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Data records

I Data records have form (z , x , y) ∈ Z × X × Y
I z ∈ Z = {1, . . . ,K} are categorical features (we’ll stratify over)

I x ∈ X are the other features

I y ∈ Y is the label/dependent variable
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Stratified model

I Fit a model to data (z , x , y)

I Stratified model: fit different model for each value of z

I θk is model parameter for z = k

I θ = (θ1, . . . , θK ) ∈ Θ ⊆ RKn parameterizes the stratified model

I Old idea [Kernan 99]

I Example: stratified regression model ŷ = xT θz
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Example
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Example

0.0 0.2 0.4 0.6 0.8 1.0

10

5

0

5

10
z=1
z=-1
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Stratified model

I Stratified model is simple function of x (e.g., linear), arbitrary function of z
I Examples: separate models for

– z ∈ {Male, Female}
– z ∈ {Monday, . . . , Sunday}

I If K is large, might not have enough training data to fit θk
I Extreme case: no training data for some values of z

I We’ll add regularization so nearby θk ’s are close
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Stratified model with Laplacian regularization

I Choose θ = (θ1, . . . , θK ) to minimize

N∑
i=1

l(θzi , xi , yi ) +
K∑

k=1

r(θk) +
K∑

u,v=1

Wuv‖θu − θv‖2

I l is loss function, r is (local) regularization

I Last term is Laplacian regularization

I Wuv ≥ 0 are edge weights of graph with node set Z
I Convex problem when l , r convex in θ
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Stratified model with Laplacian regularization

I Graph encodes prior that nearby values of z should have similar models

I Can be used to capture periodicities, other structure
I Examples:

– θmale and θfemale should be close
– θjan should be close to θfeb and θdec

I Model for each value of z ‘borrows strength’ from its neighbors

I Works even when there’s no data for some values of z

I As Wuv → 0, get traditional (unregularized) stratified model

I As Wuv →∞, get common model (θ1 = · · · = θK )
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Related work

I Network lasso [Hallac 15])

I Pliable lasso [Tibshirani 17]

I Varying-coefficient models [Hastie 93, Fan 08]

I Multi-task learning [Caruana 97]
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Point estimate: Predict y

I Regression: X = Rn, Y = R
– l(θ, x , y) = p(xT θ − y), p is penalty function
– ŷ = xT θz

I Classification: X = Rn, Y = {−1, 1}
– l(θ, x , y) = p(yxT θ)
– ŷ = sign(xT θz)

I M-class classification: X ∈ Rn, Y = {1, . . . ,M}
– l(θ, x , y) = py (xT θ), θ ∈ Rn×M , py is penalty function for class y
– ŷ = argmax(xT θz)
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Conditional distribution estimate: Predict prob(y | x , z)

I Multinomial logistic regression: X = Rn, Y = {1, . . . ,M}
I Conditional distribution:

prob(y | x , z) =
exp(xT θz)y∑M
j=1 exp(xT θz)j

, y = 1, . . . ,M

I Loss function (convex in θ):

l(θ, x , y) = log

 M∑
j=1

exp(xT θ)j

− (xT θ)y
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Distribution estimate: Predict p(y | z)

I Gaussian distribution: Y = Rm

I Density:

p(y | z) = (2π)−m/2 det(Σ)−1/2 exp(−1/2(y − µ)TΣ−1(y − µ))

I Use natural parameter θ = (S , ν) = (Σ−1,Σ−1µ) (so Σ = S−1, µ = S−1ν)

I Loss function (convex in θ):

l(θ, y) = − log detS + yTSy − 2yTν + νTS−1ν
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Path graph
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I Models time, distance, . . .

I Yields time-varying, distance-varying models
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Cycle graph
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I Yields diurnal, weekly, seasonally-varying models
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Tree graph
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I Yields hierarchical models
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Grid graph
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I Yields (2D) space-varying models
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Products of graphs
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I Z = {Male, Female} × {1, 2, . . . , 99, 100} (sex × age)

I Yields sex, age-varying models
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Fitting problem

I To fit stratified model, minimize `(θ) + r(θ) + L(θ)

I `(θ) =
∑K

k=1 `k(θk) is loss, `k(θk) =
∑

i :zi=k l(θk , xi , yi )

I r(θ) =
∑K

k=1 r(θk) is (local) regularization

I L(θ) =
∑K

u,v=1Wuv‖θu − θv‖2 is Laplacian regularization

I `, r are separable in θk
I L is quadratic, separable in components of θk

I We’ll use operator splitting method (ADMM)
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Reformulation

I Replicate variables:
minimize `(θ) + r(θ̃) + L(θ̂)

subject to θ = θ̃ = θ̂

I Augmented Lagrangian

L(θ, θ̃, θ̂, u, ũ) = `(θ) + r(θ̃) + L(θ̂) +
1

2t
‖θ − θ̂ + u‖22 +

1

2t
‖θ̃ − θ̂ + ũ‖22

I u, ũ dual variables for the two constraints, t > 0 is algorithm parameter
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ADMM

I Augmented Lagrangian

L(θ, θ̃, θ̂, u, ũ) = `(θ) + r(θ̃) + L(θ̂) +
1

2t
‖θ − θ̂ + u‖22 +

1

2t
‖θ̃ − θ̂ + ũ‖22

I ADMM: for i = 1, 2, . . .

θi+1, θ̃i+1 := argmin
θ,θ̃

L(θ, θ̃, θ̂i , ui , ũi )

θ̂i+1 := argmin
θ̂

L(θi , θ̃i , θ̂, ui , ũi )

ui+1 := ui + θi+1 − θ̂i+1

ũi+1 := ũi + θ̃i+1 − θ̂i+1
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ADMM

I First step can be expressed as

θi+1
k = proxt`k (θ̂ik − uik), θ̃i+1

k = proxtr (θ̂ik − ũik), k = 1, . . . ,K

I proximal operator of tg is

proxtg (ν) = argmin
θ

(
tg(θ) + (1/2)‖θ − ν‖22

)
I Can evaluate these 2K proximal operators in parallel
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Loss proximal operators

I Often has closed form expression or efficient implementation
I Square loss: `k(θk) = ‖Xkθk − yk‖22

– proxt`k (ν) = (I + tXT
k Xk)−1(ν − tXT

k yk)
– Cache factorization or warm-start CG

I Logistic loss: `k(θk) =
∑

i log(1 + exp(−ykiθTk xki ))

– Use L-BFGS to evaluate proxt`k (ν)
– Warm-start

I Many others . . .
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Regularizer proximal operators

I Often has closed form expression or efficient implementation

Regularizer r(θk) proxtr (ν)

Sum of squares (`2) (λ/2)‖θk‖22 ν/(tλ+ 1)

`1 norm λ‖θk‖1 (ν − tλ)+ − (−ν − tλ)+

Nonnegative I+(θk) (θk)+

I λ > 0 local regularization parameter
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Laplacian proximal operator

I Separable across each component of θk
I To find each component (θk)i , need to solve a Laplacian system

I Many efficient ways to solve, e.g., diagonally preconditioned CG

I These n systems can be solved in parallel
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Software implementation

I Available at www.github.com/cvxgrp/strat_models

I numpy, scipy for matrix operations

I networkx for handling graphs and graph operations

I torch for L-BFGS and GPU computation

I multiprocessing for parallelism

I model.fit(X,Y,Z,G) (writes θk on graph nodes)
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House price prediction

I N ≈ 22000 (z , x , y) from King County, WA

I Split into train/test ≈ 16200/5400

I z = (latitude bin, longitude bin)

I x ∈ R10 = features of house, y = log of house price

I Graph is 50× 50 grid with all edge weights same; K = 2500

I Stratified ridge regression model with two hyperparameters
(one for local regularization, one for Laplacian regularization)
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House price prediction: Results

I Compare stratifed, common, and random forest with 50 trees

Model Parameters RMS test error

Stratified 25000 0.181
Common 10 0.316
Random forest 985888 0.184
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House price prediction: Parameters

bedrooms bathrooms sqft living sqft lot floors

waterfront condition grade yr built intercept
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Chicago crime prediction

I N ≈ 7 000 000 (z , y) pairs for 2017, 2018

I Train on 2017, test on 2018

I y = number of crimes

I z = (location bin,week of year, day of week, hour of day); K ≈ 3 500 000

I Graph is Cartesian product of grid, three cycles; four graph edge weights

I Stratified Poisson model with four hyperparameters
(one for each graph edge weight)
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Chicago crime prediction

I Compare three models, average negative log likelihood on test data

Model Train Test

Separate 0.068 0.740
Stratified 0.221 0.234
Common 0.279 0.278
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Chicago crime prediction

Crime rate as a function of latitude/longitude
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Chicago crime prediction

Crime rate as a function of week of year
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Chicago crime prediction

Crime rate as a function of hour of week
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Conclusions

I Stratified models combine

– simple dependence on some features (x)
– complex dependence on others (z)

I Often interpretable

I Laplacian regularization encodes prior on values of z , so models can borrow
strength from their neighbors

I Effective method to build time-varying, space-varying, seasonally-varying models

I Efficient, distributed ADMM-based implementation for large-scale data
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