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Abstract

The optimal solution of a geometric program (GP) can be sensitive to variations
in the problem data. Robust geometric programming can systematically alleviate the
sensitivity problem by explicitly incorporating a model of data uncertainty in a GP
and optimizing for the worst-case scenario under this model. However, it is not known
whether a general robust GP can be reformulated as a tractable optimization problem
that interior-point or other algorithms can efficiently solve. In this paper we propose
an approximation method that seeks a compromise between solution accuracy and
computational efficiency.

The method is based on approximating the robust GP as a robust linear program
(LP), by replacing each nonlinear constraint function with a piecewise-linear (PWL)
convex approximation. With a polyhedral or ellipsoidal description of the uncertain
data, the resulting robust LP can be formulated as a standard convex optimization
problem that interior-point methods can solve. The drawback of this basic method is
that the number of terms in the PWL approximations required to obtain an acceptable
approximation error can be very large. To overcome the “curse of dimensionality”
that arises in directly approximating the nonlinear constraint functions in the original
robust GP, we form a conservative approximation of the original robust GP, which
contains only bivariate constraint functions. We show how to find globally optimal
PWL approximations of these bivariate constraint functions.

Key words: Geometric programming, linear programming, piecewise-linear func-
tion, robust geometric programming, robust linear programming, robust optimization.
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1 Introduction

1.1 Geometric programming

The convex function lse : Rk → R, defined as

lse(z1, . . . , zk) = log(ez1 + · · ·+ ezk), (1)

is called the (k-term) log-sum-exp function. (We use the same notation, no matter what k is;
the context will always unambiguously determine the number of exponential terms.) When
k = 1, the log-sum-exp function reduces to the identity.

A geometric program (in convex form) has the form

minimize cT y
subject to lse(Aiy + bi) ≤ 0, i = 1, . . . , m,

Gy + h = 0,
(2)

where the optimization variable is y ∈ Rn and the problem data are Ai ∈ RKi×n, bi ∈ RKi,
c ∈ Rn, G ∈ Rl×n, and h ∈ Rl. We call the inequality constraints in the GP (2) log-sum-exp
(inequality) constraints. In many applications, GPs arise in posynomial form, and are then
transformed by a standard change of coordinates and constraint functions to the convex
form (2); see Appendix A. This transformation does not in any way change the problem
data, which are the same for the posynomial form and convex form problems.

Geometric programming has been used in various fields since the late 1960s; early appli-
cations of geometric programming can be found in the books [Avr80, DPZ67, Zen71] and the
survey papers [Eck80, Pet76, BKVH05]. More recent applications can be found in various
fields including circuit design [BKPH05, CHP00, DBHL01, DGS03, Her02, HBL01, MHBL00,
Sap96, SNLS05, SRVK93, YCLW01], chemical process control [WGW86], environment qual-
ity control [Gre95], resource allocation in communication systems [DR92], information theory
[CB04, KC97], power control of wireless communication networks [KB02, OJB03], and sta-
tistics [MJ83].

Algorithms for solving geometric programs appeared in the late 1960s, and research on
this topic continued until the early 1990s; see, e.g., [ADP75, RB90]. A huge improvement
in computational efficiency was achieved in 1994, when Nesterov and Nemirovsky developed
provably efficient interior-point methods for many nonlinear convex optimization problems,
including GPs [NN94]. A bit later, Kortanek, Xu, and Ye developed a primal-dual interior-
point method for geometric programming, with efficiency approaching that of interior-point
linear programming solvers [KXY97].

1.2 Robust geometric programming

In robust geometric programming (RGP), we include an explicit model of uncertainty or
variation in the data that defines the GP. We assume that the problem data (Ai, bi) depend
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affinely on a vector of uncertain parameters u, that belongs to a set U ⊆ RL:

(

Ãi(u), b̃i(u)
)

=



A0
i +

L
∑

j=1

ujA
j
i , b0

i +
L
∑

j=1

ujb
j
i



 , u ∈ U ⊆ RL. (3)

The data variation is described by Aj
i ∈ RKi×n, bj

i ∈ RKi, and the uncertainty set U . We
assume that all of these are known.

We consider two types of uncertainty sets. One is polyhedral uncertainty, in which U is a
polyhedron, i.e., the intersection of a finite number of halfspaces:

U =
{

u ∈ RL
∣

∣

∣ Du � d
}

, (4)

where d ∈ RK, D ∈ RK×L, and the symbol � denotes the componentwise inequality between
two vectors: w � v means wi ≤ vi for all i. The other is ellipsoidal uncertainty, in which U
is an ellipsoid:

U =
{

ū + Pρ
∣

∣

∣ ‖ρ‖2 ≤ 1, ρ ∈ RL
}

, (5)

where ū ∈ RL and P ∈ RL×L. Here, the matrix P describes the variation in u and can be
singular, in order to model the situation when the variation in u is restricted to a subspace.
Note that due to the affine structure in (3), the ellipsoid uncertainty set U can be transformed
to a unit ball (i.e., P can be assumed to be an identity matrix) without loss of generality.

A (worst-case) robust GP (RGP) has the form

minimize cT y

subject to supu∈U lse
(

Ãi(u)y + b̃i(u)
)

≤ 0, i = 1, . . . , m,

Gy + h = 0.

(6)

The inequality constraints in the RGP (6) are called robust log-sum-exp (inequality) con-
straints.

The RGP (6) is a special type of robust convex optimization problem; see, e.g., [BTN98]
for more on robust convex optimization. Unlike the various types of robust convex optimiza-
tion problems that have been studied in the literature [BTN99, BTNR02, GL97, GL98, GI03],
the computational tractability of the RGP (6) is not clear; it is not yet known whether one
can reformulate a general RGP as a tractable optimization problem that interior-point or
other algorithms can efficiently solve.

1.3 Brief overview and outline

We first observe that a log-sum-exp function can be approximated arbitrarily well by a
piecewise-linear (PWL) convex function. Using these approximations, the RGP can be
approximated arbitrarily well as a robust LP, with polyhedral or ellipsoidal data uncer-
tainty. Since robust LPs, with polyhedral or ellipsoidal uncertainty, can be tractably solved
(see Appendix B), this gives us an approximation method for the RGP. In fact, this gen-
eral approach can be used for any robust convex optimization problem with polyhderal
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or ellipsoidal uncertainty. Piecewise-linear approximation has been used in prior work on
approximation methods for nonlinear convex optimization problems, since it allows us to
approximately solve a nonlinear convex problem by solving a linear program; see, e.g.,
[BTN01, FM88, Gli00, Tha78].

The problem with the basic PWL approach is that the number of terms needed in a PWL
approximation of the log-sum-exp function (1), to obtain a given level of accuracy, grows
rapidly with the dimension k. Thus, the size of the resulting robust LP is prohibitively
large, unless all Ki are small. To overcome this “curse of dimensionality”, we propose the
following approach. We first replace the RGP with a new RGP, in which each log-sum-exp
function has only one or two terms. This transformation to a two-term GP is exact for a
nonrobust GP, and conservative for a RGP. We then use the PWL approximation method
on the reduced RGP.

In §2, we show how PWL approximation of the constraint functions in the RGP (6) leads
to a robust LP. We also describe how to approximate a general RGP with a more tractable
RGP which contains only bivariate constraint functions.

In §3, we develop a constructive algorithm to solve the best PWL convex lower and upper
approximation problems for the bivariate log-sum-exp function. Some numerical examples
are presented in §4. Our conclusions are given in §5. Supplementary material is collected in
the appendices.

2 Solving robust GPs via PWL approximation

2.1 Robust LP approximation

Suppose we have PWL lower and upper bounds on the log-sum-exp function in the ith
constraint of the RGP (6),

max
j=1,...,Ii

{

fT

ij
y + g

ij

}

≤ lse(y) ≤ max
j=1,...,Ji

{

f
T

ijy + gij

}

, ∀ y ∈ RKi,

where f
ij
, f ij ∈ RKi and g

ij
, gij ∈ R. Replacing the log-sum-exp functions in the RGP (6)

with the PWL bounds above, we obtain the two problems

minimize cT y

subject to supu∈U maxj=1,...,Ji

{

f
T

ijÃi(u)y + f
T

ij b̃i(u) + gij

}

≤ 0, i = 1, . . . , m,

Gy + h = 0,

(7)

and

minimize cT y

subject to supu∈U maxj=1,...,Ii

{

fT

ij
Ãi(u)y + fT

ij
b̃i(u) + g

ij

}

≤ 0, i = 1, . . . , m,

Gy + h = 0.

(8)
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These problems can be reformulated as the robust LPs

minimize cT y

subject to supu∈U

{

f
T

ijÃi(u)y + f
T

ij b̃i(u) + gij

}

≤ 0, i = 1, . . . , m, j = 1, . . . , Ji,

Gy + h = 0,

(9)

and

minimize cT y

subject to supu∈U

{

fT

ij
Ãi(u)y + fT

ij
b̃i(u) + g

ij

}

≤ 0, i = 1, . . . , m, j = 1, . . . , Ii,

Gy + h = 0.

(10)

With a polyhedral uncertainty set, these can be cast as (larger) LPs, and for ellipsoidal
uncertainty sets, they can be cast as SOCPs; see Appendix B.

Note that an optimal solution, say y, of the robust LP (9) is also a feasible solution to
the RGP (6). In other words, the robust LP (9) gives a conservative approximation of the
RGP (6). The robust LP (10) has the opposite property: its feasible set covers the feasible
set of the RGP (6). Therefore, the optimal value of the robust LP (10), say, cT y, gives a
lower bound on the optimal value of the original RGP (6), and in particular, allows us to
bound the error in the feasible, suboptimal point y, for the RGP. In other words, we have

0 ≤ cT (y − y?) ≤ cT (y − y), (11)

where y? is an optimal solution of the RGP. Finally, it is not difficult to see that as the PWL
convex approximations of the log-sum-exp functions are made finer, the optimal values of
the robust LPs (9) and (10) get closer to that of the RGP (6).

2.2 Tractable robust GP approximation

The RGP (6) can be reformulated as another RGP

minimize c̄T η

subject to supu∈U lse
(

(āi1 + B̄i1u)Tη, . . . , (āiKi
+ B̄iKi

u)T η
)

≤ 0, i = 1, . . . , m,

Ḡη + h̄ = 0

(12)

with the optimization variables η = (y, t) ∈ Rn × R. Here the problem data

c̄ ∈ Rn+1, Ḡ ∈ R(l+1)×(n+1), h̄ ∈ Rl+1, āis ∈ Rn+1, B̄is ∈ R(n+1)×L

can be readily obtained from the problem data of the RGP (6); see Appendix C for the
details. The RGPs (6) and (12) are equivalent: ȳ ∈ Rn is feasible to (6) if and only if
(ȳ, t̄) ∈ Rn+1 is feasible to (12) for some t̄ ∈ R. In the following we form a conservative
approximation of the RGP (12), in which all the nonlinear constraint functions are bivariate.

Consider a k-term robust log-sum-exp constraint in the following generic form:

sup
u∈U

lse
(

(a1 + B1u)T η, . . . , (ak + Bku)Tη
)

≤ 0, (13)
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where ai ∈ Rn+1, Bi ∈ R(n+1)×L. An approximate reduction procedure, described in Appen-
dix D, shows that η ∈ Rn+1 satisfies (13) if there exists z = (z1, . . . , zk−2) ∈ Rk−2 such that
(η, z) satisfies the following system of k − 1 two-term robust log-sum-exp constraints:

sup
u∈U

lse
(

(a1 + B1u)Tη, z1

)

≤ 0,

sup
u∈U

lse
(

(as+1 + Bs+1u)T η − zs, zs+1 − zs

)

≤ 0, s = 1, . . . , k − 3, (14)

sup
u∈U

lse
(

(ak−1 + Bk−1u)Tη − zk−2, (ak + Bku)T η − zk−2

)

≤ 0,

in which all the constraint functions are bivariate. We will call (14) a “two-term (conserva-
tive) approximation” of the k-term robust log-sum-exp constraint (13).

The idea of tractable RGP approximation is simple: we replace every robust log-sum-exp
constraint(with more than two terms) by its two-term conservative approximation to obtain
a “two-term RGP”, which gives a conservative approximation of the original RGP. Although
with more variables and constraints, the two-term RGP is much more tractable, in the sense
that we can approximate the bivariate log-sum-exp function well with a small number of
hyperplanes, as described in §3. Then the two-term RGP can be further solved via robust
LP approximation, as shown in §2.1.

Now we give an exact expression of the two-term RGP approximation. First note that a
one-term robust log-sum-exp constraint is simply a robust linear inequality. Since no PWL
approximation for a one-term constraint is necessary, we can simply keep all the one-term
constraints of a RGP in its two-term RGP approximation (and the consequent robust LP
approximation). Therefore for simplicity, in the following we assume all the robust log-
sum-exp constraints in RGP (12) have at least two terms, i.e., Ki ≥ 2, i = 1, . . . , m. The
two-term RGP has the form

minimize ĉT x

subject to supu∈U lse
(

(â1
i + B̂1

i u)Tx, (â2
i + B̂2

i u)Tx
)

≤ 0, i = 1, . . . , Kc,

Ĝx + ĥ = 0,

(15)

where the optimization variables are x = (y, t, z) ∈ Rn × R × RKv , and the problem data
are

âj
i ∈ Rn+Kv+1, B̂j

i ∈ R(n+Kv+1)×L, i = 1, . . . , Kc, j = 1, 2,

ĉ = (c̄, 0) ∈ Rn+Kv+1, Ĝ = [Ḡ 0] ∈ R(l+1)×(n+Kv+1), ĥ = h̄ ∈ Rl+1.

Here Kv =
∑m

i=1(Ki − 2) is the number of additional variables and Kc =
∑m

i=1(Ki − 1) is the
number of two-term log-sum-exp constraints.

With general uncertainty structures, the RGP (15) is a conservative approximation of
the original RGP (6). In other words, if x̂ = (ŷ, t̂, ẑ) ∈ Rn × R × RKv is feasible to (15), ŷ
is feasible to (6). Hence the optimal value of the two-term RGP (15), if feasible, is an upper
bound on that of the RGP (6).
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3 PWL approximation of two-term log-sum-exp func-

tion

There has been growing interest in approximation and interpolation with convexity con-
straints [Bea81, Bea82, GNP95, Hu91, MR78]. However, relatively little attention has been
paid to the best PWL convex approximation problem for multivariate, or even bivariate, con-
vex functions. (A heuristic method, based on the K-means clustering algorithm, is developed
in [MB05].) In this section, the problem of finding the best PWL convex approximation of
the two-term (i.e., bivariate) log-sum-exp function is solved and a constructive algorithm is
provided.

3.1 Definitions

Let intX denote the interior of X ⊆ Rm. A function h : Rm → R is called (r-term)
piecewise-linear if there exists a partition of Rm as

Rm = X1 ∪ X2 ∪ · · · ∪ Xr,

where intXi 6= ∅ and intXi ∩ intXj = ∅ for i 6= j, and a family of affine functions aT
1 x+ b1,

. . . , aT
r x+br such that h(x) = aT

i x+bi for x ∈ Xi. If an r-term PWL function h is convex, it
can be expressed as the maximum of r affine functions: h(x) = max{aT

1 x+ b1, . . . , a
T
r x+ br}.

(See, e.g., [BV04].) Let Pm
r denote the set of r-term PWL convex functions from Rm into R.

Note that h ∈ P1
r if and only if there exist xi, i = 1, . . . , r − 1 and ai, bi, i = 1, . . . , r with

x1 < · · · < xr−1 and a1 < · · · < ar such that h can be expressed as

h(x) =











a1x + b1, x ∈ (−∞, x1],
aix + bi, x ∈ [xi−1, xi], i = 2, . . . , r − 1,
arx + br, x ∈ [xr−1, ∞).

The points x1, . . . , xr−1 are called the break points of h, and the affine functions aix+ bi, i =
1, . . . , r are called the segments.

Let f be a continuous function from Rm into R. A function h : Rm → R is called an r-
term PWL convex lower (respectively, upper) approximation to f if h ∈ Pm

r and h(x) ≤ f(x)
(respectively, h(x) ≥ f(x)) for all x ∈ Rm. An r-term PWL convex lower (respectively, up-
per) approximation f

r
∈ Pm

r (respectively, f r ∈ Pm
r ) to f is called a best r-term PWL convex

lower (respectively, upper) approximation if it has the minimum approximation error in the
uniform norm among all r-term PWL convex lower (respectively, upper) approximations
to f , which is denoted by εf (r) (respectively, εf(r)):

εf (r) = sup
x∈Rm

(

f(x) − f
r
(x)
)

= inf
h∈Pm

r

{

sup
x∈Rm

(f(x) − h(x))

∣

∣

∣

∣

∣

h(x) ≤ f(x), ∀ x ∈ Rm

}

,

εf (r) = sup
x∈Rm

(

f r(x) − f(x)
)

= inf
h∈Pm

r

{

sup
x∈Rm

(h(x) − f(x))

∣

∣

∣

∣

∣

h(x) ≥ f(x), ∀ x ∈ Rm

}

.
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3.2 Best PWL approximation of two-term log-sum-exp function

3.2.1 Equivalent univariate best approximation problem

Finding the best r-term PWL convex approximation to the two-term log-sum-exp function
is a “bivariate” best approximation problem over P2

r . In the following we show that this
bivariate best approximation problem can be simplified as an equivalent “univariate” best
approximation problem over P1

r .
We define the function φ : R → R as

φ(x) = log(1 + ex). (16)

Note that φ satisfies
lim

x→−∞
φ(x) = lim

x→∞
(φ(x) − x) = 0. (17)

Thus,

εφ(1) = inf
(a,b)∈R2

sup
x∈R

(φ(x) − ax − b) = ∞, (18)

εφ(2) = sup
x∈R

(φ(x) − max{0, x}) = log 2. (19)

Now, note that the two-term log-sum-exp function can be expressed as

lse(y1, y2) = y1 + φ(y2 − y1) = y2 + φ(y1 − y2), ∀ (y1, y2) ∈ R2. (20)

Therefore we see from (18–20) that the two-term log-sum-exp function cannot be approxi-
mated by a single affine function with a finite approximation error over R2, but has the unique
best two-term PWL convex lower approximation h2 : R2 → R and upper approximation
h2 : R2 → R defined as h2(y1, y2) = max{y1, y2} and h2(y1, y2) = max{y1 + log 2, y2 + log 2}
respectively.

From now on, we restrict our discussion to the case r ≥ 3. The following proposition
establishes the uniqueness and some useful properties of the best r-term PWL convex lower
approximation φ

r
to φ for r ≥ 3.

Proposition 1. For r ≥ 3, there exist x1, . . . , xr−1 and (a?
i , b

?
i ) ∈ R2, i = 1, . . . , r − 2 with

x1 < · · · < xr−1, 0 < a?
1 < a?

2 < · · · < a?
r−2 < 1, (21)

a?
i + a?

r−i−1 = 1, b?
i = b?

r−i−1, i = 1, . . . , r − 2, (22)

such that the function φ has the unique best r-term PWL convex lower approximation φ
r

defined as

φ
r
(x) =











0, x ∈ (−∞, x1],
a?

i x + b?
i , x ∈ [xi, xi+1], i = 1, . . . , r − 2,

x, x ∈ [xr−1, ∞).
(23)

Moreover, there exist x̃1, . . . , x̃r−2 ∈ R which satisfy

x1 < x̃1 < x2 < x̃2 < · · · < xr−2 < x̃r−2 < xr−1
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such that the segments a?
1x + b?

1, . . . , a
?
r−2x + b?

r−2 are tangent to φ at the points x̃1, . . . , x̃r−2

respectively. Finally, the maximum approximation error occurs only at the break points of φ
r
:

φ(x) − φ
r
(x) < εφ(r), x 6∈ {x1, . . . , xr−1},

φ(xi) − φ
r
(xi) = εφ(r), i = 1, . . . , r − 1.

The proof of Proposition 1 is straightforward but lengthy, due to many cases and subcases
that have to be probed. The reader interested in the complete proof is referred to [HKB06].

As a consequence of Proposition 1 and (20), we have the following corollary.

Corollary 1. For r ≥ 3, the unique best r-term PWL convex lower approximation hr :
R2 → R of the two-term log-sum-exp function is

hr(y1, y2) = max
{

y1, a
?
r−2y1 + a?

1y2 + b?
1, a

?
r−3y1 + a?

2y2 + b?
2, . . . , a

?
1y1 + a?

r−2y2 + b?
r−2, y2

}

(24)
and the unique best r-term PWL convex upper approximation hr : R2 → R is

hr(y1, y2) = hr(y1, y2) + εφ(r), (25)

where a?
i , b

?
i , i = 1, . . . , r − 2 are the coefficients of the segments of φ

r
defined in (23).

The proof is given in Appendix E.
This corollary shows that both the best r-term PWL convex upper and lower approxima-

tions to the two-term log-sum-exp function can be readily obtained, provided that φ
r
is given.

Hence we can restrict our attention on solving the best PWL convex lower approximation
problem for the univariate function φ.

3.2.2 Constructive algorithm

Proposition 1 implies that a function h ∈ P1
r (r ≥ 3) with r − 1 break points x1 < · · · <

xr−1 solves the best PWL convex lower approximation problem for φ with approximation
error ε ∈ (0, log 2) (i.e., h ≡ φ

r
and ε = εφ(r)) if and only if

h(x) ≤ φ(x), ∀ x ∈ R, (26)

lim
x→−∞

h(x) − φ(x) = 0, lim
x→∞

h(x) − φ(x) = 0, (27)

h(xi) − φ(xi) = ε, i = 2, . . . , r − 2, (28)

x1 = log(eε − 1), (29)

xr−1 = − log(eε − 1), (30)

and there exist x̃1, . . . , x̃r−2 ∈ R such that

h(x̃i) − φ(x̃i) = 0, i = 1, . . . , r − 2, (31)

x1 < x̃1 < x2 < x̃2 < · · · < xr−2 < x̃r−2 < xr−1. (32)

Using these properties of the best r-term best PWL convex lower approximation, for any
given ε ∈ (0, log 2) and r ≥ 3, the following algorithm can verify if ε = εφ(r) holds.
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given ε ∈ (0, log 2), r ≥ 3

define xε = log(eε − 1) and xε = − log(eε − 1)

k := 1, xε
1 := xε

repeat

1. find the line y = aε
kx + bε

k passing through the point (xε
k, φ(xε

k) − ε) and tangent
to the curve y = φ(x) at a point (x̃ε

k, φ(x̃ε
k)) with x̃ε

k > xε
k

2. find xε
k+1 > x̃ε

k such that aε
kx

ε
k+1 + bε

k = φ(xε
k+1) − ε

3. k := k + 1

until k ≥ r − 1

This algorithm is illustrated in Figure 1.
Now, define an r-term PWL convex function hε : R → R as

hε(x) = max{0, aε
1x + bε

1, . . . , a
ε
r−2x + bε

r−2, x}.

Note that xε
1 < · · · < xε

r−1 and hε satisfy (26–29), and x̃ε
1 < · · · < x̃ε

r−2 satisfies (31–32).
Thus hε ≡ φ

r
if and only if (30) holds, which further implies

ε = εφ(r) ⇐⇒ xε
r−1 = xε. (33)

Moreover, (30) implies

ε < εφ(r) ⇐⇒ xε
r−1 < xε (34)

ε > εφ(r) ⇐⇒ xε
r−1 > xε. (35)

Observing (33–35), we can see that the following simple bisection algorithm finds εφ(r)
and φ

r
for any given r ≥ 3.

given r ≥ 3 and δ > 0

ε := 0 and ε := log 2

repeat

1. ε := (ε + ε)/2
2. find the points xε, xε, the segments aε

kx + bε
k, k = 1, . . . , r − 1, and the break

points xε
k, k = 1, . . . , r − 1 by the algorithm described above

3. if xε
r−1 > xε, ε := ε; otherwise, ε := ε

until |xε
r−1 − xε| ≤ δ

let εδ = ε and define an r-term PWL convex function φδ

r
: R → R as

φδ

r
(x) = max{0, aε

1x + bε
1, . . . , a

ε
r−2x + bε

r−2, x}

Here, it is easy to see that

lim
δ→0

sup
x∈R

|φδ

r
(x) − φ

r
(x)| = 0, lim

δ→0
εδ = εφ(r),

i.e., δ > 0 controls the tolerance.
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Figure 1: An illustration of the algorithm which checks if ε = εφ(r) holds for given ε ∈ (0, log 2)
and r ≥ 3. In this example we let ε = 0.3 and r = 3. Since xε

2 > xε, we can conclude that
εφ(3) < 0.3.

3.2.3 Some approximation results

Table 1 shows the best r-term PWL convex lower approximation to the two-term log-sum-exp
function for r = 2, . . . , 5 and the corresponding approximation error εφ(r). As will be shown
in §4, the approximation method described in §2.2 with the five-term PWL convex lower
approximation provides a quite accurate approximate solution for the RGP (6). In practical
applications we are usually interested in r in the range 5 ≤ r ≤ 10, but we can estimate the
error decay rate for large r. Figure 2 shows the optimal error εφ(r) for 2 ≤ r ≤ 1000. We
observe that the curve is almost linear in log-log scale, and using a least-squares fit to the
data points (log r, log εφ(r)), r = 2, . . . , 1000, we obtain

log εφ(r) ≈ −2.0215 log r + 0.3457.

In normal scale,

εφ(r) ≈
1.4130

r2.0215
≤

√
2

r2
.

4 Numerical examples

In the following we use some simple RGP numerical examples to demonstrate the robust LP
approximation method described in §2.1. Practical engineering applications, such as power
control in lognormal wireless communication channel [HKB05] and robust analog/RF circuit
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r Approximation Error εφ(r) Best r-Term PWL Convex Lower Approximation φ
r

2 0.693 max{ y1, y2 }

3 0.223
max{ y1,

0.500y1 + 0.500y2 + 0.693,
y2 }

4 0.109

max{ y1,

0.271y1 + 0.729y2 + 0.584,
0.729y1 + 0.271y2 + 0.584,
y2 }

5 0.065

max{ y1,

0.167y1 + 0.833y2 + 0.450,
0.500y1 + 0.500y2 + 0.693,
0.833y1 + 0.167y2 + 0.450,
y2 }

Table 1: Some best PWL convex lower approximations to the two-term log-sum-exp function.

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

PSfrag replacements

ε φ
(r

)

r

Figure 2: Approximation error εφ(r) vs. the degree of PWL approximation r in log-log scale: r =
2, . . . , 1000.
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design [YHL+05], have been reported to reveal the effectiveness of the tractable robust GP
approximation method proposed in §2.2.

4.1 Two random families

We consider the following RGP, with 500 optimization variables, 500 two-term log-sum-exp
inequality constraints, and no equality constraints:

RL :
minimize cT y

subject to supu∈U lse
(

(a1
i + B1

i u)T y, (a2
i + B2

i u)Ty
)

≤ 0, i = 1, . . . , 500.
(36)

The optimization variable is y ∈ R500, u ∈ RL represents the uncertain problem data, B1
i

and B2
i are sparse matrices in R500×L, and

c = 1 ∈ R500, a1
i = a2

i = −1 ∈ R500.

Here, 1 is the vector with all entries one. The uncertainty set U ⊆ RL is given by the box
in RL:

U =
{

u ∈ RL
∣

∣

∣ ‖u‖∞ ≤ 1
}

, (37)

where ‖u‖∞ denotes the `∞-norm of u.
We generated 20 feasible instances, R1

5, . . . , R
20
5 , of the RGP (36) with L = 5, by randomly

generating the sparse matrices B1
i , B

2
i ∈ R500×5, i = 1, . . . , 500 with sparsity density 0.1 and

nonzero entries independently uniformly distributed on the interval [−1, 1]. The family
{R1

5, . . . , R
20
5 } is denoted by F5. With L = 20, we also generated a family F20 of 20 feasible

instances, R1
20, . . . , R

20
20, in a similar way.

4.2 Approximation results

Before presenting the approximation results for the two random families F5 and F20, we
describe the error measure associated with the approximation method described in this
paper.

Suppose the r-term PWL approximation of the two-term log-sum-exp function is used to
obtain approximate solutions of the RGP (36). We call r the degree of PWL approximation,
and call the solution yr of the robust LP (7) corresponding to the RGP (36) the r-term upper
approximate solution and the solution y

r
of the robust LP (8) the r-term lower approximate

solution. Let yr and y? be an r-term upper approximate solution and an exact optimal
solution of the RGP (36) respectively. Then, ecT y?

is the optimal value of the corresponding
RGP in posynomial form. To express the difference between ecT y?

and ecT yr , we use the
fractional difference in percentage α, given by

α = 100

(

ecT yr

ecT y? − 1

)

= 100
(

ecT (yr−y?) − 1
)

.

We call the value α the r-term PWL approximation error (in percentage) of the RGP (36).

13
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Figure 3: Approximation results for the random family F5: the degree of PWL approximation r

vs. the mean αr(F5) of the r-term PWL approximation errors in log-log scale. The upper solid
line is obtained from linear least-squares fitting of the data points (log r, log αr(F5)), r = 3, 5, 7, 9
(shown as circles), while the lower one is obtained from linear least-squares fitting of the data points
(log r, log αr(F5)), r = 4, 6, 8, 10.

We first describe the approximation results for F5. For each r = 3, . . . , 10, we found the
r-term upper approximate solutions yr(1), . . . , yr(20) of the randomly generated instances
R1

5, . . . , R
20
5 . We also found the exact optimal solutions y?(1), . . . , y?(20) of the instances,

by solving the equivalent GPs with 16,000 inequality constraints obtained by replicating the
inequality constraints for all vertices of the uncertainty box U in (37).

Figure 3 shows the degree of PWL approximation r vs. the mean αr(F5) of the r-term
PWL approximation errors 100(ecT (yr(i)−y?(i)) − 1), i = 1, . . . , 20, where

αr(F5) =
1

20

20
∑

i=1

100
(

ecT (yr(i)−y?(i)) − 1
)

.

This figure shows that, in the region of interest, αr(F5) decreases faster than quadratically
with increasing r, since αr(F5), r = 3, 5, 7, 9 decrease faster than quadratically. The variance
of the r-term PWL approximation errors 100(ecT (yr(i)−y?(i)) − 1), i = 1, . . . , 20 was found to
be less than 10−6, regardless of r. The four-term PWL convex upper approximation therefore
provides an approximate solution with less than 1% approximation error quite consistently
for each of the randomly generated instances R1

5, . . . , R
20
5 .

Note that αr(F5) does not decrease monotonically with increasing r. This is mainly
because it does not necessarily hold that

r1 ≥ r2 =⇒ hr2
(y1, y2) ≥ hr1

(y1, y2) ≥ lse(y1, y2), ∀ (y1, y2) ∈ R2,

14



although

r1 ≥ r2 =⇒ sup
(y1,y2)∈R2

(

hr1
(y1, y2) − lse(y1, y2)

)

< sup
(y1,y2)∈R2

(

hr2
(y1, y2) − lse(y1, y2)

)

,

where hr denotes the best r-term PWL convex upper approximation to the two-term log-
sum-exp function.

We next describe the approximation results for F20. For each r = 3, . . . , 10, we found the
r-term upper approximate solutions yr(1), . . . , yr(20) of the randomly generated instances
R1

20, . . . , R
20
20. Replicating the inequality constraints for all the vertices was not possible for

the random family F20, since the corresponding uncertainty box U has approximately 106 ver-
tices. Thus, it is too expensive to find the optimal solutions y?(1), . . . , y?(20) of the instances
R1

20, . . . , R
20
20. Instead, we found the r-term lower approximate solutions y

r
(1), . . . , y

r
(20) of

the instances R1
20, . . . , R

20
20 for each r = 3, . . . , 10.

Note from (11) that

0 ≤ ecT (yr(i)−y?(i)) − 1 ≤ ecT (yr(i)−y
r
(i)) − 1, i = 1, . . . , 20.

The mean αr(F20) of the r-term approximation errors ecT (yr(i)−y
r
(i))−1, i = 1, . . . , 20 is there-

fore an upper bound on the mean αr(F20) of the r-term approximation errors ecT (yr(i)−y?(i))−
1, i = 1, . . . , 20:

αr(F20) =
1

20

20
∑

i=1

100
(

ecT (yr(i)−y
r
(i)) − 1

)

≥ αr(F20) =
1

20

20
∑

i=1

100
(

ecT (yr(i)−y?(i)) − 1
)

.

Figure 4 shows the degree of PWL approximation r vs. αr(F20). This figure shows that,
in the region of interest, αr(F20) decreases faster than quadratically with increasing r. The

variance of the upper bounds 100(ecT (yr(i)−y
r
(i)) − 1), i = 1, . . . , 20 was found to be less than

10−4, regardless of r. The seven-term PWL convex upper approximation therefore provides
an approximate solution with less than 5% approximation error consistently for each of the
instances R1

20, . . . , R
20
20.

5 Conclusions

We have described an approximation method for a RGP with polyhedral or ellipsoidal un-
certainty. The approximation method is based on conservatively approximating the original
RGP (6) with a more tractable robust two-term GP in which every nonlinear function in the
constraints is bivariate. The idea can be extended to a (small) k-term RGP approximation
in which every nonlinear function in the constraints has at most k exponential terms. The
extension relies on accurate PWL approximations of k-term log-sum-exp functions. We are
currently working on the extension using the heuristic for PWL approximation of convex
functions developed in [MB05].
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Figure 4: Approximation results for the random family F20: the degree of PWL approxima-
tion r vs. the upper bound αr(F20) on the mean αr(F20) of the r-term PWL approximation errors
in log-log scale. The solid line is obtained from linear least-squares fitting of the data points
(log r, log αr(F20)), r = 3, 4, . . . , 10, shown as circles.
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A Convex formulation of GP

Let Rn
++ denote the set of real n-vectors whose components are positive. Let x1, . . . , xn be n

real positive variables. A function f : Rn
++ → R, defined as

f(x) = d
n
∏

j=1

x
aj

j , (38)

where d ≥ 0 and aj ∈ R, is called a monomial. A sum of monomials, i.e., a function of the
form

f(x) =
K
∑

k=1

dk

n
∏

j=1

x
ajk

j , (39)

where dk ≥ 0 and ajk ∈ R, is called a posynomial (with K terms).
An optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m,

hi(x) = 1, i = 1, . . . , l,
(40)

where f0, . . . , fm are posynomials and h1, . . . , hp are monomials, is called a geometric pro-
gram in posynomial form. Here, the constraints xi > 0, i = 1, . . . , n are implicit. The
corresponding robust convex optimization problem is called a RGP in posynomial form.

We assume without loss of generality that the objective function f0 is a monomial whose
coefficient is one:

f0(x) =
n
∏

j=1

x
cj

j .

If f0 is not a monomial, we can equivalently reformulate the GP (40) as the following GP
whose objective function is a monomial:

minimize t
subject to f0(x)t−1 ≤ 1,

fi(x) ≤ 1, i = 1, . . . , m,
hi(x) = 1, i = 1, . . . , l,

where (x, t) ∈ Rn
++ × R++ are the optimization variables.

GPs in posynomial form are not (in general) convex optimization problems, but they can
be reformulated as convex problems by a change of variables and a transformation of the
objective and constraint functions. To show this, we define new variables yi = log xi, and
take the logarithm of the posynomial f of x given in (39) to get

f̃(y) = log(f(ey1 , . . . , eyn)) = log

(

K
∑

i=1

eaT
k

y+bk

)

= lse(aT
1 y + b1, . . . , a

T
Ky + bK),

where ak = (a1k, . . . , ank) ∈ Rn and bk = log dk, i.e., a posynomial becomes a sum of
exponentials of affine functions after the change of variables. (Note that if the posynomial f
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is a monomial, then the transformed function f̃ is an affine function.) This converts the
original GP (40) into a GP:

minimize cT y
subject to lse(aT

i1y + bi1, . . . , a
T
iKi

y + biKi
) ≤ 0, i = 1, . . . , m,

gT
i y + hi = 0, i = 1, . . . , l,

(41)

where aij ∈ Rn, i = 1, . . . , m, j = 1, . . . , Ki contain the exponents of the posynomial
inequality constraints, c ∈ Rn contains the exponents of the monomial objective function of
the original GP, and gi ∈ Rn, i = 1, . . . , l contain the exponents of the monomial equality
constraints of the original GP.

B Robust linear programming

Consider the robust LP

minimize cT x
subject to supu∈U(āi + Biu)Tx + bi ≤ 0, i = 1, . . . , m,

(42)

where the optimization variable is x ∈ Rn, u ∈ RL represents the uncertain problem data,
the set U ⊆ RL describes the uncertainty in u, and c ∈ Rn, āi ∈ Rn, Bi ∈ Rn×L, b ∈ Rm.
When the uncertainty set U is given by a bounded polyhedron or an ellipsoid, the robust
LP (42) can be cast as a standard convex optimization problem, as shown below.

B.1 Polyhedral uncertainty

Let the uncertainty set U be a polyhedron:

U =
{

u ∈ RL
∣

∣

∣Du � d
}

,

where D ∈ RK×L and d ∈ RK. We assume that U is non-empty and bounded. Using the
duality theorem for linear programming, we can equivalently reformulate the robust LP (42)
as the following LP:

minimize cT x
subject to DTzi = BT

i x, i = 1, . . . , m,
āT

i x + dT zi + bi ≤ 0, i = 1, . . . , m,
zi ≥ 0, i = 1, . . . , m,

(43)

where the optimization variables are (x, z1, . . . , zm) ∈ Rn × RK × · · · × RK.
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B.2 Ellipsoidal uncertainty

Without loss of generality, we assume that the uncertainty set U is a unit ball:

U =
{

u ∈ RL
∣

∣

∣ ‖u‖2 ≤ 1
}

.

Then, the robust LP (42) can be cast as the second-order cone program

minimize cT x
subject to aT

i x + ‖BT
i x‖2 + bi ≤ 0, i = 1, . . . , m.

See, e.g., [LVBL98] for details.

C Reformulation of the robust GP

We start with reformulating the RGP (6) as the equivalent RGP

minimize c̄T

[

y
t

]

subject to supu∈U lse

(

(

Ã0
i +

∑L
j=1 ujÃ

j
i

)

[

y
t

])

≤ 0, i = 1, . . . , m,

Ḡ

[

y
t

]

+ h̄ = 0,

(44)

where (y, t) ∈ Rn × R are the optimization variables, and the problem data are

c̄ = (c, 0) ∈ Rn+1, Ḡ =

[

G 0
0 1

]

∈ R(l+1)×(n+1), h̄ =

[

h
−1

]

∈ Rl+1,

Ãj
i =

[

Aj
i bj

i

]

∈ RKi×(n+1), i = 1, . . . , m, j = 0, 1, . . . , L.

Denote the sth row of Ãj
i as ãjT

is , s = 1, . . . , Ki, i.e.,

Ãj
i =









ãjT
i1
...

ãjT
iKi









∈ RKi×(n+1), i = 1, . . . , m, j = 0, 1, . . . , L.

Then the RGP (44) can be readily rewritten as the equivalent RGP (12) with the optimization
variables η = (y, t) ∈ Rn × R and the problem data

āis = ã0
is ∈ Rn+1, B̄is = [ ã1

is · · · ãL
is ] ∈ R(n+1)×L, s = 1, . . . , Ki, i = 1, . . . , m.
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D Details of the two-term robust GP approximation

Consider a k-term log-sum-exp constraint:

sup
u∈U

lse
(

(a1 + B1u)T η, . . . , (ak + Bku)Tη
)

≤ 0,

where ai ∈ Rn+1, Bi ∈ R(n+1)×L. It is easy to see that

sup
u∈U

lse
(

(a1 + B1u)T η, . . . , (ak + Bku)Tη
)

= sup
u∈U

lse
(

(a1 + B1u)T η, lse
(

(a2 + B2u)T η, . . . , (ak + Bku)T
))

≤ sup
u∈U

lse

(

(a1 + B1u)Tη, sup
u∈U

lse
(

(a2 + B2u)Tη, . . . , (ak + Bku)T η
)

)

.

Therefore a sufficient condition for the k-term robust log-sum-exp constraint (13) is that
there exists z1 ∈ R such that

sup
u∈U

lse
(

(a1 + B1u)Tη, z1

)

≤ 0, sup
u∈U

lse
(

(a2 + B2u)T η, . . . , (ak + Bku)Tη
)

≤ z1. (45)

Similarly, since

sup
u∈U

lse
(

(a2 + B2u)T η, . . . , (ak + Bku)Tη
)

≤ sup
u∈U

lse

(

(a2 + B2u)Tη, sup
u∈U

lse
(

(a3 + B3u)Tη, . . . , (ak + Bku)T η
)

)

,

a sufficient condition for (45) is that there exist z1, z2 ∈ R such that

sup
u∈U

lse
(

(a1 + B1u)Tη, z1

)

≤ 0,

sup
u∈U

lse
(

(a2 + B2u)Tη, z2

)

≤ z1,

sup
u∈U

lse
(

(a3 + B3u)Tη, . . . , (ak + Bku)T η
)

≤ z2.

Now it is easy to see that η satisfies (13) if there exists z = (z1, . . . , zk−2) ∈ Rk−2 such that
(η, z) satisfies the system of k − 1 two-term robust log-sum-exp constraints:

sup
u∈U

lse
(

(a1 + B1u)Tη, z1

)

≤ 0,

sup
u∈U

lse
(

(as+1 + Bs+1u)T η, zs+1

)

≤ zs, s = 1, . . . , k − 3,

sup
u∈U

lse
(

(ak−1 + Bk−1u)Tη, (ak + Bku)T η
)

≤ zk−2,

which is obviously equivalent to (14).
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E Proof of Corollary 1

The best PWL convex lower approximation problem for the two-term log-sum-exp function
can be formulated as

minimize sup(y1,y2)∈R2

(

lse(y1, y2) − max
i=1,...,r

{fi1y1 + fi2y2 + gi}
)

subject to lse(y1, y2) ≥ max
i=1,...,r

{fi1y1 + fi2y2 + gi}, ∀ (y1, y2) ∈ R2,
(46)

where fi1, fi2, gi ∈ R, i = 1, . . . , r are the optimization variables. Here, note from (20) that

lse(y1, y2) − max
i=1,...,r

{fi1y1 + fi2y2 + gi}
= y1 + φ(y2 − y1) − max

i=1,...,r
{fi1y1 + fi2y2 + gi}

= φ(y2 − y1) − max
i=1,...,r

{(fi1 + fi2 − 1)y1 + fi2(y2 − y1) + gi}.

Obviously, if sup(y1,y2)∈R2

(

lse(y1, y2) − max
i=1,...,r

{fi1y1 + fi2y2 + gi}
)

< ∞, then fi1 + fi2 = 1,

i = 1, . . . , r. Hence (46) is equivalent to

minimize sup(y1,y2)∈R2

(

y1 + φ(y2 − y1) − max
i=1,...,r

{fi1y1 + fi2y2 + gi}
)

subject to y1 + φ(y2 − y1) ≥ max
i=1,...,r

{fi1y1 + fi2y2 + gi}, ∀ (y1, y2) ∈ R2,

fi1 + fi2 = 1, i = 1, . . . , r.

(47)

This optimization problem is further equivalent to

minimize supx∈R
(φ(x) − maxi=1,...,r{cix + di})

subject to φ(x) ≥ maxi=1,...,r{cix + di}, ∀ x ∈ R
(48)

in which ci, di ∈ R, i = 1, . . . , r are the optimization variables. If c?
i , d

?
i ∈ R, i = 1, . . . , r

solve (48), then f ?
i1 = 1 − c?

i , f ?
i2 = c?

i , g?
i = d?

i , i = 1, . . . , r solve (47). Conversely, if
f ?

i1, f
?
i2, g

?
i ∈ R, i = 1, . . . , r solve (47), then c?

i = 1 − f ?
i1 = f ?

i2, d?
i = g?

i , i = 1, . . . , r
solve (48). Moreover, (47) and (48) have the same optimal value. Hence it is obvious from
Proposition 1 that the two-term log-sum-exp function has the unique best r-term PWL
convex lower approximation hr, given by (24).

We next show that the best r-term PWL convex upper approximation hr to the two-
term log-sum-exp function can be obtained from (25). To see this, we cast the optimization
problem (46) as

minimize ε
subject to max

i=1,...,r
{fi1y1 + fi2y2 + gi} ≤ lse(y1, y2), ∀ (y1, y2) ∈ R2,

lse(y1, y2) ≤ max
i=1,...,r

{fi1y1 + fi2y2 + gi} + ε, ∀ (y1, y2) ∈ R2,
(49)
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which is obviously equivalent to

minimize ε

subject to max
i=1,...,r

{f̃i1y1 + f̃i2y2 + g̃i} − ε ≤ lse(y1, y2), ∀ (y1, y2) ∈ R2,

lse(y1, y2) ≤ max
i=1,...,r

{f̃i1y1 + f̃i2y2 + g̃i}, ∀ (y1, y2) ∈ R2.

(50)

If ε, f
i1
, f

i2
, g

i
, i = 1, . . . , r solve (49) and ε, f i1, f i2, gi, i = 1, . . . , r solve (50) respec-

tively, then ε = ε = εφ(r), f
i1

= f i1, f
i2

= f i2, gi = g
i
+ ε, i = 1, . . . , r. Here, note that

the best PWL convex upper approximation problem for the two-term log-sum-exp function
can be formulated exactly as (50). Finally, it is easy to see from the uniqueness of the best
r-term PWL convex lower approximation to φ that the two-term log-sum-exp function has
the unique best r-term PWL convex upper approximation hr, given by (25).
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