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Compressed Sensing With Quantized Measurements
Argyrios Zymnis, Stephen Boyd, and Emmanuel Candès

Abstract—We consider the problem of estimating a sparse signal
from a set of quantized, Gaussian noise corrupted measurements,
where each measurement corresponds to an interval of values.
We give two methods for (approximately) solving this problem,
each based on minimizing a differentiable convex function plus
an regularization term. Using a first order method developed
by Hale et al, we demonstrate the performance of the methods
through numerical simulation. We find that, using these methods,
compressed sensing can be carried out even when the quantization
is very coarse, e.g., 1 or 2 bits per measurement.

Index Terms—Compressed sensing, , quantized measurement.

I. INTRODUCTION

W E consider the problem of estimating a sparse vector
from a set of noise corrupted quantized

measurements, where the quantizer gives us an interval for each
noise corrupted measurement. We give two methods for solving
this problem, each of which reduces to solving an regularized
convex optimization problem of the form

(1)

where is a separable convex differentiable function (which
depends on the method and the particular measurements),

is the measurement matrix, and is a positive weight
chosen to control the sparsity of the estimated value of .

We describe the two methods below, in decreasing order of
sophistication. Our first method is -regularized maximum
likelihood estimation. When the noise is Gaussian (or any other
log-concave distribution), the negative log-likelihood function
for , given the measurements, is convex, so computing the
maximum likelihood estimate of is a convex optimization
problem; we then add regularization to obtain a sparse
estimate. The second method is quite simple: We simply use
the midpoint, or centroid, of the interval, as if the measurement
model were linear. We will see that both methods work supris-
ingly well, with the first method sometimes outperforming the
second.

The idea of regularization to encourage sparsity is now
well established in the signal processing and statistics commu-
nities. It is used as a signal recovery method from incomplete
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measurements, known as compressed (or compressive) sensing
[1]–[4]. The earliest documented use of based signal revovery
is in deconvolution of seismic data [5], [6]. In statistics, the idea
of regularization is used in the well known Lasso algorithm
[7] for feature selection. Other uses of based methods include
total variation denoising in image processing [8], [9], circuit de-
sign [10], [11], sparse portfolio optimization [12], and trend fil-
tering [13].

Several recent papers address the problem of quantized com-
pressed sensing. In [14], the authors consider the extreme case
of sign (i.e., 1-bit) measurements, and propose an algorithm
based on minimizing an -regularized one-sided quadratic
function. Quantized compressed sensing, where quantization
effects dominate noise effects, is considered in [15]; the authors
propose a variant of basis pursuit denoising, based on using an

norm rather than an norm, and prove that the algorithm
performance improves with larger . In [16], an adaptation
of basis pursuit denoising and subspace sampling is proposed
for dealing with quantized measurements. In all of this work,
the focus is on the effect of quantization; in this paper, we
consider the combined affect of quantization and noise. Still,
some of the methods described above, in particular the use
of a one-sided quadratic penalty function, are closely related
to the methods we propose here. In addition, several of these
authors observed very similar results to ours, in particular, that
compressed sensing can be successfully done even with very
coarsely quantized measurements.

II. SETUP

We assume that , where is the noise
corrupted but unquantized measurement vector, ,
and are IID noises. The quantizer for is given by
a function , where is a finite set of codewords.
The quantized noise corrupted measurements are

This is the same as saying that .
We will consider the case when the quantizer codewords cor-

respond to intervals, i.e., . (Here we include
the lower limit but not the upper limit; but whether the endpoints
are included or not will not matter.) The values and are the
lower and upper limits, or thresholds, associated with the par-
ticular quantized measurement . We can have , or

, when the interval is infinite.
Thus, our measurements tell us that

where and are the lower and upper limits for the observed
codewords. This model is very similar to the one used in [17]
for quantized measurements in the context of fault estimation.
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III. METHODS

A. -Regularized Maximum Likelihood

The conditional probability of the measured codeword
given is

where is the th row of and

is the cumulative distribution function of the standard normal
distribution. The negative log-likelihood of given is given
by

which we can express as , where

(This depends on the particular measurement observed through
and .)
The negative log-likelihood function is a smooth convex

function. This follows from concavity, with respect to the vari-
able , of

where . (This is the log of the probability that an
random variable lies in .) Concavity of follows from
log-concavity of , which is the convolu-
tion of two log-concave functions (the Gaussian density and the
function that is one between and and zero elsewhere); see,
e.g., [18, Sec. 3.5.2]. This argument shows that is convex
for any measurement noise density that is log-concave.

We find the maximum likelihood estimate of by minimizing
. To incorporate the sparsity prior, we add regular-

ization, and minimize , adjusting to obtain
the desired or assumed sparsity in .

We can also add a prior on the vector , and carry out max-
imum a posteriori probability estimation. The function

where is the prior density of , is the negative log poste-
rior density, plus a constant. Provided the prior density on
is log-concave, this function is convex; its minimizer gives the
maximum a posteriori probability (MAP) estimate of . Adding

regularization we can trade off posterior probability with
sparsity in .

B. -Regularized Least Squares

The second method we consider is simpler, and is based on
ignoring the quantization. We simply use a real value for each
quantization interval, and assume that the real value is the un-
quantized, but noise corrupted measurement. For the measure-

Fig. 1. Comparison of the two penalty functions for a single measurement with
, , , , and .

ment , we let be some value, independent of , such as
the midpoint or the centroid (under some distribution) of .
Assuming the distribution of is , the centroid (or condi-
tional mean value) is

We can then express the measurement as , where
denotes the quantization error.

Of course is a function of ; but we use a standard
approximation and consider to be a random variable with zero
mean and variance

For the case of a uniform (assumed) distribution on , we have
; see, e.g., [19]. Now we take the approxima-

tion one step further, and pretend that is Gaussian. Under this
approximation we have , where .
We can now use least-squares to estimate , by minimizing the
(convex quadratic) function , where

To obtain a sparse estimate, we add regularization, and min-
imize . This problem is the same as the one
considered in [20].

C. Penalty Comparison

Fig. 1 shows a comparison of the two different penalty func-
tions used in our two methods, for a single measurement with

, , , and . We assume that
the distribution of the unquantized measurement is uniform on

, which implies that the quantization noise standard
deviation is about . We can (loosely) interpret the
penalty function for the second method as an approximation of
the true maximum-likelihood penalty function.

IV. A FIRST ORDER METHOD

Problems of the form (1) can be solved using a variety of al-
gorithms, including interior point methods [18], [20], projected
gradient methods [21], Bregman iterative regularization algo-
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rithms [22], [23], homotopy methods [24], [25], and a first order
method based on Nesterov’s work [26]. Some of these methods
use a homotopy or continuation algorithm, and so efficiently
compute a good approximation of the regularization path, i.e.,
the solution of problem (1) as varies.

We describe here a simple first order method due to Hale et
al.[27], which is a special case of a forward-backward splitting
algorithm for solving convex problems [28], [29]. We start from
the optimality conditions for (1). Using subdifferential calculus,
we obtain the following necessary and sufficient conditions for

to be optimal for (1):

,
,
,

(2)

These optimality conditions tell us in particular that is
optimal for (1) if and only if

(3)

We make use of this fact when selecting the initial value of
for our algorithm.

From (2) we deduce that for any , is optimal if and
only if

(4)
where and are the elementwise sign and nonneg-
ative part operators respectively, and denotes the Hadamard
(elementwise) product.

From (4) we see that is optimal if and only if it is a fixed
point of the following iteration:

(5)

In [27], the authors prove that this iteration converges to an op-
timal point of problem (1), starting from an arbitrary point

, as long as the largest eigenvalue of , the
Hessian of , is bounded. This condition holds in particular
for both and , since and .

The fixed point continuation method is summarized as fol-
lows:

given tolerance , parameters ,

initialize , ,

while

while

For more details about this algorithm, as well as a conver-
gence proof, see [27].

For completeness we give for each of the two penalty
functions that we consider. For the negative log-likelihood we
have

where , , . For
the quadratic penalty we have

We found that the parameter values

work well for a large number of problems.

V. NUMERICAL RESULTS

We now look at a numerical example with variables
and up to measurements. For all our simulations, we
use a fixed matrix whose elements are drawn randomly from
a distribution. For each individual simulation run
we choose the elements of randomly with

with probability 0.05,
with probability 0.05,
with probability 0.90.

Thus the expected number of nonzeros in is 25, and has
zero mean and standard deviation 0.316. The noise standard de-
viation is for all , so the signal-to-noise ratio of each
unquantized measurement is about 3.16.

We consider a number of possible measurement scenarios.
We vary , the number of quantization bins used from, 2 to
22 and , the number of measurements, from 50 to 500. We
choose the bin thresholds so as to make each bin have approxi-
mately equal probability, assuming a Gaussian distribution. For
each estimation scenario we use each of the two penalty func-
tions described in Section III. For the case of -regularized least
squares we set the approximation to be the approximate cen-
troid of , assuming has distribution (which it
does not). In both cases we choose so that has 25 nonzeros,
which is the expected number of nonzeros in . So here we are
using some prior information about the (expected) sparsity of
to choose .

We generate 100 random instances of and , while keeping
fixed, and we record the average percentage of true positive

and false positive in the sparsity pattern of the resulting estimate
of . Our results are summarized in Fig. 2, which shows the true
positive rate, and Fig. 3, which shows the false positive rate, as
a function of and for both methods.

What these figures show is that there is a large region in the
space in which we get very good estimation performance,

i.e., a high likelihood of getting the correct sparsity pattern in .
For more than 150 measurements and around ten quantization
bins (corresponding to a little more than 3 bits per measure-
ment), we can estimate the sparity pattern of quite accurately.
Both methods perform well in this region. This agrees with the
theoretical results on compressed sensing which state that each
nonzero entry in requires about four to five samples for accu-
rate estimation (which translates to an of around 100–125 for
our experiments).
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Fig. 2. True positive rate as a function of and for -ML (left) and -LS
(right).

Fig. 3. False positive rate as a function of and for -ML (left) and -LS
(right).

From the contour lines we can also see that -regularized
maximum likelihood outperforms the more naive -regularized
least squares, both in terms of true positive rate and false pos-
itive rate, especially when we have a large number of coarsely
quantized measurements (i.e., small and large ) or a small
number of finely quantized measurements (i.e., large and small

). This is an accordance with the results in [15] where the au-
thors show that a more sophisticated method outperforms the
simple basis pursuit denoising method when is large com-
pared to the sparsity of .

VI. CONCLUSIONS

We have presented two methods for carrying out com-
pressed sensing with quantized measurements: -regularized
maximum likelihood, and a more naive method based on

-regularized least squares. Numerical simulations show
that both methods work relatively well, with the first method
outperforming the second one for coarsely quantized measure-
ments. Other authors (e.g., [14]–[16]) have already observed
that compressed sensing can be carried out with very coarsely
quantized measurements, in cases when the cases in which the
quantization effects dominate the noise; our conclusion is that
the combined effects of noise and coarse quantization can be
simultaneously handled.
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