Domain Specific Languages for Convex Optimization

Stephen Boyd
joint work with M. Grant, S. Diamond
Electrical Engineering Department, Stanford University

Springer Lectures, UC Berkeley, 4/10/15
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Convex optimization problem — standard form

minimize $f_0(x)$
subject to $f_i(x) \leq 0, \quad i = 1, \ldots, m$
$Ax = b$

with variable $x \in \mathbb{R}^n$

- objective and inequality constraints f_0, \ldots, f_m are convex
 for all $x, y, \theta \in [0, 1],$
 $$f_i(\theta x + (1 - \theta)y) \leq \theta f_i(x) + (1 - \theta)f_i(y)$$
 i.e., graphs of f_i curve upward
- equality constraints are linear
Convex optimization problem — conic form

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \in K
\end{align*}
\]

with variable \(x \in \mathbb{R}^n \)

- \(K \) is convex cone
 - \(x \in K \) is a generalized nonnegativity constraint
- linear objective, equality constraints

- special cases:
 - \(K = \mathbb{R}_+^n \): linear program (LP)
 - \(K = S_+^n \): semidefinite program (SDP)
- the modern canonical form
How do you solve a convex problem?

- use someone else’s (‘standard’) solver (LP, QP, SOCP, . . .)
 - easy, but your problem must be in a standard form
 - cost of solver development amortized across many users

- write your own (custom) solver
 - lots of work, but can take advantage of special structure

- transform your problem into a standard form, and use a standard solver
 - extends reach of problems solvable by standard solvers

- this talk: methods to formalize and automate last approach

Convex optimization
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
How can you tell if a problem is convex?

approaches:

▶ use basic definition, first or second order conditions, e.g.,
\[\nabla^2 f(x) \succeq 0 \]

▶ via convex calculus: construct \(f \) using
 ▶ library of basic functions that are convex
 ▶ calculus rules or transformations that preserve convexity

Constructive convex analysis
Convex functions: Basic examples

- x^p ($p \geq 1$ or $p \leq 0$), $-x^p$ ($0 \leq p \leq 1$)
- e^x, $-\log x$, $x \log x$
- $a^T x + b$
- $x^T P x$ ($P \succeq 0$)
- $\|x\|$ (any norm)
- $\max(x_1, \ldots, x_n)$
Convex functions: Less basic examples

- \(x^T x / y (y > 0), \ x^T Y^{-1} x (Y \succ 0)\)
- \(\log(e^{x_1} + \cdots + e^{x_n})\)
- \(-\log \Phi(x) (\Phi \text{ is Gaussian CDF})\)
- \(\log \det X^{-1} (X \succ 0)\)
- \(\lambda_{\max}(X) (X = X^T)\)
- \(f(x) = x_{[1]} + \cdots + x_{[k]} \) (sum of largest \(k\) entries)
Calculus rules

- **nonnegative scaling**: f convex, $\alpha \geq 0 \implies \alpha f$ convex
- **sum**: f, h convex $\implies f + g$ convex
- **affine composition**: f convex $\implies f(Ax + b)$ convex
- **pointwise maximum**: f_1, \ldots, f_m convex $\implies \max_i f_i(x)$ convex
- **partial minimization**: $f(x, y)$ convex $\implies \inf_y f(x, y)$ convex
- **composition**: h convex increasing, f convex $\implies h(f(x))$ convex
A general composition rule

\[h(f_1(x), \ldots, f_k(x)) \text{ is convex when } h \text{ is convex and for each } i \]

- \(h \) is increasing in argument \(i \), and \(f_i \) is convex, or
- \(h \) is decreasing in argument \(i \), and \(f_i \) is concave, or
- \(f_i \) is affine

- there’s a similar rule for concave compositions
- this one rule subsumes most of the others
- in turn, it can be derived from the partial minimization rule
Constructive convexity verification

- start with function given as expression
- build parse tree for expression
 - leaves are variables or constants/parameters
 - nodes are functions of children, following general rule
- tag each subexpression as convex, concave, affine, constant
 - variation: tag subexpression signs, use for monotonicity
 e.g., \((\cdot)^2\) is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity
Example

for $x < 1$, $y < 1$

$$
\frac{(x - y)^2}{1 - \max(x, y)}
$$

is convex

- (leaves) x, y, and 1 are affine expressions
- $\max(x, y)$ is convex; $x - y$ is affine
- $1 - \max(x, y)$ is concave
- function u^2 / v is convex, monotone decreasing in v for $v > 0$
 hence, convex with $u = x - y$, $v = 1 - \max(x, y)$
Example

analyzed by dcp.stanford.edu (Diamond 2014)
Disciplined convex programming (DCP)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization
Disciplined convex program: Structure

a DCP has

▶ zero or one **objective**, with form
 ▶ minimize \{scalar convex expression\} or
 ▶ maximize \{scalar concave expression\}

▶ zero or more **constraints**, with form
 ▶ \{convex expression\} <= \{concave expression\} or
 ▶ \{concave expression\} >= \{convex expression\} or
 ▶ \{affine expression\} == \{affine expression\}
Disciplined convex program: Expressions

- expressions formed from
 - variables,
 - constants/parameters,
 - and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- all subexpressions match general composition rule
Disciplined convex program

- a valid DCP is
 - convex-by-construction (cf. posterior convexity analysis)
 - ‘syntactically’ convex (can be checked ‘locally’)

- convexity depends only on attributes of library functions, and not their meanings
 - e.g., could swap $\sqrt{\cdot}$ and $\sqrt[4]{\cdot}$, or $\exp{\cdot}$ and $(\cdot)_+$, since their attributes match
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Cone representation

(Nesterov, Nemirovsky)

cone representation of (convex) function f:

- $f(x)$ is optimal value of cone program

$$\begin{align*}
\text{minimize} & \quad c^T x + d^T y + e \\
\text{subject to} & \quad A \begin{bmatrix} x \\
y \end{bmatrix} = b, \quad \begin{bmatrix} x \\
y \end{bmatrix} \in K
\end{align*}$$

- cone program in (x, y), we but minimize only over y
- i.e., we define f by partial minimization of cone program
Examples

- $f(x) = -(xy)^{1/2}$ is optimal value of SDP

\[
\begin{align*}
\text{minimize} & \quad -t \\
\text{subject to} & \quad \begin{bmatrix} x & t \\ t & y \end{bmatrix} \succeq 0 \\
\end{align*}
\]

with variable t

- $f(x) = x_{[1]} + \cdots + x_{[k]}$ is optimal value of LP

\[
\begin{align*}
\text{minimize} & \quad \mathbf{1}^T \lambda - k\nu \\
\text{subject to} & \quad x + \nu \mathbf{1} = \lambda - \mu \\
& \quad \lambda \succeq 0, \quad \mu \succeq 0
\end{align*}
\]

with variables λ, μ, ν
SDP representations

Nesterov, Nemirovsky, and others have worked out SDP representations for many functions, e.g.,

- x^p, $p \geq 1$ rational
- $-(\det X)^{1/n}$
- $\sum_{i=1}^k \lambda_i(X) \ (X = X^T)$
- $\|X\| = \sigma_1(X) \ (X \in \mathbb{R}^{m \times n})$
- $\|X\|_* = \sum_i \sigma_i(X) \ (X \in \mathbb{R}^{m \times n})$

some of these representations are not obvious . . .
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Canonicalization

- start with problem in DCP form, with cone representable library functions
- automatically transform to equivalent cone program
Canonicalization: How it’s done

- for each (non-affine) library function $f(x)$ appearing in parse tree, with cone representation

 $$\text{minimize} \quad c^T x + d^T y + e$$
 $$\text{subject to} \quad A \begin{bmatrix} x \\ y \end{bmatrix} = b, \quad \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{K}$$

 - add new variable y, and constraints above
 - replace $f(x)$ with affine expression $c^T x + d^T y + e$

 - yields problem with linear equality and cone constraints
 - DCP ensures equivalence of resulting cone program
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Example

- constrained least-squares problem with ℓ_1 regularization

$$\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2^2 + \gamma \|x\|_1 \\
\text{subject to} & \quad \|x\|_{\infty} \leq 1
\end{align*}$$

- variable $x \in \mathbb{R}^n$
- constants/parameters A, b, $\gamma > 0$
CVX

- developed by M. Grant
- embedded in Matlab; targets multiple cone solvers

CVX specification for example problem:

```matlab
cvx_begin
    variable x(n) % declare vector variable
    minimize sum(square(A*x-b,2)) + gamma*norm(x,1)
    subject to norm(x,inf) <= 1
cvx_end
```

- here \(A, b, \gamma \) are constants
Some functions in the CVX library

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm(x, p)</td>
<td>$|x|_p, \ p \geq 1$</td>
<td>cvx</td>
</tr>
<tr>
<td>square(x)</td>
<td>x^2</td>
<td>cvx</td>
</tr>
<tr>
<td>square_pos(x)</td>
<td>$(x_+)^2$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>pos(x)</td>
<td>x_+</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sum_largest(x,k)</td>
<td>$x[1] + \cdots + x[k]$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>$\sqrt{x}, \ x \geq 0$</td>
<td>ccv, nondecr</td>
</tr>
<tr>
<td>inv_pos(x)</td>
<td>$1/x, \ x > 0$</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td>max(x)</td>
<td>$\max{x_1,\ldots,x_n}$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>quad_over_lin(x,y)</td>
<td>$x^2/y, \ y > 0$</td>
<td>cvx, nonincr in y</td>
</tr>
<tr>
<td>lambda_max(X)</td>
<td>$\lambda_{\text{max}}(X), \ X = X^T$</td>
<td>cvx</td>
</tr>
<tr>
<td>huber(x)</td>
<td>$\begin{cases} x^2, &</td>
<td>x</td>
</tr>
</tbody>
</table>
CVXPY

▶ developed by S. Diamond
▶ embedded in Python; targets multiple cone solvers

▶ CVXPY specification for example problem:

```python
from cvxpy import *
x = Variable(n)
cost = sum_squares(A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)
constr = [norm(x,"inf") <= 1]
prob = Problem(obj,constr)
opt_val = prob.solve()
solution = x.value
```
Parameters in CVXPY

- symbolic representations of constants
- can specify sign
- change value of constant without re-parsing problem

- computing a trade-off curve for example problem:

```python
x_values = []
for val in numpy.logspace(-4, 2, num=100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```
Signed DCP in CVXPY

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm(x, p)</td>
<td>$|x|_p$, $p \geq 1$</td>
<td>cvx, nondecr for $x \geq 0$, nonincr for $x \leq 0$</td>
</tr>
<tr>
<td>square(x)</td>
<td>x^2</td>
<td>cvx, nondecr for $x \geq 0$, nonincr for $x \leq 0$</td>
</tr>
<tr>
<td>huber(x)</td>
<td>$\begin{cases} x^2, &</td>
<td>x</td>
</tr>
</tbody>
</table>
Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions
Conclusions

- **DCP** is a formalization of constructive convex analysis
 - simple method to certify problem as convex
 - basis of several domain specific languages for convex optimization

- modeling frameworks make rapid prototyping easy
References

- *Disciplined Convex Programming* (Grant, Boyd, Ye)
- *Graph Implementations for Nonsmooth Convex Programs* (Grant, Boyd)
- CVX (Grant, Boyd)
- CVXPY (Diamond, Boyd)