Generalized Chebyshev Inequalities and Semidefinite Programming

Lieven Vandenberghe
Electrical Engineering Department
University of California Los Angeles
joint work with Stephen Boyd, Stanford University,
Katherine Comanor, UCLA

Outline

- probability bounds via SDP
- proof from SDP duality
- geometrical interpretation
- examples and applications

Generalized Chebyshev inequalities

lower bounds on

$$
\operatorname{Prob}(X \in C)
$$

- $X \in \mathbf{R}^{n}$ is a random variable with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$
- $C \subseteq \mathbf{R}^{n}$ is defined by quadratic inequalities

$$
C=\left\{x \mid x^{T} A_{i} x+2 b_{i}^{T} x+c_{i}<0, i=1, \ldots, m\right\}
$$

cf. the classical Chebyshev inequality on \mathbf{R}

$$
\operatorname{Prob}(X<1) \geq \frac{1}{1+\sigma^{2}}
$$

if $\mathbf{E} X=0, \mathbf{E} X^{2}=\sigma^{2}$

Probability bound via SDP

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\sum_{i=1}^{m} \lambda_{i} \\
\text { subject to } & \operatorname{Tr} A_{i} Z_{i}+2 b_{i}^{T} z_{i}+c_{i} \lambda_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m}\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \preceq\left[\begin{array}{cc}
S & a \\
a^{T} & 1
\end{array}\right] \\
& {\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, m}
\end{array}
$$

- an SDP with variables $Z_{i} \in \mathbf{S}^{n}, z_{i} \in \mathbf{R}^{n}, \lambda_{i} \in \mathbf{R}$
- optimal value is a sharp lower bound on $\operatorname{Prob}(X \in C)$
- can construct a distribution with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$ that attains the lower bound

The dual SDP

$$
\begin{aligned}
\text { maximize } & 1-\operatorname{Tr} S P-2 a^{T} q-r \\
\text { subject to } & {\left[\begin{array}{cc}
P & q \\
q^{T} & r-1
\end{array}\right] \succeq \tau_{i}\left[\begin{array}{ll}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right], \quad i=1, \ldots, m } \\
& \tau_{i} \geq 0, \\
& {\left[\begin{array}{ll}
P & q=1, \ldots, m \\
q^{T} & r
\end{array}\right] \succeq 0 }
\end{aligned}
$$

- variables $P \in \mathbf{S}^{n}, q \in \mathbf{R}^{n}, r \in \mathbf{R}, \tau \in \mathbf{R}^{m}$
- optimal value is (the same) sharp lower bound on $\operatorname{Prob}(X \in C)$

Proof

classical proof: combine results derived in the 60s (by Isii, Marshall \& Olkin, Karlin \& Studden) with the S-procedure

SDP duality based proof

- dual SDP: maximizes a lower bound on $\operatorname{Prob}(X \in C)$, valid for all distributions with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$
- primal SDP: minimizes $\operatorname{Prob}(X \in C)$ over a set of discrete distributions with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$
- by strong duality, the optimal values are equal

Interpretation of dual SDP

dual feasibility: $P \in \mathbf{S}^{n}, q \in \mathbf{R}^{n}, r \in \mathbf{R}, \tau \in \mathbf{R}^{m}$ satisfy
$\left[\begin{array}{cc}P & q \\ q^{T} & r\end{array}\right] \succeq 0, \quad\left[\begin{array}{cc}P & q \\ q^{T} & r-1\end{array}\right] \succeq \tau_{i}\left[\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{T} & c_{i}\end{array}\right], \quad \tau_{i} \geq 0, \quad i=1, \ldots, m$
interpretation: $f(x)=x^{T} P x+2 q^{T} x+r$ satisfies $f(x) \geq 0$ and

$$
x \notin C \Longrightarrow x^{T} A_{i} x+2 b_{i}^{T} x+c_{i} \geq 0 \text { for some } i \Longrightarrow f(x) \geq 1
$$

therefore $\operatorname{Prob}(X \notin C) \leq \mathbf{E} f(X)=\operatorname{Tr} S P+2 a^{T} q+r$

$$
\operatorname{Prob}(X \in C) \geq 1-\operatorname{Tr} S P-2 a^{T} q-r
$$

the dual SDP maximizes this lower bound

A result from linear algebra

if $Z \in \mathbf{S}^{n}, z \in \mathbf{R}^{n}$ satisfy

$$
Z \succeq z z^{T}, \quad \operatorname{Tr} A Z+2 b^{T} z+c \geq 0
$$

then there exist $v_{1}, \ldots, v_{K} \in \mathbf{R}^{n}, \alpha_{1}, \ldots, \alpha_{K} \geq 0$ such that

$$
v_{i}^{T} A v_{i}+2 b_{i}^{T} z+c_{i} \geq 0, \quad \sum_{i=1}^{K} \alpha_{i}=1, \quad \sum_{i=1}^{K} \alpha_{i} v_{i}=z, \quad \sum_{i=1}^{K} \alpha_{i} v_{i} v_{i}^{T} \preceq Z
$$

interpretation (with $z=\mathbf{E} X, Z=\mathbf{E} X X^{T}$): if

$$
\mathbf{E}\left(X^{T} A X+2 b^{T} X+c\right) \geq 0
$$

then there is a discrete random variable Y with

$$
Y^{T} A Y+2 b^{T} Y+c \geq 0, \quad \mathbf{E} Y=\mathbf{E} X, \quad \mathbf{E} Y Y^{T} \preceq \mathbf{E} X X^{T}
$$

constructive proof

- if $z^{T} A z+2 b^{T} z+c \geq 0$, choose $K=1, v_{1}=z, \alpha_{1}=1$
- if $\lambda=z^{T} A z+2 b^{T} z+c<0$, define w_{i}, μ_{i} as

$$
\sum_{i=1}^{n} w_{i} w_{i}^{T}=Z-z z^{T}, \quad \mu_{i}=w_{i}^{T} A w_{i}
$$

with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r}>0 \geq \mu_{r+1} \geq \cdots \geq \mu_{n}$ choose $K=2 r$, and for $i=1, \ldots, r$,

$$
\begin{aligned}
v_{i} & =z+\beta_{i} w_{i} & \alpha_{i} & =\mu_{i} /\left(\left(1-\beta_{i} / \beta_{i+r}\right)\left(\sum_{i=1}^{r} \mu_{i}\right)\right) \\
v_{i+r} & =z+\beta_{i+r} w_{i} & \alpha_{i+r} & =-\alpha_{i} \beta_{i} / \beta_{i+r}
\end{aligned}
$$

where β_{i}, β_{i+r} are the two roots of

$$
\mu_{i} \beta^{2}+2 w_{i}^{T}(A z+b) \beta+\lambda=0
$$

Interpretation of primal feasibility

$Z_{i} \in \mathbf{S}^{n}, z_{i} \in \mathbf{R}^{n}, \lambda_{i} \in \mathbf{R}$ satisfy

$$
\begin{gather*}
\operatorname{Tr} A_{i} Z_{i}+2 b_{i}^{T} z_{i}+c_{i} \lambda_{i} \geq 0, \quad\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, m \tag{1}\\
\sum_{i=1}^{m}\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \preceq\left[\begin{array}{cc}
S & a \\
a^{T} & 1
\end{array}\right] \tag{2}
\end{gather*}
$$

- from (1): if $\lambda_{i}>0$, can construct a random variable Y_{i} with

$$
\mathbf{E} Y_{i}=z_{i} / \lambda_{i}, \quad \mathbf{E} Y_{i} Y_{i}^{T} \preceq Z_{i} / \lambda_{i}, \quad Y_{i}^{T} A_{i} Y_{i}+2 b_{i}^{T} Y_{i}+c_{i} \geq 0
$$

- from (2): define X with $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$

$$
X=Y_{i} \text { with probability } \lambda_{i} \quad \Longrightarrow \quad \operatorname{Prob}(X \notin C) \geq \sum_{i=1}^{m} \lambda_{i}
$$

Interpretation of primal SDP

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\sum_{i=1}^{m} \lambda_{i} \\
\text { subject to } & \operatorname{Tr} A_{i} Z_{i}+2 b_{i}^{T} z_{i}+c_{i} \lambda_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m}\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \preceq\left[\begin{array}{cc}
S & a \\
a^{T} & 1
\end{array}\right] \\
& {\left[\begin{array}{cc}
Z_{i} & z_{i} \\
z_{i}^{T} & \lambda_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, m}
\end{array}
$$

interpretation: minimize $\operatorname{Prob}(X \in C)$ over discrete distributions that satisfy $\mathbf{E} X=a, \mathbf{E} X X^{T}=S$

Complementary slackness

- $a=\mathbf{E} X$; dashed line shows $\left\{x \mid(x-a)^{T}\left(S-a a^{T}\right)^{-1}(x-a)=1\right\}$
- lower bound on $\operatorname{Prob}(X \in C)$ is 0.3992 , achieved by distribution shown in red
- ellipse is defined by $x^{T} P x+2 q^{T} x+r=1$

Geometrical interpretation of dual problem

for $a=0, S=I$, dual problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} P+x_{c}^{T} P x_{c} \\
\text { subject to } & \mathcal{E} \subseteq \mathbf{c l} C \\
& P \succeq 0
\end{array}
$$

where \mathcal{E} is the ellipsoid

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P\left(x-x_{c}\right) \leq 1\right\}
$$

an extremal ellipsoid enclosed in a (possibly nonconvex) set C

Two-sided Chebyshev inequality

$$
C=(-1,1)=\left\{x \in \mathbf{R} \mid x^{2}<1\right\}, \quad \mathbf{E} X=a, \quad \mathbf{E} X^{2}=s
$$

primal SDP (variables $\lambda, Z, z \in \mathbf{R}$)

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\lambda \\
\text { subject to } & Z \geq \lambda \\
& 0 \preceq\left[\begin{array}{ll}
Z & z \\
z & \lambda
\end{array}\right] \preceq\left[\begin{array}{ll}
s & a \\
a & 1
\end{array}\right]
\end{array}
$$

optimal value

$$
\inf \operatorname{Prob}\left(X^{2}<1\right)= \begin{cases}0 & 1 \leq s \\ 1-s & |a| \leq s<1 \\ (1-|a|)^{2} /(s-2|a|+1) & s<|a|\end{cases}
$$

reduces to two-sided Chebyshev inequality if $a=0$
example: $a=\mathbf{E} X=0.4, s=\mathbf{E} X^{2}=0.2: \operatorname{Prob}\left(X^{2}<1\right) \geq 0.9$
achieved by distribution $X= \begin{cases}1 & \text { with probability } 0.1 \\ 1 / 3 & \text { with probability } 0.9\end{cases}$

Extension to \mathbf{R}^{n}

$$
C=\left\{x \in \mathbf{R}^{n} \mid x^{T} x<1\right\}, \quad a=\mathbf{E} X, \quad S=\mathbf{E} X X^{T}
$$

primal SDP (variables $\lambda, Z \in \mathbf{S}^{n}, z \in \mathbf{R}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\lambda \\
\text { subject to } & \operatorname{Tr} Z \geq \lambda \\
& 0 \preceq\left[\begin{array}{cc}
Z & z \\
z & \lambda
\end{array}\right] \preceq\left[\begin{array}{cc}
S & a \\
a^{T} & 1
\end{array}\right]
\end{array}
$$

dual SDP (variables $P \in \mathbf{S}^{n}, q \in \mathbf{R}^{n}, r \in \mathbf{R}, \tau \in \mathbf{R}$)
maximize $\quad 1-\operatorname{Tr} S P-2 a^{T} q-r$
subject to $\left.\quad \begin{array}{cc}P-\tau I & q \\ q^{T} & r+\tau-1\end{array}\right] \succeq 0, \quad\left[\begin{array}{cc}P & q \\ q^{T} & r\end{array}\right] \succeq 0, \quad \tau \geq 0$

example

$$
C=\left\{x \in \mathbf{R}^{n} \mid x^{T} x<1\right\}, \quad a=\left[\begin{array}{c}
0.2 \\
0.3
\end{array}\right], \quad S=\left[\begin{array}{cc}
0.20 & 0.06 \\
0.06 & 0.11
\end{array}\right]
$$

distribution achieves lower bound $\operatorname{Prob}\left(X^{T} X<1\right) \geq 0.73$

Detection example

$$
x=s+v
$$

- $x \in \mathbf{R}^{n}$: received signal
- s : transmitted signal $s \in\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$ (one of N possible symbols)
- v : noise with $\mathbf{E} v=0, \mathbf{E} v v^{T}=\sigma^{2} I$
detection problem: given observed value of x, estimate s
example $(n=2, N=7)$

- detector selects symbol s_{k} closest to received signal x
- correct detection if $s_{k}+v$ lies in the Voronoi region around s_{k}

SDP lower bounds on probability of correct detection of s_{1}, s_{2}, s_{3}

example $(\sigma=1)$: bound on probability of correct detection of s_{1} is 0.205

- solid circles: distribution with probability of correct detection 0.205
- ellipse is defined by $x^{T} P x+2 q^{T} x+r=1$

Detection with unequal noise covariances

$$
x=s+v
$$

- $x \in \mathbf{R}^{n}$: received signal
- transmitted signal $s \in\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$
- v: noise with $\mathbf{E} v=0, \mathbf{E} v v^{T}=\Sigma_{k}$ if symbol s_{k} was sent detector: given observed value of x, choose s_{k} if

$$
\left(x-s_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-s_{k}\right)<\left(x-s_{j}\right)^{T} \Sigma_{j}^{-1}\left(x-s_{j}\right), \quad j \neq k
$$

- a set of $N-1$ indefinite quadratic inequalities
- maximum-likelihood detector if v is Gaussian
example $(n=2, m=7)$

dashed ellipses are the sets $\left\{x \mid\left(x-s_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-s_{k}\right)=1\right\}$
lower bound on probability of correct detection of s_{1} is 0.145

- solid circles: distribution with probability of correct detection 0.145
- ellipse is defined by $x^{T} P x+2 q^{T} x+r=1$

Hypothesis testing based on moments

based on observed value of $X \in \mathbf{R}^{n}$, choose one of two hypotheses:

1. $\mathbf{E} X=a_{1}, \mathbf{E} X X^{T}=S_{1}$
2. $\mathbf{E} X=a_{2}, \mathbf{E} X X^{T}=S_{2}$
randomized detector: a function $t: \mathbf{R}^{n} \rightarrow[0,1]$; if we observe x, we choose hypothesis 1 with probability $t(x)$, hypothesis 2 with probability $1-t(x)$
worst-case probability of error
3. false positive: $P_{\mathrm{fp}}=\sup \left\{\mathbf{E} t(X) \mid \mathbf{E} X=a_{2}, \mathbf{E} X X^{T}=S_{2}\right\}$
4. false negative: $P_{\mathrm{fn}}=\sup \left\{1-\mathbf{E} t(X) \mid \mathbf{E} X=a_{1}, \mathbf{E} X X^{T}=S_{1}\right\}$
minimax detector: t that minimizes $\max \left\{P_{\mathrm{fp}}, P_{\mathrm{fn}}\right\}$
upper bounds on $P_{\mathrm{fp}}, P_{\mathrm{fn}}$: suppose

$$
f_{1}(x)=x^{T} P_{1} x+2 q_{1}^{T} x+r_{1}, \quad f_{2}(x)=x^{T} P_{2} x+2 q_{2}^{T} x+r_{2}
$$

satisfy $f_{1}(x) \leq t(x) \leq f_{2}(x)$

$$
\begin{aligned}
P_{\mathrm{fp}} & =\sup \left\{\mathbf{E} t(X) \mid \mathbf{E} X=a_{2}, \quad \mathbf{E} X X^{T}=S_{2}\right\} \\
& \leq \operatorname{Tr} S_{2} P_{2}+2 a_{2}^{T} q_{2}+r_{2} \\
P_{\mathrm{fn}} & =\sup \left\{1-\mathbf{E} t(X) \mid \mathbf{E} X=a_{1}, \mathbf{E} X X^{T}=S_{1}\right\} \\
& \leq 1-\operatorname{Tr} S_{1} P_{1}-2 a_{1}^{T} q_{1}-r_{1}
\end{aligned}
$$

minimax detector design (variables $\left.t(x), P_{1}, P_{2}, q_{1}, q_{2}, r_{1}, r_{2}\right)$
minimize $\quad \max \left\{\operatorname{Tr} S_{2} P_{2}+2 a_{2}^{T} q_{2}+r_{2}, 1-\operatorname{Tr} S_{1} P_{1}-2 a_{1}^{T} q_{1}-r_{1}\right\}$
subject to $\quad x^{T} P_{1} x+2 q_{1}^{T} x+r_{1} \leq t(x) \leq x^{T} P_{2} x+2 q_{2}^{T} x+r_{2}$ $0 \leq t(x) \leq 1$
after eliminating t :

$$
\begin{array}{ll}
\operatorname{minimize} & \max \left\{\operatorname{Tr} S_{2} P_{2}+2 a_{2}^{T} q_{2}+r_{2}, 1-\operatorname{Tr} S_{1} P_{1}-2 a_{1}^{T} q_{1}-r_{1}\right\} \\
\text { subject to } & x^{T} P_{1} x+2 q_{1}^{T} x+r_{1} \leq x^{T} P_{2} x+2 q_{2}^{T} x+r_{2} \\
& x^{T} P_{1} x+2 q_{1}^{T} x+r_{1} \leq 1 \\
& x^{T} P_{2} x+2 q_{2}^{T} x+r_{2} \geq 0
\end{array}
$$

and choose t such that $\max \left\{0, f_{1}(x)\right\} \leq t(x) \leq \min \left\{1, f_{2}(x)\right\}$ an SDP with variables $\gamma, P_{1}, P_{2}, q_{1}, q_{2}, r_{1}, r_{2}$:

$$
\begin{aligned}
& \text { minimize } \gamma \\
& \text { subject to } \operatorname{Tr} S_{2} P_{2}+2 a_{2}^{T} q_{2}+r_{2} \leq \gamma \\
& 1-\operatorname{Tr} S_{1} P_{1}-2 a_{1}^{T} q_{1}-r_{1} \leq \gamma \\
& \left.\begin{array}{l}
{\left[\begin{array}{cc}
P_{2}-P_{1} & q_{2}-q_{1} \\
\left(q_{2}-q_{1}\right)^{T} & r_{2}-r_{1}
\end{array}\right] \succeq 0} \\
P_{1} \\
q_{1} \\
q_{1}^{T}
\end{array} r_{1}-1\right] \preceq 0, \quad\left[\begin{array}{ll}
P_{2} & q_{2} \\
q_{2}^{T} & r_{2}
\end{array}\right] \succeq 0
\end{aligned}
$$

example: two hypotheses

1. $\mathbf{E} X=a_{0}, \mathbf{E} X X^{T}=S_{0}$
2. $\left(\mathbf{E} X, \mathbf{E} X X^{T}\right) \in\left\{\left(a_{1}, S_{1}\right), \ldots,\left(a_{6}, S_{6}\right)\right\}$

contour lines of a minimax detector $t(x)\left(P_{\mathrm{fn}}=P_{\mathrm{fp}}=0.251\right)$
trade-off curve between P_{fp} and P_{fn}

Bounding manufacturing yield

manufacturing yield

$$
Y(a)=\operatorname{Prob}(a+w \in C)
$$

- $a \in \mathbf{R}^{n}$: nominal or target value of design parameters
- $w \in \mathbf{R}^{n}$: manufacturing errors; zero mean random variable
- $C \subseteq \mathbf{R}^{n}$: specifications; set of acceptable values
lower bound on yield via SDP
- given $\mathbf{E} w w^{T}=\Sigma$
- C described by (possibly non-convex) quadratic inequalities
example $\left(\mathbf{E} w w^{T}=I\right)$

plot shows contour lines of lower bound on $Y(a)=\operatorname{Prob}(a+w \in C)$

Design centering

lower bound on yield $Y(a)$,

$$
\inf \left\{\operatorname{Prob}(a+w \in C) \mid \mathbf{E} w=0, \quad \mathbf{E} w w^{T}=\Sigma\right\}
$$

is the optimal value of

$$
\begin{aligned}
\text { maximize } & 1-\operatorname{Tr} \Sigma P-a^{T} P a-2 a^{T} q-r \\
\text { subject to } & {\left[\begin{array}{cc}
P & q \\
q^{T} & r-1
\end{array}\right] \succeq \tau_{i}\left[\begin{array}{cc}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right], \quad i=1, \ldots, m } \\
& \tau_{i} \geq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
P & q \\
q^{T} & r
\end{array}\right] \succeq 0 }
\end{aligned}
$$

- for fixed a, an SDP in variables P, q, r, τ
- can alternate maximization over P, q, r, τ and maximization over a (i.e., set $a=-P^{-1} q$)

Conclusion

- lower bounds on $\operatorname{Prob}(X \in C)$ where
- $\mathbf{E} X, \mathbf{E} X X^{T}$ are given
- C is defined by quadratic inequalities
- bounds are sharp; distribution that achieves may be unrealistic
- applications in classification and detection, design centering, ...

