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Generalized Chebyshev inequalities

lower bounds on
Prob(X ∈ C)

• X ∈ Rn is a random variable with EX = a, EXXT = S

• C ⊆ Rn is defined by quadratic inequalities

C = {x | xTAix + 2bT
i x + ci < 0, i = 1, . . . ,m}

cf. the classical Chebyshev inequality on R

Prob(X < 1) ≥ 1
1 + σ2

if EX = 0, EX2 = σ2
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Probability bound via SDP

minimize 1 − ∑m
i=1 λi

subject to TrAiZi + 2bT
i zi + ciλi ≥ 0, i = 1, . . . ,m∑m

i=1

[
Zi zi

zT
i λi

]
	

[
S a
aT 1

]
[

Zi zi

zT
i λi

]

 0, i = 1, . . . ,m

• an SDP with variables Zi ∈ Sn, zi ∈ Rn, λi ∈ R

• optimal value is a sharp lower bound on Prob(X ∈ C)

• can construct a distribution with EX = a, EXXT = S that attains
the lower bound

3



The dual SDP

maximize 1 − TrSP − 2aTq − r

subject to

[
P q
qT r − 1

]

 τi

[
Ai bi

bT
i ci

]
, i = 1, . . . ,m

τi ≥ 0, i = 1, . . . ,m[
P q
qT r

]

 0

• variables P ∈ Sn, q ∈ Rn, r ∈ R, τ ∈ Rm

• optimal value is (the same) sharp lower bound on Prob(X ∈ C)
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Proof

classical proof: combine results derived in the 60s (by Isii, Marshall &
Olkin, Karlin & Studden) with the S-procedure

SDP duality based proof

• dual SDP: maximizes a lower bound on Prob(X ∈ C), valid for all
distributions with EX = a, EXXT = S

• primal SDP: minimizes Prob(X ∈ C) over a set of discrete
distributions with EX = a, EXXT = S

• by strong duality, the optimal values are equal
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Interpretation of dual SDP

dual feasibility: P ∈ Sn, q ∈ Rn, r ∈ R, τ ∈ Rm satisfy

[
P q
qT r

]

 0,

[
P q
qT r − 1

]

 τi

[
Ai bi

bT
i ci

]
, τi ≥ 0, i = 1, . . . ,m

interpretation: f(x) = xTPx + 2qTx + r satisfies f(x) ≥ 0 and

x �∈ C =⇒ xTAix + 2bT
i x + ci ≥ 0 for some i =⇒ f(x) ≥ 1

therefore Prob(X �∈ C) ≤ E f(X) = TrSP + 2aTq + r

Prob(X ∈ C) ≥ 1 − TrSP − 2aTq − r

the dual SDP maximizes this lower bound
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A result from linear algebra

if Z ∈ Sn, z ∈ Rn satisfy

Z 
 zzT , TrAZ + 2bTz + c ≥ 0

then there exist v1, . . . , vK ∈ Rn, α1, . . . , αK ≥ 0 such that

vT
i Avi + 2bT

i z + ci ≥ 0,
K∑

i=1

αi = 1,
K∑

i=1

αivi = z,

K∑
i=1

αiviv
T
i 	 Z

interpretation (with z = EX, Z = EXXT ): if

E(XTAX + 2bTX + c) ≥ 0

then there is a discrete random variable Y with

Y TAY + 2bTY + c ≥ 0, EY = EX, EY Y T 	 EXXT
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constructive proof

• if zTAz + 2bTz + c ≥ 0, choose K = 1, v1 = z, α1 = 1

• if λ = zTAz + 2bTz + c < 0, define wi, µi as

n∑
i=1

wiw
T
i = Z − zzT , µi = wT

i Awi

with µ1 ≥ µ2 ≥ · · · ≥ µr > 0 ≥ µr+1 ≥ · · · ≥ µn

choose K = 2r, and for i = 1, . . . , r,

vi = z + βiwi

vi+r = z + βi+rwi

αi = µi /((1 − βi/βi+r)(
∑r

i=1 µi))
αi+r = −αiβi/βi+r

where βi, βi+r are the two roots of

µiβ
2 + 2wT

i (Az + b)β + λ = 0
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Interpretation of primal feasibility

Zi ∈ Sn, zi ∈ Rn, λi ∈ R satisfy

TrAiZi + 2bT
i zi + ciλi ≥ 0,

[
Zi zi

zT
i λi

]

 0, i = 1, . . . ,m (1)

m∑
i=1

[
Zi zi

zT
i λi

]
	

[
S a
aT 1

]
(2)

• from (1): if λi > 0, can construct a random variable Yi with

EYi = zi/λi, EYiY
T
i 	 Zi/λi, Y T

i AiYi + 2bT
i Yi + ci ≥ 0

• from (2): define X with EX = a, EXXT = S

X = Yi with probability λi =⇒ Prob(X �∈ C) ≥
m∑

i=1

λi
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Interpretation of primal SDP

minimize 1 − ∑m
i=1 λi

subject to TrAiZi + 2bT
i zi + ciλi ≥ 0, i = 1, . . . ,m∑m

i=1

[
Zi zi

zT
i λi

]
	

[
S a
aT 1

]
[

Zi zi

zT
i λi

]

 0, i = 1, . . . ,m

interpretation: minimize Prob(X ∈ C) over discrete distributions that
satisfy EX = a, EXXT = S
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Complementary slackness

a

C

• a = EX; dashed line shows {x | (x− a)T (S − aaT )−1(x− a) = 1}
• lower bound on Prob(X ∈ C) is 0.3992, achieved by distribution
shown in red

• ellipse is defined by xTPx + 2qTx + r = 1
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Geometrical interpretation of dual problem

for a = 0, S = I, dual problem is equivalent to

minimize TrP + xT
c Pxc

subject to E ⊆ clC
P 
 0

where E is the ellipsoid

E = {x | (x− xc)TP (x− xc) ≤ 1}

an extremal ellipsoid enclosed in a (possibly nonconvex) set C
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Two-sided Chebyshev inequality

C = (−1, 1) = {x ∈ R | x2 < 1}, EX = a, EX2 = s

primal SDP (variables λ, Z, z ∈ R)

minimize 1 − λ
subject to Z ≥ λ

0 	
[

Z z
z λ

]
	

[
s a
a 1

]

optimal value

inf Prob(X2 < 1) =




0 1 ≤ s
1 − s |a| ≤ s < 1
(1 − |a|)2/(s− 2|a| + 1) s < |a|

reduces to two-sided Chebyshev inequality if a = 0
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example: a = EX = 0.4, s = EX2 = 0.2: Prob(X2 < 1) ≥ 0.9

achieved by distribution X =
{

1 with probability 0.1
1/3 with probability 0.9

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

x

Px2 + 2qx + r
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Extension to Rn

C = {x ∈ Rn | xTx < 1}, a = EX, S = EXXT

primal SDP (variables λ, Z ∈ Sn, z ∈ Rn)

minimize 1 − λ
subject to TrZ ≥ λ

0 	
[

Z z
z λ

]
	

[
S a
aT 1

]

dual SDP (variables P ∈ Sn, q ∈ Rn, r ∈ R, τ ∈ R)

maximize 1 − TrSP − 2aTq − r

subject to

[
P − τI q

qT r + τ − 1

]

 0,

[
P q
qT r

]

 0, τ ≥ 0
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example

C = {x ∈ Rn | xTx < 1}, a =
[

0.2
0.3

]
, S =

[
0.20 0.06
0.06 0.11

]

a

0.06

0.21

0.73

distribution achieves lower bound Prob(XTX < 1) ≥ 0.73
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Detection example

x = s + v

• x ∈ Rn: received signal

• s: transmitted signal s ∈ {s1, s2, . . . , sN} (one of N possible symbols)

• v: noise with E v = 0, E vvT = σ2I

detection problem: given observed value of x, estimate s
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example (n = 2, N = 7)

s1

s2

s3

s4

s5
s6

s7

• detector selects symbol sk closest to received signal x

• correct detection if sk + v lies in the Voronoi region around sk
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SDP lower bounds on probability of correct detection of s1, s2, s3
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example (σ = 1): bound on probability of correct detection of s1 is 0.205

s1

s2

s3

s4

s5
s6

s7

• solid circles: distribution with probability of correct detection 0.205

• ellipse is defined by xTPx + 2qTx + r = 1
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Detection with unequal noise covariances

x = s + v

• x ∈ Rn: received signal

• transmitted signal s ∈ {s1, s2, . . . , sN}
• v: noise with E v = 0, E vvT = Σk if symbol sk was sent

detector: given observed value of x, choose sk if

(x− sk)TΣ−1
k (x− sk) < (x− sj)TΣ−1

j (x− sj), j �= k

• a set of N − 1 indefinite quadratic inequalities

• maximum-likelihood detector if v is Gaussian
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example (n = 2, m = 7)

s1

s2

s3

s4

s5
s6

s7

dashed ellipses are the sets {x | (x− sk)TΣ−1
k (x− sk) = 1}
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lower bound on probability of correct detection of s1 is 0.145

s1

s2

s3

s4

s5
s6

s7

• solid circles: distribution with probability of correct detection 0.145

• ellipse is defined by xTPx + 2qTx + r = 1
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Hypothesis testing based on moments

based on observed value of X ∈ Rn, choose one of two hypotheses:

1. EX = a1, EXXT = S1

2. EX = a2, EXXT = S2

randomized detector: a function t : Rn → [0, 1]; if we observe x, we
choose hypothesis 1 with probability t(x), hypothesis 2 with probability
1 − t(x)

worst-case probability of error

1. false positive: Pfp = sup{E t(X) | EX = a2, EXXT = S2}
2. false negative: Pfn = sup{1 − E t(X) | EX = a1, EXXT = S1}

minimax detector: t that minimizes max{Pfp, Pfn}
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upper bounds on Pfp, Pfn: suppose

f1(x) = xTP1x + 2qT
1 x + r1, f2(x) = xTP2x + 2qT

2 x + r2

satisfy f1(x) ≤ t(x) ≤ f2(x)

Pfp = sup{E t(X) | EX = a2, EXXT = S2}
≤ TrS2P2 + 2aT

2 q2 + r2

Pfn = sup{1 − E t(X) | EX = a1, EXXT = S1}
≤ 1 − TrS1P1 − 2aT

1 q1 − r1

minimax detector design (variables t(x), P1, P2, q1, q2, r1, r2)

minimize max{TrS2P2 + 2aT
2 q2 + r2, 1 − TrS1P1 − 2aT

1 q1 − r1}
subject to xTP1x + 2qT

1 x + r1 ≤ t(x) ≤ xTP2x + 2qT
2 x + r2

0 ≤ t(x) ≤ 1
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after eliminating t:

minimize max{TrS2P2 + 2aT
2 q2 + r2, 1 − TrS1P1 − 2aT

1 q1 − r1}
subject to xTP1x + 2qT

1 x + r1 ≤ xTP2x + 2qT
2 x + r2

xTP1x + 2qT
1 x + r1 ≤ 1

xTP2x + 2qT
2 x + r2 ≥ 0

and choose t such that max{0, f1(x)} ≤ t(x) ≤ min{1, f2(x)}
an SDP with variables γ, P1, P2, q1, q2, r1, r2:

minimize γ
subject to TrS2P2 + 2aT

2 q2 + r2 ≤ γ
1 − TrS1P1 − 2aT

1 q1 − r1 ≤ γ[
P2 − P1 q2 − q1

(q2 − q1)T r2 − r1

]

 0[

P1 q1

qT
1 r1 − 1

]
	 0,

[
P2 q2

qT
2 r2

]

 0

26



example: two hypotheses

1. EX = a0, EXXT = S0

2. (EX,EXXT ) ∈ {(a1, S1), . . . , (a6, S6)}

a0

a1

a2

a3

a4

a5

a6

t(x) = 0
0.5

1

contour lines of a minimax detector t(x) (Pfn = Pfp = 0.251)
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trade-off curve between Pfp and Pfn
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Pfp

P
fn

minimax detector
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Bounding manufacturing yield

manufacturing yield

Y (a) = Prob(a + w ∈ C)

• a ∈ Rn: nominal or target value of design parameters

• w ∈ Rn: manufacturing errors; zero mean random variable

• C ⊆ Rn: specifications; set of acceptable values

lower bound on yield via SDP

• given EwwT = Σ

• C described by (possibly non-convex) quadratic inequalities
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example (EwwT = I)

−2 0 2 4 6

−3
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−1
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0.78

0.1
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0.5

0.7

plot shows contour lines of lower bound on Y (a) = Prob(a + w ∈ C)
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Design centering

lower bound on yield Y (a),

inf{Prob(a + w ∈ C) | Ew = 0, EwwT = Σ},

is the optimal value of

maximize 1 − TrΣP − aTPa− 2aTq − r

subject to

[
P q
qT r − 1

]

 τi

[
Ai bi

bT
i ci

]
, i = 1, . . . ,m

τi ≥ 0, i = 1, . . . ,m[
P q
qT r

]

 0

• for fixed a, an SDP in variables P , q, r, τ

• can alternate maximization over P , q, r, τ and maximization over a
(i.e., set a = −P−1q)
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Conclusion

• lower bounds on Prob(X ∈ C) where

– EX, EXXT are given
– C is defined by quadratic inequalities

• bounds are sharp; distribution that achieves may be unrealistic

• applications in classification and detection, design centering, . . .
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