the recipient and the
theme, respectively). Specifically, less accessible upcoming
objects are predicted to correlate with an increased diffi-
culty (in our study, an inflated acoustic duration) of current
production (see however Wagner Cook et al., 2009).

Competition: The competition theory of speech produc-
tion builds on availability; it proposes the mechanism of
competition between alternants as a determinant of the
production effort at the choice point (Haskell & MacDon-
ald, 2003; Race & MacDonald, 2003; Solomon & Pearlmut-
ter, 2004), see Table 8D for the summary of predictions.
The claim is that the alternant chosen for production com-
petes with the rejected alternant, and their competition is
the stronger, the more active the rejected alternant is. Acti-
vation of alternants is argued to be a function of their
accessibility. Thus, the maximum of competition is
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Table 8

The timeline of effects of constituent availability and the probability of syntactic choice on the ease of incremental production at different syntactic positions in
the dative construction (verb, proximate object, distant object), as predicted by the UID, theories that make broad-scope predictions of construction-probability
effects, the availability-based theory, and the competition theory of speech production.

Verb Proximate object

(Preposition +) distant object

Before the choice point
A.UID None
B. Broad-scope
C. Availability Accessibility of the proximate
object, or accessibility of both
objects

D. Competition None

At the choice point
Probability of the spoken alternant None
Probability of the spoken alternant Probability of the spoken alternant
Accessibility of distant object (difficult ~ None
production if less accessible)

Accessibility of distant object (difficult
production if supports the alternative)

After the choice point

Probability of the spoken alternant

Accessibility of proximate object (difficult
production if supports the alternative)

expected if a generally dispreferred alternant is realized in
speech while its highly active generally preferred counter-
part is rejected. Cast in information-theoretical terms, the
competition account predicts more effortful production if
a less probable (more informative) alternant is chosen,
and a more probable one rejected. The competition ac-
count also places the temporal locus of the effect at the
choice point. Thus in the narrow sense of the time-course
of probabilistic effects, the competition account is indistin-
guishable from UID with respect to its predictions before
and at the choice point (for a similar conclusion see Wag-
ner Cook et al., 2009), and we hypothesize that the conclu-
sions one could draw regarding the validity of UID given
the present data would equally hold for the competition
account.

The competition account does differ from the UID in pre-
dicting effects after the choice point because the rejected
alternant may interfere with the spoken one, and the inter-
ference is the stronger, the more active the rejected alter-
nant is. The competition might continue even after the
alternant is chosen and is well under production, if the re-
jected alternant maintains partial activation. A longer
theme is known to favor the recipient-theme (NP NP) order
of the constituents (Bresnan et al., 2007), which on compe-
tition account adds to its activation. Thus, an increased
length of theme is expected to translate into a more effort-
ful production of the recipient in NP PP datives, as was in-
deed the case in Study 5, although spillover remains a
possible alternative explanation. Distinguishing these ac-
counts will require further research.

Method

For these additional studies of verb duration before the
choice point the materials, dependent variables, critical

Table 9

predictors, control variables, data trimming, and statistical
modeling were the same as in the preceding studies. The
Box-Cox optimal values of / for transforming the raw
durational data were respectively 0.0, 0.2—again close to
zero. We therefore log-transformed the acoustic durations
of the verbs as we did the other word durations in the pre-
vious studies. The sizes of the data sets resulting from our
trimming procedure are reported in Table 9.

Results and discussion

As specified in Table 8, only the availability-based ac-
count of speech production predicts effects of either acces-
sibility or probability (as an accessibility index) before the
choice point and none after the choice point. Neither the
competition-based account nor the UID predicts the early
simultaneous access to objects, as neither implements a
production mechanism that would necessitate the speak-
er’s consulting the syntactic objects before either of the ob-
jects is articulated. Studies 6 and 7 test these hypotheses
against acoustic characteristics of the ditransitive verb,
which lies in the syntactic position that precedes the
choice point between alternative orders of dative
arguments.

Study 6: Duration of the verb followed by the NP NP dative

The data set of verbs followed by the NP NP alternant
(give Tom the book) includes 1490 data points. Verb dura-
tion ranges from 80 to 620 ms (mean = 222, sd = 79). Three
principal components account for 92% of the variance in
the frequency-based independent measures and phonolog-
ical word length, and were entered into the model along
with speech rate as fixed predictors (the ones that were
present in every model). There is also a set of 8 critical

Summary of the effects of construction probability and its components on acoustic durations of ditransitive verbs. Sample sizes N are reported after the

trimming procedures were applied. Model-averaged estimates of regression coefficients (8) and standard errors (&), and t-test based p-values are reported for
those predictors that reach significance at the 0.05 level. ES stands for effect size, a model-estimated contrast in acoustic durations of words showing the

maximum and the minumum values of the predictor.

NP NP (double)

NP PP (prepositional)

Before the choice point

Study 6, verb: N = 1490

recipient = NotGiven (f = 0.075; = 0.032; p=.026; ES=21 ms)
Length.theme (f = 0.016; 6 = 0.007; p =.029; ES = 18 ms)

Before the choice point
Study 7, verb: N =367
Probability (f = —0.184; & = 0.061; p =.004; ES = —64 ms)
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Table 10

Outcome of the multimodel inference procedure for the duration of verb followed by the NP NP dative, N = 1490. Model-averaged estimates of regression

coefficients () and standard errors (&) are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and HiCl), the predictor’s
p-value, and its cumulative probability. Marked in bold are predictors with p-values below 0.05.

Predictor B o LoCl HicCl p Cumul.Prob
Intercept 5.686 0.062 5.564 5.808 <.001 NA
SpeechRate -0.014 0.002 -0.017 —-0.010 <.001 NA
PC1 0.043 0.005 0.033 0.054 <.001 NA
PC2 —0.043 0.006 —0.055 —-0.030 <.001 NA
PC3 -0.134 0.018 -0.170 —-0.098 <.001 NA
given.rec = ngiven 0.075 0.032 0.013 0.137 .026 1
given.theme = ngiven 0.002 0.021 —-0.040 0.044 1 0.18
pron.rec = pron 0.046 0.041 —0.033 0.126 213 0.39
pron.theme = pron 0.023 0.024 —0.025 0.071 219 0.30
length.rec 0.005 0.011 -0.016 0.027 .360 0.26
length.theme 0.016 0.007 0.003 0.029 .029 0.98
Prob —0.042 0.060 -0.159 0.076 31 0.26

predictors which forms the model space over which multi-
model inference is estimated, see Table 10. No other vari-
able passed the pre-screening requirements.

Construction probability does not reach significance as a
predictor of the verb’s acoustic duration [f= —0.042,
6 =0.06, p = 0.26]. Yet several indices of accessibility of
constituents of dative show effects in the expected direc-
tion: lower accessibility correlated with longer production
durations. First, the dative verb had alonger acousticrealiza-
tion by approximately 21 ms, if the recipient of the verb is
not-given and thus less accessible [8=0.075,"
o = 0.032, p = 0.026]. Second, the verb is pronounced long-
er if it is followed by a longer theme [B= 0.016,
0 = 0.007, p = 0.029]: the contrast in verb duration be-
tween the longest and shorter theme is estimated at
18 ms. Again, heavier constitutents are typically construed
as less accessible, and thus are predicted to incur higher
costs of planning. Cumulative probabilities provided by
the multimodel inference procedure indicate that
both the givenness of recipient and the length of the theme
had a very strong support from the model space (1 and 0.98,
respectively) and had higher likelihoods to be found in
the best-approximating model than other candidate
variables.

Table 11

Study 7: Duration of the verb followed by the NP PP dative

The dataset includes 361 verbs followed by the NP PP
dative (give the book to Tom). Verb duration ranges from
90 to 600 ms (mean = 232; SD = 81). Three principal com-
ponents account for 93% of the variance in the frequency-
based independent measures and phonological word
length, and they were entered into the model along with
speech rate as fixed predictors (those present in each mod-
el). A set of eight critical predictors forms the model space
for multimodel inference, see Table 11: no other variable
passed the pre-screening requirements.

Multimodel inference reveals a sizable effect of con-
struction probability as a critical predictor [f = —0.184,
0 = 0.061, p = 0.004]. If the NP PP ordering of constituents
is more probable, the verbs are acoustically shorter, sug-
gesting that the planning of dative constructions at the
verb is facilitated by the relatively probable ordering of
upcoming constituents. The contrast in durations of the
verbs followed by the most and the least probable NP PP
constructions is estimated at 64 ms, though given the
prevalence of high-probability constructions in the data
set (mean probability = 0.82), the effect is in fact more sub-
tle: for example, the estimated contrast between the 25%

Outcome of the multimodel inference procedure for the duration of verb followed by the NP PP dative, N = 361. Model-averaged estimates of regression

coefficients () and standard errors (&) are reported, as well as the lower and upper boundaries of the 95% confidence intervals (LoCI and HiCl), the predictor’s
p-value, and its cumulative probability. Marked in bold are predictors with p-values below 0.05.

Predictor B G LoCI HiCl p Cumul.Prob
Intercept 5.959 0.104 5.755 6.163 <.001 NA
SpeechRate -0.017 0.004 -0.025 —0.009 <.001 NA
VerbPos —0.001 0.001 —-0.003 0.001 24 NA
PC1 -0.047 0.008 -0.063 -0.031 <.001 NA
PC2 —-0.015 0.009 -0.033 0.003 39 NA
PC3 0.093 0.022 0.050 0.137 <.001 NA
given.rec = ngiven —0.020 0.034 —0.088 0.047 33 0.42
given.theme = ngiven 0.017 0.038 —0.057 0.091 .36 0.33
def.theme = indef —0.018 0.038 —0.092 0.057 35 0.34
pron.rec = pron —0.032 0.040 -0.110 0.046 .29 0.55
pron.theme = pron —0.004 0.019 —0.041 0.034 39 0.20
length.rec 0.003 0.010 —-0.016 0.023 .38 0.26
length.theme —0.001 0.007 —-0.015 0.014 39 0.16
Prob -0.184 0.061 -0.304 —-0.064 .004 1
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and 75% percentiles is only 15 ms. Cumulative probability
of the construction probability predictor (0.92) clearly
identifies it as an excellent candidate for the best-approx-
imating model given the data and the candidate models.
No other critical predictor reached significance.

Albeit subtle, the effect of construction probability on
the verb shows that availability of higher-level syntactic
information can affect words even before the choice point.
This falls in line with Gahl and Garnsey’s (2004) report of
early construction probability effects on preceding constit-
uents in read speech, as well as the effects of word-level
distributional information on preceding words in Jaeger
and Post (2010). We interpret this early probabilistic effect
as an availability effect consistent with the Principle of
Immediate Mention (Ferreira & Dell, 2000).

General discussion

The present work examines how syntactic construction
probabilities influence word durations during the course
of spontaneous sentence production, asking two ques-
tions: (i) whether the effects are localized in incremental
sentence production in a way consistent with theoretical
predictions and (ii) whether the higher-level probabilities
themselves make an independent contribution rather
than merely serve as a summary measure of the
individual factors that influence construction outcome.
Our seven studies provide affirmative answers to these
questions.

Predicted loci of construction probability effects

We observe reliable effects of the probability of syntac-
tic choice on acoustic durations in three out of seven syn-
tactic positions that we investigated; see Tables 2 and 9.
These are the verb preceding the realization of the NP PP
dative (Study 7; position before the choice point), the ini-
tial word of the first (recipient) object in the NP NP dative
(Study 1, the choice point position), and the initial word of
the first (theme) object in the NP PP dative (Study 2, the
choice point position). Throughout the studies, a lower
probability of the selected alternant correlated with its
longer realization in speech. No position past the choice
point (Studies 3-5) revealed a statistically significant (at
the 0.05 level) effect of construction probability, nor did
the verb preceding the NP NP dative alternant (Study 6).

Consider first the data obtained at the choice points
(Studies 1 and 2) and the syntactic positions downstream
in incremental dative production (Studies 3-5). Predicted
effects of construction probability occur at the choice
points in both alternants, and not in subsequent produc-
tion after the choice points. These findings lend strong sup-
port to UID, with its emphasis on the choice point as the
temporal locus of probabilistic effects in the situation of
(syntactic or other) choice. The post-choice null effects in
Studies 3-5 are not consistent with theories that consider
words and phrases in the entire spoken unit as the poten-
tial scope of the influence of that unit’s probability. These
null effects might be due to relatively small sizes of our
data sets (422, 889 and 286 data points in Studies 3-5,

respectively) and insufficient statistical power. We note
however that probabilistic effects are strong enough to
be estimated as statistically reliable by models with a sim-
ilar number of predictors fitted to even smaller datasets
(235 and 367 data points in Studies 2 and 7, respectively).
A more plausible interpretation is that construction proba-
bility has no role to play in incremental speech production
after the speaker has chosen to align the semantic role of
recipient or theme with the first object of the ditransitive
verb and thus the other role with the second object. In
other words, by the time the second object or (where
applicable) the preposition is realized, the probability of
the construction being ditransitive or prepositional is ex-
actly 1 or exactly 0. This lack of constructional variability
does not give grounds to expect dative-construction prob-
ability to drive differences in production behavior after the
choice point, true to fact. We note that our argument runs
counter to earlier information-theoretical investigations of
the dative alternation (Tily et al., 2009; see also Wagner
Cook et al., 2009), which reported evidence supporting a
broader scope of probabilistic effects: see Study 3 for a de-
tailed discussion. We conclude that, as far as the produc-
tion of alternating multi-word constructions is
concerned, the position of UID appears justified: at the
choice points (but not after) speakers are affected by the
relative probability (amount of information or information
density) of continuations that are compatible with the in-
tended meaning (Jaeger, 2010).

The reliable effect of construction probability on the
verb followed by the NP PP dative in Study 7 suggests that
it is not only the production, but also the planning of the
upcoming syntactic choice, that can be made more effort-
ful if the choice is made in favor of a less probable (more
informative) alternant. While unexpected under the infor-
mation-smoothing account that we consider here (UID),
the effect is compatible with the availability-based account
of speech production and particularly the Principle of
Immediate Mention. (It is also compatible with the
broad-scope predictions, but these are incompatible with
our previous findings in Studies 3-5.) When planning a
syntactic choice, the principle predicts that a more accessi-
ble (more probable) alternant will be mentioned first. If a
less accessible alternant is planned for production, the
planning time will increase leading to an inflated produc-
tion time of the syntactic constituent preceding the reali-
zation of the alternant, namely, the dative verb, true to
fact. Our finding that planning can be affected by the prob-
ability of upcoming choice corroborates an earlier report
based on the read-speech data set. In Gahl and Garnsey
(2004), verbs followed by a higher-probability subcategori-
zation (either a direct object or a sentential complement)
showed a higher rate of the word-final t/d deletion as well
as a shorter acoustic duration. At the lexical level, the
availability of the upcoming word (defined as its frequency
and probability in the context of the preceding bigram) has
also been shown to influence the acoustic duration of word
N (Jaeger & Post, 2010). At the morphological level, the en-
tropy of the morphological family of the upcoming mor-
pheme influenced the acoustic duration of the interfix in
Dutch compounds (e.g., -s- in herdershond ‘“shepherd’s
dog”, Kuperman et al., 2007).
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While there is support in the literature for the availabil-
ity-related interpretation of probabilistic effects, it is only
partially confirmed here: unlike the prepositional con-
structions, the verb followed by the ditransitive construc-
tion (Study 6) was not affected by the construction
probability. One explanation for the null effect in Study 1
and the reliable effect in Study 2 is such that the variability
in construction probability is extremely small in the NP NP
datives, with only 25% of the data occupying the probabil-
ity range from 0.008 to 0.972. The range is more uniformly
populated in prepositional datives, with 50% of the sen-
tences having a construction probability below 0.937 (for
detailed distributional information see Critical predictors).
It is possible then that the at-ceiling probabilities in the
ditransitive datives, unlike the prepositional datives, did
not register an effect on acoustic durations of verbs that
would be sufficiently strong to reach the level of statistical
significance. The conditions under which probability-dri-
ven accessibility of upcoming constituents affects planning
requires further research. Importantly, however, there is a
theoretical framework accommodating such effects, the
“involvement-in-planning” account advocated in Pluymae-
kers et al. (2005). Pluymaekers et al. claim first, that artic-
ulatory planning is not based on units (segments, syllables,
or words) but rather is continuous, spanning, in our case,
the boundaries of syntactic arguments (verbs and object
noun phrases). Second, speech production of a word is
simultaneously influenced by pressures of the current
articulation and also affected by the demands of planning
the upcoming production. Our data support this argument
by showing several cases of simultaneous effects of
planned and produced syntactic constituents. These in-
clude the simultaneous effects of the length of upcoming
theme and the probability of concurrent syntactic choice
observed at the initial word of the recipient in the ditran-
sitive construction (Study 1), as well as effects of upcoming
constituents (length of theme, givenness of recipient) and
the concurrent effects of word and bigram frequency and
speech rate observed in the production of the verb fol-
lowed by the ditransitive construction (Study 6). Thus,
the availability-based account of Pluymaekers et al.
(2005), which originally tackled word-based distributional
properties such as word frequency and predictability, gains
support from our study of information transmission in
multi-word syntactic phrases.

To sum up, the present body of evidence reveals that a
full account of speech production as it unfolds in time re-
quires simultaneous, complementary operation of the
mechanisms underlying theories that incorporate con-
struction probability—either information-theoretic or
implemented as activation (represented respectively by
the UID and competition theories)—and construction avail-
ability (as represented by the Principle of Immediate
Mention)?.

2 We assume here the well-known interpretation of connectionist model
activation as the probability of a spike in action potential in neural
networks. An accessibility-based connectionist implementation of con-
struction competition therefore converts the accessibility factors that
influence construction choice into a nonlinear function of the probabilities
of these factors.

The role of construction probability

As Tables 2 and 9 show, two variables are pervasive in
predicting the speaker’s behavior. One is the probability
of the syntactic alternant, which correlates negatively with
the word durations in Studies 2, 3, and 7. The other predic-
tor is the length of the theme, which correlates positively
with word durations in Studies 1, 5, and 6. We also ob-
served in Study 6 a shorter acoustic duration of the verb
followed by the recipients of the ditransitive dative that
were given (mentioned in prior discourse) as compared
to non-given ones.

The distribution of the effects over the time-course of
production of both ditransitive and prepositional datives
does not support the view that accessibility effects work
only through probability. Specifically, this view is discon-
firmed by the fact that (a) accessibility indices of both
the proximate recipient (givenness) and the distant theme
(length) affect the production of the ditransitive verb
(Study 6) in the absence of the effect of construction prob-
ability and (b) the effects of construction probability and
the length of the upcoming theme are detected simulta-
neously as predictors of the recipient’s acoustic duration
in Study 3.

Nor does the evidence support the view that probabil-
ity is a summary measure of effects carried by the under-
lying accessibility factors used to compute it. The effects
of construction probability on the acoustic duration of
the verb in Study 7 and that of the proximate theme
object in Study 2 appear in the absence of reliable effects
stemming from components of probability. The observed
patterns are most compatible with the view that accessi-
bility of syntactic constituents affects production behavior
both directly and indirectly, that is, by co-determining
the probability of one or the other alignment of the con-
stituents.

In conclusion, the present set of studies reports empir-
ical evidence confirming the linkage between high-level
probabilities of syntactic constructions and continuous
variation at the phonetic level of speech production. It also
points to a narrow temporal locus over which the probabi-
listic effects of construction choice operate. Over and above
the substantive implications of these findings for current
theories of speech production already discussed, we be-
lieve that our strategy of analyzing word-by-word effects
as spontaneous sentence production unfolds has value for
future research.
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Appendix
Multimodel inference

The multiple working hypotheses that we pursue in this
paper require statistical inference for the effects of numer-
ous, potentially collinear, independent variables (Cham-
berlin [1890] 1995). Typically, such inferences are made
on the basis of a single model identified as the best among
candidate models. The criteria for selecting the single best
model out of the model space are often defined as a max-
imum goodness-of-fit value: the amount of explained var-
iance, the values of the Akaike or Bayesian Information
Criterion, the residual sum of squares or others. Alterna-
tively, the single best model is identified as a constellation
of variables whose goodness-of-fit to the data would be
detrimentally affected if (i) any of the variables it contains
is removed or (ii) any variable is added to the set of vari-
ables that it contains, or a combination of (i) and (ii). Avail-
able best-model selection algorithms vary in whether they
exhaustively search through the entire model set (the
power set of 2" models that represent all possible combi-
nations of n predictors) or proceed along a certain path
through the model set where each step weeds out models
that underperform in terms of the selection criterion.
Whatever algorithm is chosen, its end-result is one model
(and one constellation of variables) picked out of the mod-
el set and selected as the basis for statistical inferences
regarding the variables represented in or left out of this
model.

As argued eloquently by, among others, Burnham and
Anderson (2004, p. 261), the standard practice of the single
best model selection is open to criticism on several counts
(for similar criticism in the psycholinguistic literature, see
Keuleers & Daelemans, 2007):

For a model selection context, we assume that there are
data and a set of models and that statistical inference is
to be model based. Classically, it is assumed that there
is a single correct (or even true) or, at least, best model,
and that model suffices as the sole model for making
inferences from the data. Although the identity (and
parameter values) of that model is unknown, it seems
to be assumed that it can be estimated—in fact, well
estimated. Therefore, classical inference often involves
a data-based search, over the model set, for (i.e., selec-
tion of) that single correct model (but with estimated
parameters). Then inference is based on the fitted
selected model as if it were the only model considered.
Model selection uncertainty is ignored. This is consid-
ered justified because, after all, the single best model
has been found. However, many selection methods used
(e.g., classical stepwise selection) are not even based on
an explicit criterion of what is a best model.

For reasons given in our Methods (Statistical Modeling)
section, in this work we depart from the practice of single
best model selection and employ instead the method of
multimodel inference, as developed by Burnham and
Anderson (2002, 2004). This method estimates the strength
of evidence for each model in the model set as the amount
of information lost when that model is used to approximate
full reality or truth, or equivalently, the distance between
the model and full reality (Burnham & Anderson, 2004):
the required metric is provided by an information-theoretic
measure, the Kullback-Leibler (KL) distance (Kullback &
Leibler, 1951). As shown in Akaike (1973, 1974), for the case
when model parameters have to be estimated rather than
are known, the expected value of the model’s KL distance
is inversely proportional to the model’s Akaike Information
Criterion (AIC). AIC values are routinely reported in the out-
puts of regression models and are defined as a function of
the maximized log-likelihood of the model given the data
(log L) and the number of the model’s estimable parameters
(K): AIC = —2log L + 2K. The difference A between the AIC
values of any two models A and B is the index of how much
information is lost if model A is used to approximate the
data rather than B. The difference from the model with
the minimum value of AIC,,;, is construed as the strength
of evidence in favor of the given model, given the data
and the n variables that generate the model set.

The motivation and mathematical foundations of this
multimodel inference approach, as well as the criticism
of the methods of single best model selection are exhaus-
tively presented in Burnham and Anderson (2002, 2004)
and Lukacs et al. (2010), see Anderson (2008) and Conroy
(2006) for a worked example of multimodel inference. In
what follows, we confine ourselves to outlining the steps
of our multimodel inference procedure closely following
Burnham and Anderson’s work, as well as Conroy (2006).

Multimodel inference procedure

The model set for n critical variables consists of 2" mod-
els fitted to a dependent variable. This power set of models
contains all possible combinations of critical variables,
including as extremes a model with none of these variables
and a model with all n variables as predictors. Each critical
variable is thus present in 50% of the models. A set of con-
trol variables can be entered into each model in the respec-
tive model set: these are dubbed “fixed” variables, and
appear, together with the intercept, in all models in the
power set. Variables of interest are identified on theoreti-
cal grounds and—in our case—with data sparsity in mind
(see section “Data trimming” above). Multimodel inference
applies to essentially any kind of regression model. Our
models were linear mixed-effects models with speaker
and word as random effects (except for Study 3 of preposi-
tion “to” where speaker was the only random effect), and a
set of control variables that were held constant across
models. (All data patterns were also confirmed in the anal-
yses where random by-speaker slopes or contrasts were
additionally defined for all fixed effects in the model.)

For each of the models in the model set, the value of the
Akaike Information Criterion (AIC) is computed. Burnham
and Anderson (2004) warn that AIC estimates may be
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biased in small samples where the ratio of the number of
observations to the largest number of the model’s param-
eters is below 40: this situation is pervasive in our studies.
For such cases, a value corrected for sample size (AICc) is
recommended. It is calculated as follows (Burnham &
Anderson, 2002, 2002):

2K(K +1)
TR (1)

where m is the number of observations.

AIC or AICc values for models are not independently
interpretable and are only meaningful for between-model
comparison. The difference 4 was computed between the
model with the minimum AICc value and each model in
the respective model set:

Aj :AICC,‘ —AICCm,'n7 (2)

AlCc=-2In L+2K +

where i is the model index ranging from 1 to R, the number
of models in the model set. The AIC values decrease as the
model’s goodness-of-fit increases, so the minimum AIC or
AICc value corresponds to the best-performing model. 4,
for the best-performing model is zero, and values of 4; are
positive for all other models. The value of A4; is then the
information-theoretic distance of model i from the best-
approximating model in the set: the smaller it is, the stron-
ger the evidence that model i is the best-approximating
model.

The likelihood of model i being the best-approximating
model given the data is estimated as: L; = e~%/2, The likeli-
hood of the best-performing model is 1. The ratio of the
likelihoods of two models is called the evidence ratio and
indicates the relative quality of the models given the data.
The larger the evidence ratio between models A and B, the
better model A approximates the data, relative to B. It is
useful to norm the relative likelihood of each model by
dividing it by the sum of likelihoods of the full model set:

o412
e

where R is the total number of models in the model set.
The resulting quantity w; is dubbed the Akaike weight
and is construed as the weight of evidence that model i is
the best performing model given the data and the candi-
date models. The normalization step in (3) ensures that
Akaike weights w add up to 1 over the model set, and
can be treated as probabilities. Model A that has the Akaike

w; =

3)

Table 12

weight w of 0.4 is two times more likely to be the best
model than model B with the Akaike weight of 0.2: this evi-
dence ratio does not depend on any models in the model set
besides A and B. The model with the minimum AICc;,;, va-
lue is associated with the greatest Akaike weight, yet the
absolute value of its weight w depends on how well other
models in the set performed, and it will be lower if, say, the
difference between the best and the second best model is
small. Akaike weights are thus indices of model selection
uncertainty: the greater the weight of the model, the more
certain it is to be the best model among the candidates.

To illustrate the procedure outlined so far, we present
calculations for the set of mixed-effects models formed
by three critical variables fitted to the log acoustic duration
of the verb followed by the NP NP construction: the vari-
ables are construction probability (Prob) and standardized
log lengths of recipient (length.recipient) and theme
(length.theme). All models additionally contain random ef-
fects for verb and speaker, as well as the constant term for
intercept. Table 12 below reports for each of the 8 (=23)
models its ordinal number in the original model set,
regression coefficents for the intercept (present in every
model), and regression coefficients for the three critical
variables (confined to the models in which they appear).
Additionally, Table 12 shows for each model the following:
k, the number of estimable parameters in the respective
model, AIC, AICc, the difference between the model’s AICc
and the minimum AICc,,;, in the model set (4), as well as
the model’s Akaike weight w. Models are sorted in the
decreasing order of their Akaike weights. The best-per-
forming model has length of recipient and length of theme
as critical predictors, the lowest AlCc (-15.86), and the
highest Akaike weight (w =0.58) in the set. Values in the
column 4 demonstrate how distant candidate models are
from the best-performing model or, equivalently, how
much information is lost if the candidate model is used
to approximate the data instead of the best-performing
model. The rule of the thumb is that models with 4 <2
show a substantial strength of evidence (Burnham &
Anderson, 2004), and it is customary not to consider candi-
date models with 4 >4, as there is little evidence in their
favor (Barton, 2011). Akaike weights can be used to quan-
tify the evidence ratio: the best model in Table 12 (line 1,
original ordinal number 7) is 1.8 times more likely to be
the best-performing model than the second best model
(line 2, original ordinal number 8): 0.58/0.33 = 1.8.

Summary of the model set generated by the multimodel inference procedure. Each model reports the estimated regression coefficients for construction
probability and standardized log lengths of theme and recipient, as well as the number of estimable coefficients in the model (k), values of AIC and the corrected
AlCc, the difference between the model’s AICc and the minimum AICc in the model set (A), as well as the model’s Akaike weight w. Models are sorted in the

decreasing order of Akaike weights.

Model # Original model # Intercept Prob Length.rec Length.theme k AIC AlCc A w

1 7 5.572 0.029 0.016 6 -15.92 -15.86 0.00 0.58
2 8 5.622 —-.055 0.026 0.018 7 -14.82 -14.75 1.11 0.33
3 3 5.568 0.029 5 -11.47 -11.42 4.44 0.06
4 5 5.575 —.008 0.029 6 -9.49 -9.43 6.43 0.02
5 6 5.714 -.153 0.021 6 -1.96 -1.90 13.96 0.00
6 4 5.574 0.021 5 4.59 4.63 20.49 0.00
7 2 5.668 -.107 5 6.56 6.60 22.47 0.00
8 1 5.570 4 9.05 9.08 24.94 0.00




V. Kuperman, J. Bresnan/Journal of Memory and Language 66 (2012) 588-611 607

The next step of the multimodel inference procedure
evaluates the relative importance of variables of interest.
For each variable, Akaike weights are summed up for the
models that contain that variable: this sum is the cumula-
tive probability p.,n of the variable given the data and the
set of variables. The cumulative probabilities reveal the rel-
ative importance of variables as predictors of the observed
data, and allow for principled variable ranking and selec-
tion. Importantly, this method of variable selection is de-
fined over the full model space and is not conditional on
any specific model. Thus, the cumulative probabilities of
variables in Table 12 computed over the full model set
are as follows:

Pemi(Intercept) = 1 (present in all models);

Peumi(Prob) = 0.33 4+ 0.02 + 0.0 + 0.0 = 0.35;

P (length.recipient) = 0.58 + 0.33 + 0.06 + 0.02 = 0.99;
Peymi(length.theme) = 0.58 + 0.33 +0.00 + 0.00 = 0.91.

Thus, the length of the recipient is the most important crit-
ical predictor of the acoustic duration in this example and
is closely followed by length of theme, while construction
probability is the least important of critical predictors.
Notably, these estimates of the relative importance of pre-
dictors are not dependent on any single model, but rather
are computed over the entire model set, which makes
these estimates more reliable especially in situations
“when the second or third best model is nearly as well sup-
ported as the best model or when all models have nearly
equal support” (Burnham & Anderson, 2004, p. 274).

The multimodel selection method has the further
advantage of offering the unconditional estimates for the
model parameters (regression coefficients) that are not
dependent on any given model, but rather are estimated
over the entire model set. One possibility for computing
these would be to take the average value for each of
regression coefficients across the model set. This ap-
proach, however, would ignore the hard-won knowledge
of model selection uncertainty, i.e.,, how likely models
are to be the best-approximating model given the candi-
dates and the data. Alternatively, the model-averaging
method of Burnham and Anderson suggests that parame-
ter estimates Bpi for predictor p in each individual model i
be multiplied by the model’s Akaike weight w;, i.e., the
probabilistic index of the strength of evidence in favor
of the model. The products are then summed up to obtain
the unconditional estimate of the predictor’s regression
coefficient f,. The literature on model-averaging discusses
two options of computing f,. One is to compute the
weighted average of the predictor’s regression coefficients
based on all models in the model set while assigning the
value of zero to the regression coefficient in the models
that do not include the respective predictor. The other
one is to base the computation on those models only that
include the respective predictor. (While the intercept and
“fixed” control variables are defined in all models, critical
variables that form the power set are present in one half
of the model set each.) We chose the second option as it
provides more accurate estimates for the unconditional
model-averaged regression coefficients and standard er-
rors (see below).

We illustrate the procedure by computing the uncondi-
tional mean for construction probability in our example
model set; see Table 12. Regression coefficients for con-
struction probability vary across models by a factor of 15,
depending on what other variables enter those models.
This variability makes a strong case for the need of an accu-
rate estimator for the regression coefficient, one that
would not be dependent on any single model, and yet
would take into account the weight of evidence for the
models in the set. The Akaike weights w; for the models
in the subset j that contains construction probability as a
predictor (lines 2, 4, 5 and 7 in Table 12) are 0.33, 0.02,
0.00, and 0.00: their sum is 0.35. Since Akaike weights
are construed as probabilities, the weights are re-parame-
terized by dividing each weight by their sum, such that
they add up to one. The new weights w' yield: 0.33/
0.35=0.943; 0.02/0.35=0.057; 0; and 0. The uncondi-
tional, model-averaged regression coefficient of construc-
tion probability, given the candidate models and the
data, is: B, = Zjﬁp *w, = —0.055%0.943 - 0.008
%0.057 — 0.153 + 0.00 — 0.107 x 0.00 = —0.052, where p is
predictor and j the subset of the model set that contains
this predictor. This weighted average is heavily influenced
by the regression coefficient in the model which has the
greatest weight of evidence in Table 12 (line 2), while other
models (lines 4, 5, and 7) make little to no contribution to
the weighted average.

Model-averaged regression coefficients come with an
estimate of their reliability, or the unconditional standard
error (0). Unconditional standard errors account for two
sources of variance. One is the variance gauged by an
individual model and reported as the estimated standard
error of the regression coefficient for the predictor (4):
this variance is obviously conditional on the invididual
model. The other source is the model selection variance,
the measure of how different the individual model’s esti-
mate of a regression coefficient (f) is from the model-
averaged estimate (f). By adding this second source of
variance, the model-averaging method overcomes the
drawback of typical inferential procedures that use esti-
mates of sampling variance that are conditional on a gi-
ven model and ignore the uncertainty as to whether
this model is the best-approximating model for the data
out of the model set. Eq. (4) defines the unconditional
model-averaged standard error &, for predictor p as
follows:

Op = Z\/ o3 + (By - Bp)2~ (4)
j

Table 13 reports the results of model averaging for the
model set: the unconditional estimates of regression coef-
ficients f and standard errors &, as well as the lower and
upper boundaries of the 95% confidence interval,
computed as f + 1.96 = &, where 1.96 is a (roughly) esti-
mated t-value for the 95% confidence interval and samples
with over 20 observations.

Inferential statistics in Table 13 demonstrate that only
lengths of recipient and theme, but not construction prob-
ability, reach the significance level of 0.05 (their 95% con-
fidence intervals do not straddle the zero). In the body of
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Table 13
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Summary of the model-averaging procedure. For each predictor we report the unconditional estimates of its regression coefficient (f) and standard error (7),
the boundaries of the 95% confidence interval, the t-test based probability and the cumulative probability.

Predictor B o LoCl HicCl P Cumul.Prob
Intercept 5.5884 0.0472 5.496 5.6808 <0.0001 NA
length.of.theme 0.0164 0.0063 0.004 0.0288 0.0142 0.91
length.of.recipient 0.0282 0.0065 0.0155 0.041 <0.0001 1.00

Prob —0.0522 0.0589 —-0.1677 0.0634 0.2696 0.36

this article we report the model-averaged estimates of
regression coefficients for the seven studies that form the
empirical core of this work. While we calculated and re-
ported the estimates using our own code, our calculations
are nearly identical to ones that can be obtained with the
help of the function model.avg in the recently developed
library MuMIn in R (Barton, 2011), with the method of mod-
el-averaging set in model.avg to “NA” (only those models
that contain a predictor contribute their estimated coeffi-
cients and standard errors to the model-averaging compu-
tations for a predictor.). The minor discrepancies in model-
averaged estimates between our script and Barton (2011)
are due to rounding errors and to the use in Barton
(2011) of the cut-off of A4 <4 as a criterion for including
models into the model-averaging computation: For the
sake of completeness, we did not set any such cut-offs
here.

It is important to realize that, while offering increased
accuracy, multimodel inference is subject to the same
methodological caveats that apply to any modeling prac-
tice. Thus Burnham and Anderson (2002, 2004) and subse-
quent literature (e.g., Smith, Koper, Francis, & Fahrig, 2009;
Freckleton, 2011) warn against mechanistic initial selec-
tion and data dredging of variables that are not substanti-
ated by either theoretical considerations or prior empirical
research. Based on extensive research into dative alterna-
tion, we provide the grounds for the selection and exclu-
sion of our variables in the Method section. Likewise,
both predictor and outcome variables with skewed distri-
butions may need to undergo transformations that would
render their distribution closer to meeting the assump-
tions of the modeling method (in this case, normality).
Above we present the tests that identify log-transforma-
tion as the most appropriate for the distribution observed
in acoustic durations. Similar tests led to the (log) transfor-
mation of all continuous predictors that had skewed distri-
butions, i.e., object lengths. As part of model criticism, our
inspection of residuals in three best-performing models in
each of the seven model sets did not reveal any systematic
patterns either. Another required step is an a priori exam-
ination of potential non-linear functional relationships be-
tween predictor variables and outcomes (Baayen, 2008;
Harrell, 2001): there were no indications of non-linearity
in our data sets.

Finally, high collinearity or non-independence of pre-
dictors is prevalent in psycholinguistic studies, and the
present one is no exception. There are correlations
between individual components of construction probabil-
ity (e.g., pronominal objects of dative verbs tend to be
short, definite, given and tend to precede their alternants).
There are also obvious correlations between those compo-

nents and the actual estimate of construction probability
that the components contribute to Bresnan et al. (2007).
The harmful consequence of having two or more collinear
predictors in the model is the inflation of estimated stan-
dard errors and the concomitant inaccuracy of inferences
for those predictors. Thus the relationship between the
method of statistical modeling and model selection and
collinearity is crucial. In what follows we demonstrate that
non-independence of our predictors did not affect the
accuracy of models in any appreciable way.

Model averaging and collinearity

An important benefit of using model-averaging is that it
alleviates (though does not completely resolve) the issue of
collinearity, as compared to single best-model approaches.
First, collinearity does not affect the estimation of strength
of evidence or Akaike weights or the values of relative
importance that multimodel inference provides. This is be-
cause AIC values, which form the basis for the computation
of strengths of evidence, are only dependent on the perfor-
mance of the model as a whole given the data, and not on
how the variance is shared between (collinear or non-col-
linear) predictors. This is in contrast to several other algo-
rithms of model selection for which collinearity is
demonstrably harmful (Smith et al., 2009). So collinearity
is not an issue if the interpretation of the effects is based
on the relative importance of predictors, rather than on
their inferential statistics.

Second, the model-averaged estimate of the uncondi-
tional standard error for a predictor relies on standard er-
rors from all models in the model set that contain that
predictor. Suppose predictors A and B are highly collinear.
For predictor A, only one half of the models that contain A
will also contain B; for another half of models no inflation
of standard error is expected. As a result, the inflated stan-
dard errors will be factored into the unconditional stan-
dard error along with uninflated standard errors, and the
influence of the former is expected to be weaker as com-
pared to the single best model with collinear predictors A
and B. Freckleton (2011) lends support to this intuition in
a series of simulations that vary the strength of correlation
between collinear predictors and the strength of the corre-
lation between each of those predictors and the dependent
variable. Freckleton demonstrates that model averaging
techniques achieve stronger reduction of the variance
inflation that collinearity causes, as compared to the
ordinary least squares methods commonly used for regres-
sion analysis. Thus, collinearity does not lead to biased
estimates of the regression slopes for predictors in the
cases where the collinearity between predictors is weak
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to moderate (Pearson’s r < 0.5) and when the effects of
predictors on the dependent variable are weak to moderate
too (Pearson’s r < 0.5). In our data set, the pair of variables
that keeps re-emerging as pervasive predictors of acoustic
duration contains construction probability and length of
theme. Across the seven data sets, the strength of correla-
tion between these predictors ranges from 0.25 to 0.40.
The absolute value of correlations of either predictor with
the acoustic duration did not exceed r=0.2 either. Given
the relatively weak collinearity and weak effects of con-
struction probability and length of theme, collinearity is
not harfmul for the accuracy of estimating the variance
for their slopes and their p-values. We additionally con-
firmed Freckleton’s results by fitting to each dataset a
mixed-effects model with the length of theme as the only
critical predictor, and a separate mixed-effects model with
construction probability as the only critical predictor: all
random effects and fixed predictors were kept in both
models as controls. The estimates obtained for length of
theme in the absence of construction probability were
identical in terms of their polarity and their significance le-
vel (at 0.05) with the estimates and p-values estimated by
the model averaging technique. Same was true for the esti-
mates of construction probability. We conclude, on the ba-
sis of simulations of Freckleton (2011) and our additional
analyses, that collinearity was not an issue for the accuracy
of our inferential statistics.
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