A Distributed Method for Fitting Laplacian Regularized Stratified Models

Jonathan Tuck Shane Barratt Stephen Boyd

International Conference on Statistical Optimization and Learning Beijing Jiatong University, June 192019

Outline

Stratified models

Data models

Regularization graphs

Solution method

Examples

Conclusions

Stratified models

Data records

- Data records have form $(z, x, y) \in \mathcal{Z} \times \mathcal{X} \times \mathcal{Y}$
- $z \in \mathcal{Z}=\{1, \ldots, K\}$ are categorical features (we'll stratify over)
- $x \in \mathcal{X}$ are the other features
- $y \in \mathcal{Y}$ is the label/dependent variable

Stratified model

- Fit a model to data (z, x, y)
- Stratified model: fit different model for each value of z
- θ_{k} is model parameter for $z=k$
- $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right) \in \Theta \subseteq \mathbf{R}^{K n}$ parameterizes the stratified model
- Old idea [Kernan 99]
- Example: stratified regression model $\hat{y}=x^{\top} \theta_{z}$

Example

Example

Stratified models

Stratified model

- Stratified model is simple function of x (e.g., linear), arbitrary function of z
- Examples: separate models for
$-z \in\{$ Male, Female $\}$
$-z \in\{$ Monday, ..., Sunday\}
- If K is large, might not have enough training data to fit θ_{k}
- Extreme case: no training data for some values of z
- We'll add regularization so nearby θ_{k} 's are close

Stratified model with Laplacian regularization

- Choose $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ to minimize

$$
\sum_{i=1}^{N} I\left(\theta_{z_{i}}, x_{i}, y_{i}\right)+\sum_{k=1}^{K} r\left(\theta_{k}\right)+\sum_{u, v=1}^{K} W_{u v}\left\|\theta_{u}-\theta_{v}\right\|^{2}
$$

- I is loss function, r is (local) regularization
- Last term is Laplacian regularization
- $W_{u v} \geq 0$ are edge weights of graph with node set \mathcal{Z}
- Convex problem when I, r convex in θ

Stratified model with Laplacian regularization

- Graph encodes prior that nearby values of z should have similar models
- Can be used to capture periodicities, other structure
- Examples:
- $\theta_{\text {male }}$ and $\theta_{\text {female }}$ should be close
- $\theta_{\text {jan }}$ should be close to $\theta_{\text {feb }}$ and $\theta_{\text {dec }}$
- Model for each value of z 'borrows strength' from its neighbors
- Works even when there's no data for some values of z
- As $W_{u v} \rightarrow 0$, get traditional (unregularized) stratified model
- As $W_{u v} \rightarrow \infty$, get common model $\left(\theta_{1}=\cdots=\theta_{K}\right)$

Related work

- Network lasso [Hallac 15])
- Pliable lasso [Tibshirani 17]
- Varying-coefficient models [Hastie 93, Fan 08]
- Multi-task learning [Caruana 97]

Outline

Stratified models

Data models
Regularization graphs
Solution method

Examples
Conclusions

Point estimate: Predict y

- Regression: $\mathcal{X}=\mathbf{R}^{n}, \mathcal{Y}=\mathbf{R}$
$-I(\theta, x, y)=p\left(x^{T} \theta-y\right), p$ is penalty function
$-\hat{y}=x^{T} \theta_{z}$
- Classification: $\mathcal{X}=\mathbf{R}^{n}, \mathcal{Y}=\{-1,1\}$
$-I(\theta, x, y)=p\left(y x^{T} \theta\right)$
$-\hat{y}=\boldsymbol{\operatorname { s i g n }}\left(x^{T} \theta_{z}\right)$
- M-class classification: $\mathcal{X} \in \mathbf{R}^{n}, \mathcal{Y}=\{1, \ldots, M\}$
$-I(\theta, x, y)=p_{y}\left(x^{T} \theta\right), \theta \in \mathbf{R}^{n \times M}, p_{y}$ is penalty function for class y
$-\hat{y}=\operatorname{argmax}\left(x^{T} \theta_{z}\right)$

Conditional distribution estimate: Predict $\operatorname{prob}(y \mid x, z)$

- Multinomial logistic regression: $\mathcal{X}=\mathbf{R}^{n}, \mathcal{Y}=\{1, \ldots, M\}$
- Conditional distribution:

$$
\operatorname{prob}(y \mid x, z)=\frac{\exp \left(x^{\top} \theta_{z}\right)_{y}}{\sum_{j=1}^{M} \exp \left(x^{\top} \theta_{z}\right)_{j}}, \quad y=1, \ldots, M
$$

- Loss function (convex in θ):

$$
I(\theta, x, y)=\log \left(\sum_{j=1}^{M} \exp \left(x^{T} \theta\right)_{j}\right)-\left(x^{T} \theta\right)_{y}
$$

Distribution estimate: Predict $p(y \mid z)$

- Gaussian distribution: $\mathcal{Y}=\mathbf{R}^{m}$
- Density:

$$
p(y \mid z)=(2 \pi)^{-m / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-1 / 2(y-\mu)^{T} \Sigma^{-1}(y-\mu)\right)
$$

- Use natural parameter $\theta=(S, \nu)=\left(\Sigma^{-1}, \Sigma^{-1} \mu\right) \quad\left(\right.$ so $\left.\Sigma=S^{-1}, \mu=S^{-1} \nu\right)$
- Loss function (convex in θ):

$$
I(\theta, y)=-\log \operatorname{det} S+y^{\top} S y-2 y^{\top} \nu+\nu^{T} S^{-1} \nu
$$

Outline

Stratified models

Data models

Regularization graphs
Solution method

Examples
Conclusions

Regularization graphs

Path graph

- Models time, distance, ...
- Yields time-varying, distance-varying models

Cycle graph

- Yields diurnal, weekly, seasonally-varying models

Tree graph

- Yields hierarchical models

Grid graph

- Yields (2D) space-varying models

Products of graphs

- $\mathcal{Z}=\{$ Male, Female $\} \times\{1,2, \ldots, 99,100\} \quad$ (sex \times age)
- Yields sex, age-varying models

Outline

Stratified models

Data models
Regularization graphs
Solution method

Examples
Conclusions

Solution method

Fitting problem

- To fit stratified model, minimize $\ell(\theta)+r(\theta)+\mathcal{L}(\theta)$
- $\ell(\theta)=\sum_{k=1}^{K} \ell_{k}\left(\theta_{k}\right)$ is loss, $\ell_{k}\left(\theta_{k}\right)=\sum_{i: z_{i}=k} I\left(\theta_{k}, x_{i}, y_{i}\right)$
- $r(\theta)=\sum_{k=1}^{K} r\left(\theta_{k}\right)$ is (local) regularization
- $\mathcal{L}(\theta)=\sum_{u, v=1}^{K} W_{u v}\left\|\theta_{u}-\theta_{v}\right\|^{2}$ is Laplacian regularization
- ℓ, r are separable in θ_{k}
- \mathcal{L} is quadratic, separable in components of θ_{k}
- We'll use operator splitting method (ADMM)

Reformulation

- Replicate variables:

$$
\begin{array}{ll}
\operatorname{minimize} & \ell(\theta)+r(\tilde{\theta})+\mathcal{L}(\hat{\theta}) \\
\text { subject to } & \theta=\tilde{\theta}=\hat{\theta}
\end{array}
$$

- Augmented Lagrangian

$$
L(\theta, \tilde{\theta}, \hat{\theta}, u, \tilde{u})=\ell(\theta)+r(\tilde{\theta})+\mathcal{L}(\hat{\theta})+\frac{1}{2 t}\|\theta-\hat{\theta}+u\|_{2}^{2}+\frac{1}{2 t}\|\tilde{\theta}-\hat{\theta}+\tilde{u}\|_{2}^{2}
$$

- u, \tilde{u} dual variables for the two constraints, $t>0$ is algorithm parameter

ADMM

- Augmented Lagrangian

$$
L(\theta, \tilde{\theta}, \hat{\theta}, u, \tilde{u})=\ell(\theta)+r(\tilde{\theta})+\mathcal{L}(\hat{\theta})+\frac{1}{2 t}\|\theta-\hat{\theta}+u\|_{2}^{2}+\frac{1}{2 t}\|\tilde{\theta}-\hat{\theta}+\tilde{u}\|_{2}^{2}
$$

- ADMM: for $i=1,2, \ldots$

$$
\begin{aligned}
\theta^{i+1}, \tilde{\theta}^{i+1} & :=\underset{\theta, \tilde{\theta}}{\operatorname{argmin}} L\left(\theta, \tilde{\theta}, \hat{\theta}^{i}, u^{i}, \tilde{u}^{i}\right) \\
\hat{\theta}^{i+1} & :=\underset{\hat{\theta}}{\operatorname{argmin}} L\left(\theta^{i}, \tilde{\theta}^{i}, \hat{\theta}, u^{i}, \tilde{u}^{i}\right) \\
u^{i+1} & :=u^{i}+\theta^{i+1}-\hat{\theta}^{i+1} \\
\tilde{u}^{i+1} & :=\tilde{u}^{i}+\tilde{\theta}^{i+1}-\hat{\theta}^{i+1}
\end{aligned}
$$

ADMM

- First step can be expressed as

$$
\theta_{k}^{i+1}=\operatorname{prox}_{t \ell_{k}}\left(\hat{\theta}_{k}^{i}-u_{k}^{i}\right), \quad \tilde{\theta}_{k}^{i+1}=\operatorname{prox}_{t r}\left(\hat{\theta}_{k}^{i}-\tilde{u}_{k}^{i}\right), \quad k=1, \ldots, K
$$

- proximal operator of $t g$ is

$$
\operatorname{prox}_{t g}(\nu)=\underset{\theta}{\operatorname{argmin}}\left(\operatorname{tg}(\theta)+(1 / 2)\|\theta-\nu\|_{2}^{2}\right)
$$

- Can evaluate these $2 K$ proximal operators in parallel

Loss proximal operators

- Often has closed form expression or efficient implementation
- Square loss: $\ell_{k}\left(\theta_{k}\right)=\left\|X_{k} \theta_{k}-y_{k}\right\|_{2}^{2}$
$-\operatorname{prox}_{t \ell_{k}}(\nu)=\left(I+t X_{k}^{\top} X_{k}\right)^{-1}\left(\nu-t X_{k}^{\top} y_{k}\right)$
- Cache factorization or warm-start CG
- Logistic loss: $\ell_{k}\left(\theta_{k}\right)=\sum_{i} \log \left(1+\exp \left(-y_{k i} \theta_{k}^{T} x_{k i}\right)\right)$
- Use L-BFGS to evaluate $\operatorname{prox}_{t \ell_{k}}(\nu)$
- Warm-start
- Many others ...

Regularizer proximal operators

- Often has closed form expression or efficient implementation

Regularizer	$r\left(\theta_{k}\right)$	$\operatorname{prox}_{t r}(\nu)$		
Sum of squares $\left(\ell_{2}\right)$	$(\lambda / 2)\left\\|\theta_{k}\right\\|_{2}^{2}$	$\nu /(t \lambda+1)$		
ℓ_{1} norm	$\lambda\left\\|\theta_{k}\right\\|_{1}$	$(\nu-t \lambda)_{+}-(-\nu-t \lambda)_{+}$		
Nonnegative	$I_{+}\left(\theta_{k}\right)$	$\left(\theta_{k}\right)_{+}$		

- $\lambda>0$ local regularization parameter

Laplacian proximal operator

- Separable across each component of θ_{k}
- To find each component $\left(\theta_{k}\right)_{i}$, need to solve a Laplacian system
- Many efficient ways to solve, e.g., diagonally preconditioned CG
- These n systems can be solved in parallel

Software implementation

- Available at www.github.com/cvxgrp/strat_models
- numpy, scipy for matrix operations
- networkx for handling graphs and graph operations
- torch for L-BFGS and GPU computation
- multiprocessing for parallelism
- model.fit($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{G}$) (writes θ_{k} on graph nodes)

Outline

Stratified models
Data models
Regularization graphs
Solution method
Examples
Conclusions

Examples

House price prediction

- $N \approx 22000(z, x, y)$ from King County, WA
- Split into train/test $\approx 16200 / 5400$
- $z=$ (latitude bin, longitude bin)
- $x \in \mathbf{R}^{10}=$ features of house, $y=\log$ of house price
- Graph is 50×50 grid with all edge weights same; $K=2500$
- Stratified ridge regression model with two hyperparameters (one for local regularization, one for Laplacian regularization)

House price prediction: Results

- Compare stratifed, common, and random forest with 50 trees

Model	Parameters	RMS test error
Stratified	$\mathbf{2 5 0 0 0}$	$\mathbf{0 . 1 8 1}$
Common	10	0.316
Random forest	985888	0.184

House price prediction: Parameters

bedrooms

bathrooms

sqft living

sqft lot

waterfront

grade

intercept

Chicago crime prediction

- $N \approx 7000000(z, y)$ pairs for 2017, 2018
- Train on 2017, test on 2018
- $y=$ number of crimes
- $z=$ (location bin, week of year, day of week, hour of day); $K \approx 3500000$
- Graph is Cartesian product of grid, three cycles; four graph edge weights
- Stratified Poisson model with four hyperparameters (one for each graph edge weight)

Chicago crime prediction

- Compare three models, average negative log likelihood on test data

Model	Train	Test
Separate	0.068	0.740
Stratified	$\mathbf{0 . 2 2 1}$	$\mathbf{0 . 2 3 4}$
Common	0.279	0.278

Chicago crime prediction

Crime rate as a function of latitude/longitude

Chicago crime prediction

Crime rate as a function of week of year

Chicago crime prediction

Crime rate as a function of hour of week

Outline

Stratified models
Data models
Regularization graphs
Solution method
Examples
Conclusions

Conclusions

- Stratified models combine
- simple dependence on some features (x)
- complex dependence on others (z)
- Often interpretable
- Laplacian regularization encodes prior on values of z, so models can borrow strength from their neighbors
- Effective method to build time-varying, space-varying, seasonally-varying models
- Efficient, distributed ADMM-based implementation for large-scale data

