Convex Optimization in System and Control Theory

Stephen Boyd
Electrical Engineering Department
Stanford University

3rd SIAM Conf. Control & Applications
Basic idea

- Many problems arising in system and control theory can be cast as convex optimization problems.
- Hence, are fundamentally tractable.
- Recent interior-point methods can exploit problem structure to solve such problems very efficiently.
Outline

- Convex optimization
- Some examples
- Interior-point methods
Convex optimization

minimize \(f_0(x) \)

subject to \(f_1(x) \leq 0, \ldots, f_L(x) \leq 0 \)

\(f_i : \mathbb{R}^n \rightarrow \mathbb{R} \) convex

- can have linear equality constraints
- differentiability not needed
- other formulations possible, e.g.:
 feasibility, multicriterion, monotone variational inequality
(Roughly speaking,) convex optimization problems are **fundamentally tractable** in theory and practice

Algorithms:

- Classical optimization algorithms **do not work**
- Ellipsoid algorithm (Shor, Nemirovsky, Yudin 1970s)
 - very simple, universally applicable
 - efficient in terms of worst-case complexity theory
 - slow but robust in practice
- (General) interior-point methods (Nesterov, Nemirovsky 1980s)
 - efficient in theory and practice
Outline

• Convex optimization
• Some examples
• Interior-point methods
Well-known example: FIR filter design

transfer function: \(H(z) \triangleq \sum_{i=0}^{n} h_i z^{-i} \)

design variables: \(x \triangleq [h_0 \; h_1 \; \ldots \; h_n]^T \)

sample convex constraints:

\begin{itemize}
 \item \(H(e^{j0}) = 1 \) (unity DC gain)
 \item \(H(e^{j\omega_0}) = 0 \) (notch at \(\omega_0 \))
 \item \(|H(e^{j\omega})| \leq 0.01 \) for \(\omega_s \leq \omega \leq \pi \)
 (min. 40dB atten. in stop band)
 \item \(|H(e^{j\omega})| \leq 1.12 \) for \(0 \leq \omega \leq \omega_b \)
 (max. 1dB upper ripple in pass band)
 \item \(h_i = h_{n-i} \) (linear phase constraint)
 \item \(s(t) \triangleq \sum_{i=0}^{t} h_i \leq 1.1H(e^{j0}) \) (max. 10\% step response overshoot)
\end{itemize}
FIR filter design example (M. Grant)

- sample rate $2/n$ sec$^{-1}$
- linear phase
- max ± 1dB ripple up to 0.4Hz
- min 40dB atten above 0.8Hz
- minimize $\max |h_i|$
- some solution times: $n = 255$: 5 sec, $n = 2047$: 4 min
Beamforming

omnidirectional antenna elements at positions $p_1, \ldots, p_n \in \mathbb{R}^2$
plane wave incident from angle θ:

$$\exp j(k(\theta)^T p - \omega t), \quad k(\theta) = -[\cos \theta \sin \theta]^T$$

$$p_1 \bullet \bullet \bullet \bullet \bullet$$

$$k(\theta) \theta$$

demodulate to get $y_i = \exp(j k(\theta)^T p_i)$
form weighted sum $y(\theta) = \sum_{i=1}^{n} w_i y_i$

design variables: $x = [\text{Re} \ w^T \text{Im} \ w^T]^T$
(antenna array weights or shading coefficients)

$$G'(\theta) \triangleq |y(\theta)| \text{ antenna gain pattern}$$
Sample convex constraints:

- \(y(\theta_t) = 1 \) (target direction normalization)
- \(G(\theta_0) = 0 \) (null in direction \(\theta_0 \))
- \(w \) is real (amplitude only shading)
- \(|w_i| \leq 1 \) (attenuation only shading)

Sample convex objectives:

- \(\max \{ G'(\theta) \mid |\theta - \theta_t| \geq 5^\circ \} \)
 (sidelobe level with 10\(^\circ\) beamwidth)
- \(\sigma^2 \sum_i |w_i|^2 \) (noise power in \(y \))
Discrete-time linear system, input $u(t) \in \mathbb{R}^p$, output $y(t) \in \mathbb{R}^q$.

Sample convex constraints:

- $|u_i(t)| \leq U$ (limit on input amplitude)
- $|u_i(t + 1) - u_i(t)| \leq S$ (limit on input slew rate)
- $l_i(t) \leq y_i(t) \leq u_i(t)$ (envelope bounds for output)

Sample convex objective:

- $\max_{i,t} |y_i(t) - y_{i,\text{des}}(t)|$ (peak tracking error)

Immediately extends to multi-plant (robust) case, predictive control, etc.
Input design example (M. Grant)

- rapid thermal processor
- 3 inputs, 8 outputs, 8 states
- amplitude limits on inputs
- slew limits on 3 outputs
- minimize peak tracking error on 5 outputs
Linear controller design

(static case for simplicity)

linear plant P given; design linear feedback controller K

closed-loop I/O relation: $z = Hw$,

$$H = P_{zw} + P_{zu}K(I - P_{yu}K)^{-1}P_{yw}$$

most specifications, objectives convex in H, not K
Transform to convex problem

Linear-fractional transformation:

\[Q \triangleq K(I - P_{yu}K)^{-1} \]

\[H = P_{zw} + P_{zu}QP_{yw} \]: constraints, objectives are convex in \(Q \)

- design \(Q \) via convex programming
- set \(K = Q(I + P_{yu}Q)^{-1} \)

Extends to dynamic case . . .

- time and frequency domain limits on actuator effort, regulation, tracking error
- some robustness specifications
Quadratic Lyapunov function search

Is there a quadratic Lyapunov function \(V(z) \triangleq z^T P z \) that proves stability of differential inclusion

\[
\dot{x}(t) = A(t)x(t), \quad A(t) \in \text{Co}\{A_1, \ldots, A_L\}
\]

Equivalent to: is there \(P \) s.t.

\[
P > 0, \quad A_i^T P + P A_i < 0, \quad i = 1, \ldots, L
\]

- a convex feasibility problem in \(P \); no analytic solution but readily solved
- looks simple, but more powerful than many well known methods (multivariable circle criteria, \ldots)
- extends to a huge variety of other problems
Other examples

- synthesis of Lyapunov functions, state feedback
- filter/controller realization
- system identification problems
- truss design
- VLSI transistor sizing
- design centering
- computational geometry
Outline

- Convex optimization
- Some examples
- Interior-point methods
Interior-point convex programming methods

History:

- Dikin; Fiacco & McCormick’s SUMT (1960s)
- Karmarkar’s LP algorithm (1984); many more since then
- Nesterov & Nemirovsky’s general formulation (1989)

General:

- # iterations small, grows slowly with problem size (typical number: 5 – 50)
- each iteration is basically least-squares problem
Semidefinite programming (SDP)

Semidefinite program:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad F_0 + \sum_{i=1}^m x_i F_i \succeq 0
\end{align*}
\]

\[
F_i = F_i^T \in \mathbb{R}^{n \times n}, \quad c \text{ are given.}
\]

- special but wide class of nonlinear convex problems
- can pose most system and control theory convex problems as
 SDPs
- powerful interior-point methods for SDPs recently developed
 (Nesterov & Nemirovsky, Alizadeh, others)
\textbf{SDP examples}

- \textit{linear program:}

 \[
 \begin{align*}
 & \text{minimize} & c^T x \\
 & \text{subject to} & Ax \leq b
 \end{align*}
 \]

 as SDP: take \(F(x) = \text{diag}(b - Ax) \)

- \textit{matrix norm minimization:}

 \[
 \begin{align*}
 & \text{minimize} & \| A(x) \| \\
 & A(x) & \triangleq A_0 + x_1 A_1 + \cdots + x_k A_k
 \end{align*}
 \]

 as SDP:

 \[
 \begin{align*}
 & \text{minimize} & t \\
 & \text{subject to} & \begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0
 \end{align*}
 \]
Duality

primal SDP:

\[p^* = \min \ c^T x \]
subject to \(F_0 + \sum_{i=1}^m x_i F_i \geq 0 \)

\[d^* = \max \ -\text{Tr} F_0 Z \]
subject to \(\text{Tr} F_i Z = c_i, \quad i = 1, \ldots, m \)

\(Z \geq 0 \)

- \(Z \) dual feasible \(\Rightarrow \) \(p^* \geq -\text{Tr} F_0 Z \) (easy)
- \(p^* = d^* \) (usually)

\textbf{duality gap} \(\triangleq \ c^T x + \text{Tr} F_0 Z \)

- \(\text{gap} \geq 0, \text{gap} = 0 \) at optimum
Primal-dual potential function

for x, Z strictly feasible

$$\varphi(x, Z) \triangleq q \log(\text{gap}) + \log \det F(x)^{-1} + \log \det Z^{-1}$$

$q > n$ is a parameter

- first term rewards decrease in gap
- second term keeps $F(x) > 0$
- third term keeps $Z > 0$

main properties:

- $\text{gap} \leq \exp \frac{1}{q-n} \varphi(x, Z)$
- φ unbounded below
- hence, can solve SDP by minimizing smooth function φ
Primal-dual potential reduction algorithm

initialization: \(x = x^{(0)}, \ Z = Z^{(0)} \) strictly feasible

repeat

1. find search directions \(\delta x, \delta Z \) by solving least-squares problem†
2. plane search: minimize \(\varphi (x + \alpha \delta x, Z + \beta \delta Z) \) over \(\alpha, \beta \in \mathbb{R} \)
3. update: \(x := x + \alpha \delta x; \ Z := Z + \beta \delta Z \)

until duality gap \(\leq \epsilon \).

- **theorem:** \(\varphi(x, Z) - \varphi(x^+, Z^+) \geq \delta > 0 \)
- **corollary:** (polynomial) convergence
- in practice, \(\varphi(x, Z) - \varphi(x^+, Z^+) \gg \delta \)

†least-squares problem, \(\delta > 0 \) depend on particular method
Typical example: matrix norm minimization

minimize $\|A_0 + x_1 A_1 + \cdots + x_k A_k\|

two specific problems: 5 matrices, 5×5; 50 matrices, 50×50
Cost per iteration:
computing Newton direction, a least squares problem with same structure as original problem (Toeplitz, etc.)

Hence:
cost of solving convex problem
≈ 5 – 50 × cost of solving similar least-squares problem

Hence:
can solve least-squares problem efficiently
⇒ can solve convex problem efficiently
Exploiting problem structure via CG

Conjugate Gradients: solve $\min_x \|Ax - b\|$, $x \in \mathbb{R}^m$ via m evaluations of $x \to Ax$ and $y \to A^T y$

- roughly: can evaluate response and adjoint fast
 \implies can solve least-squares problem fast
 (\implies can solve convex problem fast)
- don’t need exact solution for interior-point methods
 (allows early termination)
- preconditioning (problem specific)

Examples:

- FIR filter: fast $(N \log N)$ convolution
- Input design: system state, co-state simulation
- Lyapunov function search: matrix (Kronecker) structure
FIR filter design example (M. Grant)

- forward, adjoint operator: FFT
- \#taps \approx 2 \cdot \#variables
- \#constraints
 \approx 10 \cdot \#variables
- > 1000 variables, > 10000 constraints solved in 4 min, 4Mb
Input design example (M. Grant)

- forward, adjoint operator: state, co-state simulation
- \#vbles = 3 \cdot \#time steps
- \#constr \approx 7 \cdot \#vbles
- > 1500 variables, > 10000 constraints solved in 12 min, 5Mb
Lyapunov function search (Vandenberghe)

Feasibility problem in $P = P^T \in \mathbb{R}^{k \times k}$

\[P > 0, \quad A_i^T P + PA_i < 0, \quad i = 1, \ldots, L \]

- two matrices, size $k \times k$
- $k = 10, \ldots, 70$
- # vbles $\approx 50, \ldots, 2500$
- LS: $O(k^{5.7})$; CG: $O(k^{3.9})$
- $k = 30$ (# vbles ≈ 450)
 LS: 12 min; CG: 30 sec
Exploiting structure in convex problems

- can evaluate response, adjoint fast
- ↓
- can solve least-squares problem fast
- ↓
- can solve convex problem fast

(exploiting structure)

(using conj grad)

(using int-pt methods)
Main point

- Many problems arising in engineering analysis and design can be cast as *convex optimization problems*.
- Hence, can be efficiently solved by *interior-point methods* that *exploit problem structure*.
(A few) references

- Vandenberghe and Boyd, *Semidefinite programming*, ftp isl.stanford.edu
Software

- **LMI-lab** (Gahinet, Nemirovsky, Laub, Chilali)
 Matlab toolbox for control analysis/design
- **LMI-tool** (El Ghaoui, Delebecque, Nikoukhah)
- **SP** (Vandenberghe, Boyd)
 C with Matlab interface (ftp://isl.stanford.edu)
- **SDPSOL** (Boyd, Wu)
 parser/solver for SDPs (ftp://isl.stanford.edu)
...the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993