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Abstract
We consider the problem of minimizing a function that is a sum of convex agent func-
tions plus a convex commonpublic function that couples them.The agent functions can
only be accessed via a subgradient oracle; the public function is assumed to be struc-
tured and expressible in a domain specific language (DSL) for convex optimization.
We focus on the case when the evaluation of the agent oracles can require significant
effort, which justifies the use of solution methods that carry out significant computa-
tion in each iteration. To solve this problem we integrate multiple known techniques
(or adaptations of known techniques) for bundle-type algorithms, obtaining a method
which has a number of practical advantages over other methods that are compatible
with our access methods, such as proximal subgradient methods. First, it is reliable,
and works well across a number of applications. Second, it has very few parameters
that need to be tuned, and works well with sensible default values. Third, it typically
produces a reasonable approximate solution in just a few tens of iterations. This paper
is accompanied by an open-source implementation of the proposed solver, available
at https://github.com/cvxgrp/OSBDO.
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1 Oracle-structured distributed optimization

1.1 Oracle-structured optimization problem

We consider the optimization problem

minimize h(x) = f (x) + g(x), (1)

with variable x ∈ Rn , where f , g : Rn → R ∪ {∞} are the oracle and structured
objective functions, respectively. We assume the problem has an optimal point x�, and
we denote the optimal value of the problem (1) as h� = h(x�).We use infinite values of
f and g to encode constraints or the domains, with dom f = {x ∈ Rn | f (x) < ∞}
and similarly for g. We assume that dom f ⊇ dom g �= ∅, i.e., every point in the
domain of g is in the domain of f , and g has at least one point in its domain.

1.1.1 The oracle objective function

We assume that the oracle function f is block separable,

f (x) =
M∑

i=1

fi (xi ), x = (x1, . . . , xM ),

with fi : Rni → R∪ {∞} closed convex, where n1 + · · · + nM = n. We refer to xi as
the variable and fi as the objective function of agent i . Our access to fi is only via an
oracle that evaluates fi (xi ) and a subgradient qi ∈ ∂ fi (xi ) at any point xi ∈ dom fi .

1.1.2 The structured objective function

We assume the structured function g is closed convex. While f is block separable, g
(presumably) couples the block variables x1, . . . , xM . We assume that g is given in
a structured form, using the language of Nesterov, which means we have a complete
description of it. We assume that we can minimize g plus some additional structured
function of x . As a practical matter this might mean that g is expressed in a domain-
specific language (DSL) for convex optimization, such as CVXPY (Diamond and
Boyd 2016; Agrawal et al. 2018), based on disciplined convex programming (DCP)
(Grant et al. 2006).

1.1.3 Example

Problem (1) is very general, and includes as special cases many convex optimization
problems arising in applications. To give a simple and specific example, it includes
the so-called consensus problem (Boyd et al. 2011, Ch. 7),

minimize
∑M

i=1 fi (xi )
subject to x1 = · · · = xM ,
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where xi ∈ Rp are the variables, and fi are given convex functions. We put this in the
form (1) with ni = p, n = Mp, x = (x1, . . . , xM ), and

g(x) =
{
0 x1 = · · · = xM
∞ otherwise,

the indicator function of the consensus constraint x1 = · · · = xM .

1.1.4 Optimality condition

The optimality condition for problem (1) is: x is optimal if and only if

∂h(x) = ∂ f (x) + ∂g(x) 	 0, (2)

where ∂h(x) denotes the subdifferential of h at x . In some applications we may be
interested in finding a subgradient q� ∈ ∂ f (x�) for which −q� ∈ ∂g(x�). Such a
subgradient can sometimes be interpreted as a vector of optimal prices. The method
we describe in this paper will also compute (an estimate of) q�.

1.1.5 Our focus

Weseek an algorithm that solves the distributed oracle-structured problem (1), respect-
ing our access assumptions. Several generic methods can be used, such as proximal
subgradient methods or their accelerated extensions, described below. Most research
on methods for the composite minimization problem focus on the case where f is
differentiable and g has a simple, typically analytically computable, proximal opera-
tor, and algorithms that involve very minimal computation beyond evaluation of the
gradient of f and the proximal operator of g, such as a few vector-vector operations.
Our focus here, however, is on the case where the agent oracles can be expensive to
evaluate, which has several implications. First, it means that we focus on algorithms
that in practice find good suboptimal points in relatively few iterations. Second, it
justifies algorithms that solve an optimization problem involving g in each iteration,
instead of carrying out just a few vector-vector operations.

1.1.6 Our contribution

Our contribution is to assemble a number of known methods, such as diagonal pre-
conditioning, level bundle methods, and others into an algorithm that works well on
a variety of practical problems, with no parameter tuning. By working well, we mean
that modest accuracy, say on the order of 1%, is achieved typically in tens of iterations.
In the language of the bundle method literature, our final algorithm is a disaggregate
partially exact bundle method.

Our open-source implementation, along with all data to reproduce all of our numer-
ical experiments, is available at https://github.com/cvxgrp/OSBDO. OSBDO stands
for oracle-structured bundle distributed optimization.
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1.2 Previous and related work

There is a vast literature on general distributed optimization, but fewer authors consider
the specific subgradient oracle plus structured function access we consider here. Sev-
eral general methods can be used to solve the problem (1) using our access methods,
including subgradient, cutting-plane, and bundle-type methods.

1.2.1 Subgradient methods

Subgradient methods were originally developed by Shor and others in the 1970s
(Shor 2012). Early work that describes subgradients and convex optimization includes
(Rockafellar 1981). (To use a subgradient-type method for our problem, we would
need to compute a subgradient of g, which is readily done.) Subgradient methods typ-
ically require a large number of iterations, and are employed when the computational
cost of each iteration is low, which is not the case in our setting. Subgradient meth-
ods also involve many algorithm parameters that must be tuned, such as a step-size
sequence. Modern variations include AdaGrad (Duchi et al. 2011), an adaptive sub-
gradient method which shows good practical results in the online learning setting, but
for our setting still requires far too many iterations to achieve even modest accuracy.

1.2.2 Proximal subgradient methods

A closely related method that is better matched to our specific access restrictions is
the proximal subgradient method, which in each iteration requires a subgradient of f
and an evaluation of the proximal operator of g. (This proximal step is readily carried
out since g is structured.) Most of the original work on these types of methods focuses
on the case where f is differentiable, and the method is called the proximal gradi-
ent method. The proximal gradient method can be described as an operator-splitting
method (Parikh and Boyd 2014, Ch. 4.2); some early work includes (Bruck 1975;
Chen and Rockafellar 1997). Since then there have been two relevant developments.
The papers (Passty 1979; Lions and Mercier 1979) handle the case where f is nondif-
ferentiable, and the gradient is replaced with a subgradient, so the method is called the
proximal subgradient method. The stochastic case is addressed in Schechtman (2022),
where a stochastic proximal subgradient method is developed. Another advance is the
development of simple generic acceleration methods, originally introduced by Nes-
terov (1983). Other work addresses issues such as inexact computation of the proximal
operator (Birgin et al. 2003), or inexact computation of the subgradient (Burachik et al.
2015). Proximal gradient and subgradient methods are widely used in different appli-
cations; see, e.g., the book (Combettes and Pesquet 2011), which covers proximal
gradient method applications in signal processing.

Compared to the method we propose, proximal subgradient methods fail to take
into account previously evaluated function values and subgradients (other than through
their effect on the current iterate), and our ability to build up a model of each agent
function separately. These are done in the method we propose, which requires only
a modest increase in complexity over evaluating just the proximal operator of g, and
give substantial improvement in practical convergence.
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1.2.3 Cutting-plane methods

Cutting-plane methods can be traced back to Cheney and Goldstein (1959) and Kel-
ley’s cutting-plane method (Kelley 1960). These methods maintain a piecewise affine
lower bound or minorant on the objective, and improve it in each iteration using the
subgradient and value of the function at the current iterate. Each iteration requires the
solution of a linear program (LP), with size that increases with iterations. Cutting-
plane methods are extended to handle convex mixed-integer problems in Westerlund
and Pettersson (1995). Limited-memory or constraint-dropping versions, that drop
terms in the minorant so the LP solved in each iteration does not grow in size, are
given in Elzinga andMoore (1975); Dem’yanov and Vasil’ev (1985). Constraint drop-
ping for general outer approximation algorithms are also considered in Gonzaga and
Polak (1979). Many other variations on cutting-plane methods have been developed,
including the analytic center cutting-planemethod introduced byAtkinson andVaidya
(1995). A review of cutting-plane methods used in machine learning can be found in
Sra et al. (2012).

1.2.4 Bundle methods

Bundlemethods are closely related to cutting-planemethods. The first difference is the
addition of a stabilization term, among which a proximal regularization term is most
common and leads to the so-called proximal bundle method (Kiwiel 1990; Frangioni
2020). Typically in each iteration of the proximal bundle method a quadratic pro-
gram (QP) must be solved. Other stabilization forms include the level bundle method
(Lemaréchal et al. 1995; Frangioni 2020) and the trust-region bundle method (Marsten
et al. 1975; Frangioni 2020). The second difference between cutting-plane and bundle
methods is the logic that updates the current point only if a certain sufficient descent
condition holds.

Bundle methods were first developed as dual methods in Lemaréchal (1975) and
Mifflin (1977); the primal form of bundle methods was mainly studied in the 1990s.
The first convergence proof for the proximal bundle method is given in Lemaréchal
(1978). A comprehensive review of the history and development of bundle methods
can be found in (Hiriart-Urruty and Lemaréchal 1996, Ch. XIV,XV). Later variations
of bundle methods include variable metric bundle methods which accumulate second
order information about function curvature in the proximal regularization term (Mifflin
1996; Chen and Fukushima 1999; Lukšan and Vlček 1999; Burke and Qian 2000;
Haarala et al. 2004), bundlemethods that handle inexact function values or subgradient
values (Hintermüller 2001; Kiwiel 1985, 1995, 2006; Hare et al. 2016; van Ackooij
et al. 2017; Lv et al. 2018; de Oliveira and Solodov 2020), bundle methods with
semidefinite cutting sets replacing the traditional polyhedral cutting planes (Helmberg
and Rendl 2000), and bundle methods with generalized stabilization (Kiwiel 1999;
Frangioni 2002; Ben Amor et al. 2009; Frangioni and Gorgone 2014b; de Oliveira
and Solodov 2016). Bundle methods are also widely used in non-convex optimization
(Schramm and Zowe 1992; Kiwiel 1996; Lukšan and Vlček 1998; Fuduli et al. 2004;
Haarala et al. 2007).
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Incremental bundle methods (Emiel and Sagastizábal 2010) are based on a princi-
ple of selectively skipping oracle calls for some agents, while replacing them by an
approximation. Essentially, the function is evaluated when lower and upper estimates
on function values are not sufficient (van Ackooij and Frangioni 2018). This setting
was analyzed within a framework of inexact oracles (Emiel and Sagastizábal 2010;
de Oliveira et al. 2014; de Oliveira and Eckstein 2015; van Ackooij et al. 2016), i.e.,
noisy oracles that are “asymptotically exact”. Further, there has been an interest in
asynchronous bundle methods as well (Iutzeler et al. 2020; Fischer 2022), where the
agent oracle calls have varying finite running times.

Our method for parameter discovery relies on a standard level bundle method
(Lemaréchal et al. 1995) for a few initial iterations. We then set the value of the
proximal parameter to a Lagrange multiplier and proceed with the proximal bundle
method. In a separate study, de Oliveira and Solodov (2016) propose an algorithm
that automatically chooses between proximal and level bundle approaches at every
iteration. Another related line of research is based on variable metric bundle methods
(Kiwiel 1990; Lemaréchal et al. 1995; Lemaréchal and Sagastizábal 1997; Kiwiel
2000; Rey and Sagastizábal 2002; Frangioni 2002; de Oliveira et al. 2014; van Ack-
ooij and Frangioni 2018). In general, these approaches are not crafted for solving
composite function minimization satisfying our access conditions.

Our setting with difficult-to-evaluate components has been considered in bundle
methods before (Emiel and Sagastizábal 2010). In those studies, the authors use the
inexact evaluations to skip the “hard” components. We, on the other hand, focus on
exact oracle evaluations or queries for each component fi alongside the structured
function g, which is known as partially exact bundle method (van Ackooij et al.
2017). Our structured function g presents a way to incorporate constraints into bundle
methods, which has also been considered before (Kiwiel 1990).

In our method we disaggregate the minorant of f , an idea which has been exten-
sively studied in the prior literature (Frangioni 2002; Lemaréchal et al. 2009; Frangioni
and Gorgone 2014a, b; Frangioni 2020). When combined with the structured function
g, which is not approximated by a minorant but handled exactly, we arrive at what is
referred to as a disaggregate partially exact bundle method.

1.2.5 Software packages

Despite the large literature on related methods, relatively few open-source software
packages are available. We found only one open-source implementation of a bundle
method that is compatible with our access requirements. BundleMethod.jl (Kim
et al. 2021) is a Julia packagewith implementations of proximal bundlemethod (Kiwiel
1990) and trust region bundle method (Kim et al. 2019). We found that in all our
examples OSBDO works substantially better.

We also mention here other existing open-source implementations of bundle meth-
ods that do not meet our access requirements. A Fortran implementation (Mäkelä
2003) with Julia interface for multi-objective proximal bundle method (Mäkelä 2003;
Mäkelä et al. 2016), available at Karmitsa (2016), requires the objective function to
have full domain. A Fortran implementation (Teo et al. 2010), uses bundle methods
for unconstrained regularized risk minimization. A limited memory bundle method

123



Implementation of an oracle-structured…

(Karmitsa 2007; Haarala et al. 2007; Karmitsa and Mäkelä 2010) is available as a
Fortran implementation at Karmitsa (2007), solves nonsmooth large-scale minimiza-
tion problems, either unconstrained (Karmitsa 2007; Haarala et al. 2007) or bound
constrained (Karmitsa and Mäkelä 2010). An unconstrained proximal bundle method
(Díaz and Grimmer 2023) with Julia implementation is available at Díaz (2021).

1.3 Outline

We describe our assembled bundle method for oracle-structured distributed optimiza-
tion in Sect. 2. In Sect. 3 we take a deeper look at the agent functions fi , which often
involve additional variables that are optimized by the agent, and not used by the algo-
rithm, which we call private variables. We present several numerical examples in Sect.
4. A convergence proof for our algorithm is given in Sect. A.

2 Disaggregate partially exact bundle method

Here we describe our assembled bundle method to solve the oracle-structured dis-
tributed optimization problem (1). We use the superscript k to denote a vector or
function at iteration k, as in xki or xk = (xk1 , . . . , x

k
m), our estimates of x�

i and x� at
iteration k. Each iteration involves querying the agent objective functions, i.e., eval-
uating fi (x̃ ki ) and a subgradient qki ∈ ∂ fi (x̃ ki ) at a query point x̃ ki , for i = 1, . . . , k,
along with some computation that updates the iterates xk . (We will describe what the
specific query points are later.)

2.1 Minorants

The basic idea in a bundle or cutting-plane method is to maintain and refine a minorant
of each agent function, denoted f̂ ki : Rni → R. (Minorant means that these functions

satisfy f̂ ki (xi ) ≤ fi (xi ) for all xi ∈ Rni .) They are constructed from initial (given)

minorants f̂ 0i , and evaluations of the value and subgradients in previous iterations, as

f̂ k+1
i (xi ) = max

(
f̂ ki (xi ), fi (x̃

k+1
i ) + (qk+1

i )T (xi − x̃ k+1
i )

)
, i = 1, . . . , M . (3)

Here we use the basic subgradient inequality

fi (x̃
k+1
i ) + (qk+1

i )T (xi − x̃ k+1
i ) ≤ fi (xi )

for all xi ∈ Rni , which shows that the lefthand side, which is an affine function of xi ,
is a minorant of fi . We also note that the minorant (3) is tight at x̃ k+1

i , i.e.,

f̂ k+1
i (x̃ k+1

i ) = fi (x̃
k+1
i ), i = 1, . . . , M .

123



T. Parshakova et al.

From these agent objective minorants we obtain a minorant of the oracle objective f ,

f̂ k+1(x) = f̂ k+1
1 (x1) + · · · + f̂ k+1

M (xM ), (4)

and in turn, a minorant of h,

ĥk+1(x) = f̂ k+1(x) + g(x). (5)

The minorant of f in (4) is referred to as a disaggregated minorant, to distinguish it
from forming a minorant directly of f .

2.1.1 Initial minorant

The simplest initial minorant f̂ 0i is a constant, a known lower bound on the agent
objective fi (xi ). Later we will see how more sophisticated minorants for the agent
objectives can be obtained. With a simple constant initial minorant for each agent, the
minorant f̂ k is also piecewise affine function, since it is a sum of m terms, each the
maximum of k affine functions.

2.1.2 Lower bound on optimal value

Minorants allow us to compute a lower bound on h�, the optimal value of the problem
(1). Since ĥk is a minorant of h, we have

Lk = min
x

ĥk(x) ≤ h�. (6)

Evaluating Lk involves solving an optimization problem, minimizing g plus the piece-
wise affine function f̂ k . Of course h(xk) is an upper bound on h�, so we have

Lk ≤ h� ≤ h(xk).

2.1.3 Gap-based stopping criterion

There is a multitude of stopping criteria that have been proposed for bundle methods
(Lemaréchal et al. 1995; Lemaréchal and Sagastizábal 1997; Lemaréchal et al. 1996;
Frangioni 2020; Lemaréchal 2001; Hiriart-Urruty and Lemaréchal 1996, 2013).Many
of them are based on approximately satisfying the optimality conditions. For example,
we can terminate when the norm of the aggregate subgradient and aggregate lineariza-
tion error are both small (Lemaréchal and Sagastizábal 1997; Lemaréchal et al. 1996;
Frangioni 2020; Hiriart-Urruty and Lemaréchal 1996, Ch. XIV). Stopping can also be
done based on the predicted function decrease (Hiriart-Urruty and Lemaréchal 1996;
Frangioni 2020), which differs depending on the type of stabilization in the bundle
method (Hiriart-Urruty and Lemaréchal 1996, Ch. XV). We refer the reader to the
books (Hiriart-Urruty and Lemaréchal 1996, 2013) for more details on stopping cri-
terion for bundle methods. There are other reasonable choices of stopping criteria, for
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example based on the minorant error h(xk) − ĥk(x̃ k+1) and a subgradient of ĥk at
x̃ k+1 see, e.g., (Lemaréchal 2001, Ch. 5.1).

Since we are in the regime where the agents are expensive to evaluate, solving a
minimization problem (6) is not an issue, and especially if it is not done every iteration,
i.e., we compute the lower bound Lk every few iterations. The lower bound (6) gives
us a gap-based stopping criterion. In particular, this stopping criterion was previously
used in level bundle methods (Lemaréchal et al. 1995; Hiriart-Urruty and Lemaréchal
1996, Ch. XIV). We stop if either the absolute gap is small,

h(xk) − Lk ≤ εabs, (7)

where εabs > 0 is a given absolute gap tolerance, or the relative gap is small,

h(xk) − Lk ≤ εrel min{|h(xk)|, |Lk |} and h(xk)Lk > 0, (8)

where εrel > 0 is a given relative gap tolerance. (The sign condition guarantees that
min{|h(xk)|, |Lk |} ≤ |h�|.) This guarantees that we terminate with a point xk with
objective value that is either within absolute difference εabs, or within relative distance
εrel, of h�.

For later reference, we define the relative gap as

ωk =
{

h(xk )−Lk

min{|h(xk )|,|Lk |} h(xk)Lk > 0

∞ otherwise.
(9)

We define the true relative gap as

ωk
true = h(xk) − h�

|h�| , (10)

for h� �= 0. The relative gap is an upper bound on the true relative gap, i.e., we have
ωk ≥ ωk

true. But ω
k is known at iteration k, whereas ωk

true is not.

2.2 Oracle-structured bundle method

The basic bundle method for (1) is given below. It includes two parameters η and
ρ (discussed later), and is initialized with an initial guess x0 of x , and the initial
minorants of the agent objective functions f̂ 0i .

Algorithm 2.1 Bundle method for oracle- structured distributed optimization

given x0 ∈ dom h, h(x0), initial minorants f̂ 0i , parameters η ∈ (0, 1) and ρ > 0.

for k = 0, 1, . . .
1. Check stopping criterion. Quit if (7) or (8) holds.

2. Tentative update. x̃k+1 = argminx
(
ĥk (x) + (ρ/2)‖x − xk‖22

)
.

Record ĥk (x̃k+1) and g(x̃k+1).
3. Query agents. Evaluate fi (x̃

k+1
i ) and qk+1

i ∈ ∂ fi (x̃
k+1
i ), for i = 1, . . . , M .
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4. Compute h(x̃k+1) = f1(x̃
k+1
1 ) + · · · + fM (x̃k+1

M ) + g(x̃k+1).

5. Compute δk = h(xk ) −
(
ĥk

(
x̃k+1

)
+ (ρ/2)

∥∥∥x̃k+1 − xk
∥∥∥
2

2

)
.

6. Update iterate. Set xk+1 =
{
x̃k+1 h(xk ) − h

(
x̃k+1

)
≥ ηδk

xk otherwise.
7. Update minorants.

Update f̂ k+1
i using (3), for i = 1, . . . , M .

Update f̂ k+1 and ĥk+1 using (4) and (5).

2.2.1 Comments

In step 1 we evaluate Lk , which involves solving an optimization problem, i.e., min-
imizing ĥk(x). We recognize step 2 as evaluating the proximal operator of ĥk at xk

(Parikh and Boyd 2014). This step also involves solving an optimization problem,
minimizing ĥk(x) plus the quadratic (proximal) term (ρ/2)‖x − xk‖22. We note that
we always have x̃ k+1 ∈ dom g ⊆ dom f , so h(x̃ k+1) is always finite. Step 3, the
agent query, can be done in parallel across all agents. Steps 4 and 5 involve only sim-
ple arithmetic using quantities already computed in steps 2 and 3. Steps 1, 5, and 6 use
the quantity h(xk), but that has already been computed, since xk is equal to a previous
x̃ j for some j ≤ k, and so was computed in step 4 of a previous iteration.

The substantial computation in each iteration of the bundle method is the evaluation
of the lower bound in step 1, evaluating the proximal operator of ĥ in step 2, and
querying each agent oracle in step 3. The computation of Lk in step 1 is only used for
the stopping criterion, so this step can be carried out only every few steps, to reduce
the average computational burden.

2.2.2 Descent method

The quantity δk computed in step 5 is nonnegative. To see this, we note from step 2
that x = x̃ k+1 minimizes ĥk(x) + (ρ/2)‖x − xk‖22, so

ĥk(x̃ k+1) + (ρ/2)‖x̃ k+1 − xk‖22 ≤ ĥk(xk) + (ρ/2)‖xk − xk‖22
= ĥk(xk)
= h(xk),

(11)

from which δk ≥ 0 follows. From step 6 we see that the bundle method is a descent
method, i.e., h(xk+1) ≤ h(xk). More specifically, h(xk+1) < h(xk) if the tentative
step is accepted, i.e., xk+1 = x̃ k+1, and h(xk+1) = h(xk) if the tentative step is not
accepted, i.e., xk+1 = xk .

2.2.3 Convergence

In “Appendix A” for completeness we give a proof that the bundle method converges,
i.e., h(xk) → h� as k → ∞. Convergence proofs for bundle methods have a long
history, dating back to the 1970s (Lemaréchal 1978).
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2.2.4 Choice of parameters

The bundle method is not particularly sensitive to the choice of η; the value η = 0.01
works well. The value of ρ, however, can have a strong influence on the practical
performance of the algorithm. We discuss choices of ρ later in §2.4.

2.2.5 Dual variable

An estimate of an optimal dual variable q� ∈ ∂ f (x�) can be found when we compute
the lower bound Lk in step 1. To do this we compute Lk by solving the modified
problem

minimize f̂ k+1(x) + g(x̃)
subject to x̃ = x,

with variables x ∈ Rn and x̃ ∈ Rn . (This is the consensus form; see, e.g., (Boyd
et al. 2011, Sect. 7).) The optimal dual variable associated with the constraint is our
estimate of q�.

2.3 Diagonal preconditioning

Practical convergence of the bundle method is greatly enhanced by diagonal precon-
ditioning. This means that we choose a diagonal matrix D with positive entries, and
define the (scaled) variable x = D−1x . Then we solve the problem (1) with variable
x and functions

f (x) = f (Dx), g(x) = g(Dx).

Note that g is structured, since g is. We recover the solution of the original problem
(1) as x� = Dx�.

The idea of preconditioning has a long-standing history dating back to 1845 (Jacobi
1845) and is a crucial technique in optimization; see, e.g., (Hestenes and Stiefel 1952;
Sinkhorn 1964; Concus et al. 1985;Nocedal andWright 1999; Bradley 2010; Takapoui
and Javadi 2016). It is also closely related to the idea of variablemetricmethods, where
essentially a different (not necessarily diagonal) preconditioning is applied each step.
Variable metric bundle methods have been studied in Lemaréchal and Sagastizábal
(1994); Bacaud et al. (2001); Helmberg and Pichler (2017). In contrast to our com-
putationally cheap preconditioning technique, which is computed once before the
algorithm starts, existing variable metric bundle methods are considerably more com-
plex (Kiwiel 1990; Lemaréchal et al. 1995; Lemaréchal and Sagastizábal 1997; Kiwiel
2000; Rey and Sagastizábal 2002; Frangioni 2002; de Oliveira et al. 2014; van Ack-
ooij and Frangioni 2018); in addition, most are not compatible with our specific access
conditions.

Given x , we query agent i and the point xi = Di xi , where Di is the submatrix
of D associated with xi . Agent i responds with fi (xi ) = f i (xi ) and qi ∈ ∂ fi (xi ).
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The algorithm uses the function value without change, since fi (xi ) = f i (xi ), and the
scaled subgradient

qi = Dqi ∈ ∂ f i (xi ).

Diagonal scaling can be thought of as a thin layer or interface between the algorithm,
which works with the scaled variable x and functions f i and g, and the agents, which
work with the original variables xi and the original functions fi . In particular, neither
the algorithm nor the agents need to know that diagonal scaling is being used, provided
the query points and returned subgradients are scaled correctly.

2.3.1 A specific choice for diagonal scaling

The matrix D scales the original variable. Our goal is to scale the variables so they
range over similar intervals, say of width on the order of one. To do this, we assume
that we have known lower and upper bound on the entries of x ,

l ≤ x ≤ u, (12)

where l < u. (Presumably these constraints are included in g.) With these variable
bounds we can choose

D = diag(u − l). (13)

The new variable bounds have the form l ≤ z ≤ u, with u − l = 1, the vector with all
entries one.

2.4 Proximal parameter discovery

While the bundle algorithm converges for any positive value of the parameter ρ,
fast convergence in practice requires a reasonable choice that is somewhat problem
dependent; see, e.g., Díaz and Grimmer (2023). Several schemes can be used to find
a good value of ρ. In one common scheme ρ is updated in each iteration depending
on various quantities computed in the iteration. (As an example of such an adaptive
scheme, see (Boyd et al. 2011, §3.4.1).) Another general scheme is to start with some
steps that are meant to discover a good value of ρ, as in Rey and Sagastizábal (2002).
For both such schemes, we fix ρ after some modest number K of iterations, so our
proof of convergence (which assumes a fixed value of ρ) still applies. Our experiments
suggest that a natural ρ-discovery method, described below, works well in practice.
The idea of switching between proximal and level bundle methods has been proposed
in de Oliveira and Solodov (2016). This method is more complex than our proposed
simple approach, which switches just once, after a fixed number of iterations.

For the discovery steps, we modify the update in step 2, where we minimize

ĥk(x) + (ρ/2)‖x − xk‖22, (14)
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i.e., evaluate the proximal operator of ĥk at xk , to solving the closely related problem

minimize (1/2)‖x − xk‖22
subject to ĥk(x) ≤ ηk,

(15)

where ηk ∈ (Lk, h(xk)). (This ensures that the problem is feasible, and that the
constraint is tight.) The problem (15) finds the projection of the point xk onto the
ηk-sublevel set of the minorant. The idea of projecting onto the sublevel set instead of
carrying out an explicit proximal step can be found in, e.g., (Frangioni 2020, Sect. 2.3).

It is easy to show that any solution of (15) is also a solution of (14), for some value
of ρ. Indeed we can find this value as ρ = 1/λ, where λ is an optimal dual variable for
the constraint in (15). In other words: When we solve (15), we are actually computing
the proximal operator, i.e., solving (14), for a value of ρ that we only find after solving
it.

Our ρ-discovery method uses the update (15) for the first K = 20 steps, with

ηk = h(xk) + Lk

2
.

After K steps, we use the standard update (14) with the value of ρ chosen as the
geometric mean of the last 5 values found during the discovery steps.

2.5 Finite memory

Evidently the optimization problems that must be solved to compute Lk in step 1 and
x̃ k+1 in step 2 grow in size as k increases. A standardmethod in bundle or cutting-plane
type methods is to use a finite memory or constraint dropping version, also known as
bundle compression (Correa and Lemaréchal 1993; de Oliveira and Eckstein 2015).
The essential element that underpins theoretical convergence in compressed bundle
methods is aggregate linearization (Kiwiel 1983; Correa and Lemaréchal 1993). It is
given by the linearization of the minorant,

lk+1
i (xi ) = f̂ ki (x̃ k+1

i ) + (q̂k+1
i )T (xi − x̃ k+1

i ),

where q̂k+1
i ∈ ∂ f̂ ki (x̃ k+1

i ). As a result, a finite memory version replaces the minorant
(3) with

f̂ k+1
i (xi ) = max

(
lk+1
i (xi ), max

j=max{0,k−m+2},...,k

(
fi (x̃

j+1
i ) + (q j+1

i )T (xi − x̃ j+1
i )

))
,

for all i = 1, . . . , M . Thus we use only the last m − 1 subgradients and values in
the minorant, instead of all previous ones with an additional affine term for aggregate
linearization. This results in a total of m affine functions. For further information on
bundle compression,we refer the reader toCorrea andLemaréchal (1993); Lemaréchal
(2001); de Oliveira and Eckstein (2015); Frangioni (2020). Interestingly, the minorant
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f̂ k+1
i (xi ) can be reduced to just two affine pieces. However, in practical applications,

a smaller bundle size leads to slower convergence rates (de Oliveira and Eckstein
2015). (Finite-memory should not be confused with limited-memory, which can refer
to a quasi-Newton algorithm that approximates the Hessian using a finite number of
function and gradient evaluations.)

With finite memory it is possible that the lower bounds Lk are not monotone non-
decreasing. In this case we can keep track of the best (i.e., largest) lower bound found
so far, for use in our stopping criterion.

3 Agents

In this section we discuss some details of the agent objective functions, and how to
compute the value and a subgradient. For simplicity we drop the subscript i that was
used denote agent i , so in this section, we denote xi as x , fi as f , qi as q, and so on.

3.1 Private variables and partial minimization

In many cases the agent function f is defined via partial minimization, as the optimal
value of a problem with variable x and additional variables z. Specifically, f (x) is the
optimal value of the problem

minimize F0(x, z)
subject to Fi (x, z) ≤ 0, i = 1, . . . ,m,

Hi (x, z) = 0, i = 1, . . . , p,

with variable z. (In this optimization problem, x is a parameter.) Here Fi are jointly
convex in (x, z), and Hi are jointly affine in (x, z). This is called partial minimization
(Boyd and Vandenberghe 2004, §4.1), and defines f that is convex. To evaluate f we
must solve a convex optimization problem. We refer to x as the public variable for the
agent, and z as its private variable, since its value (or even its existence) is not known
outside the agent.

We now explain how to find a subgradient q ∈ ∂ f (x). We solve the equivalent
convex problem

minimize F0(x̃, z)
subject to Fi (x̃, z) ≤ 0, i = 1, . . . ,m,

Hi (x̃, z) = 0, i = 1, . . . , p,
x̃ = x,

with variables z and x̃ . (As in the problem above, x is a parameter in this optimization
problem.)We assume that strong duality holds for this problem (which is guaranteed if
the stronger form of Slater’s condition holds), with ν denoting an optimal dual variable
for the constraint x̃ = x . Then it is easy to show that q = −ν is a subgradient of f
(Boyd et al. 2022) assuming strong duality holds.
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3.2 Soft constraints and slack variables

We assume that the domain of the agent objective function includes the domain of
g. This is critical since the agents will always be queried at a point x̃ ∈ dom g, and
we need the agent objective function to be finite for any such x̃ . In some cases this
property does not hold for the natural definition of the agent objective function. Here
we explain how to modify an original definition of an agent objective function f so
that it does.

Let f̃ be the original agent objective function, which does not satisfy dom f̃ ⊆
dom g. It is often possible to replace constraints that appear in the original definition
of f̃ with soft constraints, that ensure that dom f̃ ⊆ dom g holds.

There is also a generic method that uses slack variables to ensure that f has full
domain (which implies the domain condition). We define

f (x) = min
x̃

(
f̃ (x̃) + λ‖x̃ − x‖1

)
,

where λ > 0 is a parameter. This f is convex and has full domain. For λ large enough
and x ∈ dom f̃ , we have x̃ = x . We can think of x̃ − x as a slack variable, used to
guarantee that f (x) is defined for all x . We interpret λ as a penalty for using the slack
variable.

4 Examples

In this section we present a number of examples to illustrate our method. There are
better methods to solve each of these examples, which exploit the custom structure
of the particular problem. Our purpose here is to show that OSBDO, with default
parameters, achieves good practical performance, i.e., attainsmodest accuracy in some
tens of iterations, on a variety of large-scale practical problems.

We use the default parameters for the first four examples, except that we continue
iterations after the algorithmwould have terminated with the default tolerances εabs =
10−3 and εrel = 10−2, to show the continued progress. The final subsection gives
experimental results for the bundle method with finite memory (described in §2.5).

4.1 Supply chain

Supply chain problems involve the placement and movement of inventory, including
sourcing from a supplier and distribution to an end customer. A comprehensive review
can be found in Trisna et al. (2016). Here we consider a single commodity network
composed of a series of M trans-shipment components. Each of these has a vector ai
of (nonnegative) flows into it, and a vector bi of (nonnegative) flows out of it. These
are connected in series, with the first trans-shipment component’s output connected
to the second component’s input, and so on, so

b1 = a2, . . . , bM−1 = aM . (16)
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Source
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shipment 1
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Trans-
shipment M Sink...
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...

a1,1

a1,q1

b1,1

b1,p1

aM,1

aM,qM

bM,1

bM,pM

Fig. 1 Supply chain consisting of a source (left), a sequence of M trans-shipment components (middle),
and a sink (right)

The vector a1 gives the flows into the first trans-shipment component, and bM is the
vector of flows out of the last trans-shipment component. This is illustrated in Fig. 1.

We assume the trans-shipment components are lossless, which means that

1T ai = 1T bi , i = 1, . . . , M, (17)

i.e., the total flow of the commodity into each trans-shipment component equals the
total flow leaving it.

Each trans-shipment component has a nonnegative objective function fi (ai , bi )
which we interpret as the cost of shipping the commodity from the input flows to the
output flows. In addition there is a source (purchase) objective term ψ src(a1), the cost
of purchasing the commodity, and a sink (delivery) objective term ψ sink(bM ), which
we interpret as the negative revenue derived from delivering the commodity. (So we
expect that ψ src(a1) is nonnegative, and ψ sink(bM ) is nonpositive.)

The overall objective is the total of the trans-shipment costs and the source and sink
costs,

ψ src(a1) + f1(a1, b1) + · · · + fM (aM , bM ) + ψ sink(bM ).

Our goal is to choose the input and output flows ai and bi , subject to the flow conser-
vation constraints (16), so as to minimize this total objective. We assume ψ src, ψ sink,
and all fi are convex, and that ψ src and fi are nonnegative.

4.1.1 Oracle-structured form

We put the supply chain problem into the form (1) as follows. We take xi = (ai , bi )
for i = 1, . . . , M , with variable range 0 ≤ x ≤ u, where u is an upper bound on the
flows. We take g to be the source and sink objective terms, plus the indicator function
of the flow conservation constraints (16), variable ranges, and flow balance (17):

g(x) =
{

ψ src(a1) + ψ sink(bM ) (16), (17), 0 ≤ x ≤ u,

∞ otherwise.

Roughly speaking, g(x) is the gross negative profit, and f (x) is the total shipping
cost.

Our initial minorant is the indicator function of the flow conservation constraint
(17), i.e., 0 if (17) holds and ∞ otherwise. Note that this includes the lower bound
0 ≤ fi (xi ).
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4.1.2 Trans-shipment cost

The trans-shipment cost for agent i is based on a fully bipartite graph, with flow along
each edge connecting one of qi inputs to each of pi outputs. We represent the edge
flows as Xi ∈ Rpi×qi , where ai ∈ Rqi and bi ∈ Rpi , and (Xi ) jk is the flow from input
k to output j .

We assume that each edge has a convex quadratic cost of the form

(Di ) jk(Xi ) jk + (Ei ) jk(Xi )
2
jk,

with (Di ) jk ≥ 0, and in addition is capacitated, i.e., 0 ≤ (Xi ) jk ≤ (Ci ) jk , with
(Ci ) jk ≥ 0. Due to the capacity constraints, the domain condition dom fi ⊇ dom g
need not hold, so in addition we include a slack variable. We define fi (xi ) as the
optimal value of the trans-shipment problem

minimize
∑

j,k

(
(Di ) jk(Xi ) jk + (Ei ) jk(Xi )

2
jk

)
+ λ‖r‖1

subject to 0 ≤ (Xi ) jk ≤ (Ci ) jk, j = 1, . . . , pi , k = 1, . . . , qi∑
j (Xi ) jk = (ãi )k, k = 1, . . . , qi∑
k(Xi ) jk = (b̃i ) j , j = 1, . . . , pi ,

(ãi , b̃i ) − r = xi ,

with variables (Xi ) jk , ãi , b̃i , and r . Here λ is a large positive parameter that penalizes
using slack variables, i.e., having ãi �= ai or b̃i �= bi .

To evaluate fi (xi ) we solve the problem above, which is a convex QP. To obtain a
subgradient of fi at xi we use the negative optimal dual variables associated with the
last constraint as qi .

4.1.3 Source and sink costs

We take simple linear source and sink costs,

ψ src(a1) = αT a1, ψ sink(bM ) = βT bM ,

with α ≥ 0 and β ≤ 0. We can interpret αk as the price of acquiring the commodity
at input k of the first trans-shipment component, and −βk as the price of selling the
commodity at output k of the last trans-shipment component.

4.1.4 Problem instance

We consider a problem instance with M = 5 trans-shipment components, and dimen-
sions of ai , bi given by

(20, 30), (30, 40), (40, 25), (25, 35), (35, 20).
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Fig. 2 Relative gap and true relative gap versus iterations for supply chain example

We choose the edge capacities (Ci ) jk from a log normal distribution, with log(Ci ) jk ∼
N (0, 1). From these edge capacities we construct an upper bound on each component
of xi , as the maximum of the sum of the capacities of all edges that feed the flow
variable, and the sum of the capacities of all edges that flow out of it. This gives us our
upper bound u. The linear cost coefficients (Ei ) jk are log normal, with log(Ei ) jk ∼
N (0.07, 0.7). The quadratic cost coefficients (Di ) jk are obtained from the capacity
and linear cost coefficients as

(Di ) jk = (Ei ) jk/(2(Ci ) jk).

The sale prices α are uniform on [8, 10] and retail prices −β are chosen uniformly
on [10, 12]. The total problem size is n = 300 public variables (the input and output
flows of the trans-shipment components), with an additional 4975 private variables in
the agents (the specific flows along all edges of the trans-shipment components). The
overall problem is a QP with 5275 variables.

4.1.5 Results

Figure2 shows the relative gap ωk and true relative gap ωk
true, versus iterations. With

the default stopping criterion parameters the algorithm would have terminated after
80 iterations, when it can guarantee that it is no more than 1% suboptimal. In fact, it is
around 0.3% suboptimal at that point. This is shown as the vertical dashed line in the
plot. We can also see that the relative accuracy was in fact better than 1% after only
59 iterations, but, roughly speaking, we did not know it then.
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4.2 Resource allocation

Resource allocation problems consider how to allocate a limited amount of several
resources to a number of participants in order to optimize some overall objective. This
kind of problem arises in communication networks (Han and Liu 2008), urban devel-
opment (Wei et al. 2020), cloud computing (Choi and Lim 2016), and many others.
Various algorithms have been proposed to solve this problem, with interesting ones
including ant colony algorithm (Yin and Wang 2006), a genetic algorithm (Liu et al.
2005), and a graph-based approach (Zhou et al. 2021). In this section, we demonstrate
how bundle method can be exploited to address a distributed version of the generic
resource allocation problem.

4.2.1 Resource allocation problem

We consider the optimal allocation of n resources to N participants. We let ri ∈ Rn+
denote the amounts of the resources allocated to participant i , for i = 1, . . . , N .
The utility derived by participant i is Ui (ri ), where Ui : Rn+ → R is a concave
nondecreasing utility function. The resource allocation problem is to allocate resources
to maximize the total utility subject to a limit on the total resources allocated:

maximize
∑N

i=1Ui (ri )
subject to ri ≥ 0, i = 1, . . . , N∑N

i=1 ri ≤ R,

with variables r1, . . . , rN , where R ∈ Rn+ is the total resources to be allocated, i.e.,
the budget. We denote the optimal value, i.e., the maximum total utility, as a function
of R asU �(R). It is also concave and nondecreasing. When we solve this problem, an
optimal dual variable associated with the last (budget) constraint can be interpreted as
the prices of the resources.

4.2.2 Distributed resource allocation problem

We have M groups of participants, each with its own set of participants, resource
budget Ri ∈ Rn+, and utility U �

i (Ri ). The distributed resource allocation problem is

maximize
∑M

i=1U
�
i (Ri )

subject to Ri ≥ 0, i = 1, . . . , M∑M
i=1 Ri ≤ R,

with variables R1, . . . , RM , where R is the total budget of resources. This problem
has exactly the same form as the resource allocation problem, but here U �

i (Ri ) is the
optimal total utility for group i of participants, whereas in the resource allocation
problem, Ui (ri ) is the utility of the single participant i .
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4.2.3 Oracle-structured form

Each agent is associated with a group in the distributed resource allocation problem.
We take xi = Ri , the total resource allocated to the participants in group i . We take
agent objective functions

fi (xi ) = −U �
i (xi ), i = 1, . . . , M,

the optimal (negative) total utility for its group of participants, given resources xi . We
take the structured objective function to be

g(x) =
{
0 x1 + · · · + xM ≤ R, xi ≥ 0, i = 1, . . . , M
∞ otherwise.

With these agent and structured objectives, the problem (1) is equivalent to the
distributed resource allocation problem. The resource allocations to the individual
participants within each group are private variables; the public variables are the total
resources allocated to each group.

To evaluate fi (x̃i ), we solve the resource allocation problem for group i . To find
a subgradient q ∈ ∂ fi (x̃i ), we take the negative of an optimal dual variable in the
resource allocation problem, i.e., the negative of the optimal prices. To obtain a range
on each variable, we use 0 ≤ xi ≤ R.

4.2.4 Problem instance

Our example uses participant utility functions of the form

Ui (ri ) = geomean (Airi + bi ) ,

where geomean(u) = (∏p
i=1 ui

)1/p
for u ∈ Rp

+ is the geometric mean function. The
entries of Ai are nonnegative, soUi is concave and nondecreasing.We choose Ai to be
column sparse, with around n

10 columns chosen at random to be nonzero. The nonzero
entries in these columns are chosen as uniform on [0, 1]. We choose entries of bi to be
uniform on [0, n

10 ]. The resource budgets Ri are chosen from log Ri ∼ N (log n
10 , 1).

The initial minorant is given by

f̂ 0 =
M∑

i=1

Ni∑

j=1

− geomean(Ai j R + bi j ),

the negative of the utility if all agents were given the full budget of resources.
For the specific instancewe consider, we take n = 50 resources andM = 50 agents,

each of which allocates resources to Ni = 10 participants. (As a single resource
allocation problem we would have 50 resources and 500 participants.) The utility
functions use p = 5, i.e., each is the geometric mean of 5 affine functions.
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Fig. 3 Relative gap and true relative gap versus iterations for resource allocation example

4.2.5 Results

Figure3 shows the relative gap ωk and true relative gap ωk
true versus iterations. With

the default stopping criterion the algorithm would have terminated after 47 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.5% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 33 iterations.

4.3 Multi-commodity flow

Multi-commodity flow problems involve shipping different commodities on the same
network in a way such that the total utility is maximized, while the total flow on
each edge stays below its capacity. In Ouorou et al. (2000) authors give a survey of
algorithms for this problem.We consider a network defined by a graph with p vertices
or nodes and q directed edges, defined by the incidencematrix A ∈ Rp×q . The network
supports the flow of M different commodities. Each commodity has a source node,
denoted ri ∈ {1, . . . , p}, and a sink or destination node, denoted si ∈ {1, . . . , p}.
The flow of commodity i from the source to destination is given by di ≥ 0. We let
zi ∈ Rq

+ be the vector of flows of commodity i on the edges. Flow conservation is the
constraint

Azi + di (eri − esi ) = 0, i = 1, . . . , M,

where ek denotes the kth unit vector, with (ek)k = 1 and (ek) j = 0 for j �= k. Flow
conservation requires that the flow is conserved at all nodes, with di injected at the
source node, and di removed at the sink node. The utility of flow i is Ui (di ), where
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Ui is a concave nondecreasing function. Our objective is to maximize the total utility
U1(d1) + · · · +UM (dM ).

The total flow on the edges must not exceed the capacities on the edges, given by
c ∈ Rq

+, i.e.,

z1 + · · · + zM ≤ c.

(This capacity constraint couples the variables associated with the different commodi-
ties.)

Thevariables in thismulti-commodityflowproblemare z1, . . . , zM andd1, . . . , dM .
The data are the incidence matrix A, the edge capacities c, the commodity source and
sink nodes (ri , si ), and the flow utility functions Ui .

It will be convenient to work with a form of the problemwhere we split the capacity
on each edge into M different capacities for the different commodities. We take

zi ≤ ci , i = 1, . . . , M,

where c1 + · · · + cM = c and ci ≥ 0 for i = 1, . . . , M . We interpret ci as the
edge capacity assigned to, or reserved for, commodity i . Our multi-commodity flow
problem then has the form

maximize U1(d1) + · · · +UM (dM )

subject to 0 ≤ zi ≤ ci , i = 1, . . . , M
Azi + di (eri − esi ) = 0, i = 1, . . . , M
c1 + · · · + cM = c, ci ≥ 0, i = 1, . . . , M,

with variables zi , di , and ci . This is evidently equivalent to the original multi-
commodity flow problem.

4.3.1 Oracle-structured form

We can put the multi-commodity flow problem into oracle-structured form as follows.
We take xi = ci , the edge capacity assigned to commodity i . We take the range of xi
as 0 ≤ xi ≤ c. We take the agent cost function fi (xi ) to be the optimal value of the
single commodity flow problem (expressed as a minimization problem)

minimize −Ui (di )
subject to 0 ≤ zi ≤ xi

Azi + di (eri − esi ) = 0,

with variables zi and di . (Here xi = ci is a parameter.) These functions fi (xi ) are
convex and nonincreasing in xi , the capacity assigned to commodity i . To evaluate fi
we solve the single commodity flow problem above; a subgradient qi is obtained as
the negative optimal dual variable associated with the capacity constraint zi ≤ xi .
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We take g(x) to be the indicator function of

x1 + · · · + xM = c, xi ≥ 0, i = 1, . . . , M

(which includes the ranges of xi ).
All together there are n = Mq variables, representing the allocation of edge capac-

ity to the commodities. There are also M(q +1) private variables, which are the flows
for each commodity on each edge and the values of the flows of each commodity.

4.3.2 Problem instance

We consider an example with M = 10 commodities, and a graph with p = 100
nodes and q = 1000 edges. Edges are generated randomly from pairs of nodes, with
an additional cycle passing through all vertices (to ensure that the graph is strongly
connected, i.e., there is a directed path from any node to any other). We choose the
source-destination pairs (ri , si ) randomly. We choose capacities ci from a uniform
distribution on [0.2, 2]. The flow utilities Ui are linear, i.e., Ui (di ) = bidi , with bi
chosen uniformly on [0.5, 1.5]. This problem instance has n = 10000 variables, with
an additional 10010 private variables.

4.3.3 Results

Figure4 shows the relative gap ωk and true relative gap ωk
true versus iterations. With

the default stopping criterion the algorithm would have terminated after 14 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.6% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 13 iterations.

4.4 Federated learning

Federated learning refers to distributedmachine learning,where agents keep their local
data and collaboratively train a model using a distributed algorithm. An overview of
the development of federated learning is given in Li et al. (2020). In this section we
consider the federated learning problem.

We are to fit a model parameter θ ∈ Rd to data that is stored in M locations.
Associated with each location is a function Li : Rd → R, where Li (θ) is the loss for
parameter value θ for the data held at location i . We seek θ that minimizes

M∑

i=1

Li (θ) + R(θ),

where R : Rd → R ∪ {∞} is a regularization function. We assume that Li and R are
convex, so this fitting problem is convex. In federated learning (Kairouz et al. 2021),
we solve the fitting problem in a distributed manner, with each location handling its
own data.
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Fig. 4 Relative gap and true relative gap for multi-commodity flow example

4.4.1 Oracle-structured form

We can put the federated learning problem into oracle-structured form by taking xi
to be the parameter estimate at location i , fi = Li , and g the indicator function for
consensus plus the regularization,

g(x) =
{
R(x1) x1 = · · · = xM
∞ otherwise.

4.4.2 Problem instance

We consider a classification problem with logistic loss function,

Li (θ) =
ni∑

j=1

log
(
1 + exp(−vi j u

T
i jθ)

)
,

where vi j ∈ {−1, 1} is the label and ui j ∈ Rd is the feature value for data point j in
location i , and ni is the number of data points at location i . We use �1 regularization,
i.e., R(θ) = λ‖θ‖1, where λ > 0.

Our example takes parameter dimension d = 500, M = 10 locations, and ni =
1000 data points at each location. In this problem there are no private variables, and
the total dimension of x is n = Md = 5000.

We generate the data points as follows. The entries of ui j areN (0, 1), and we take

vi j = sign
(
uTi jθ

true + zi j
)

,

123



Implementation of an oracle-structured…

Fig. 5 Relative gap and true relative gap versus iterations for federated learning example

where zi j ∼ N (0, 10−2) and θ true is a true value of the parameter, chosen as sparse
with around 50 nonzero entries, each N (0, 1). We choose λ = 5.

4.4.3 Results

Figure5 shows the relative gap ωk and true relative gap ωk
true versus iterations. With

the default stopping criterion the algorithm would have terminated after 53 iterations
(shown as the vertical dashed line), when it can guarantee that it is no more than 1%
suboptimal. In fact, it is around 0.3% suboptimal at that point. We can also see that
the relative accuracy was better than 1% after only 39 iterations.

4.5 Finite-memory experiments

In this subsection we present results showing how limiting the memory to various
values affects convergence. In many cases, limiting the value to m = 20 or more has
negligible effect. As an example, Fig. 6 shows the effect on convergence of memory
with values m = 20, m = 30, m = 50, and m = ∞ for the federated learning
problem described above. In this example finite memory has essentially small effect
on the convergence.

As an example of a case where finite memory does affect the convergence, Fig. 7
shows the effect of finite memory with valuesm = 20,m = 30,m = 50, andm = ∞.
With m = 20, the algorithm shows minimal improvement beyond double the number
of iterations required for a method withm = ∞ to achieve the default tolerance level;
with m = 30 there is a modest increase; with m = 50 there is a small increase.
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Fig. 6 Relative gap (solid) and true relative gap (dashed) versus iterations for federated learning example,
with finite memory values m = 20, m = 30, m = 50, and m = ∞

Fig. 7 Relative gap (solid) and true relative gap (dashed) versus iterations for supply chain example, with
finite memory values m = 20, m = 30, m = 50, and m = ∞

5 Conclusions

We focus on developing a good practical method for distributed convex optimiza-
tion in a setting where the agents support a value/subgradient oracle, which can take
substantial effort to evaluate, and the coupling among the agent variables is given
explicitly and exactly as a structured convex problem, possibly including constraints.
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(This differs from themore typical setting, where the agent functions are differentiable
and can be evaluated quickly, and the coupling function has an analytical proximal
operator.) Our assumptions allow us to consider methods that carry out more compu-
tation in each iteration, such as cutting-plane or bundle methods, that typically involve
the solution of a QP. We have found that a basic bundle-type method, when combined
with diagonal scaling and a good algorithm parameter discovery method, gives good
practical convergence across a number of problems types and sizes. Here by good
practical convergence we mean that with default algorithm parameters, a reasonable
approximate solution can be found in a few tens of iterations, and a higher accuracy
solution (which is generally not needed in applications) can be obtained in perhaps
a hundred or fewer iterations. (Theoretical convergence of the algorithm is always
guaranteed.)

Our methods combines multiple variations of known techniques for bundle-type
methods into a solver has a number of attractive features. First, it has essentially no
algorithm parameters, and works well with the few parameters set to default values.
Second, it achieves good practical convergence across a number of problems types and
sizes. Third, it can warm start when the coupling changes, by saving the information
obtained in previous agent evaluations.
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Appendix A: Convergence proof

In this section we give a proof of convergence of the bundle method for oracle-
structured optimization. Our proof uses well known ideas, and borrows heavily from
Belloni (2005). We will make one additional (and traditional) assumption, that f and
g are Lipschitz continuous on dom g.

We say that the update was accepted in iteration k if xk+1 = x̃ k+1. Suppose this
occurs in iterations k1 < k2 < · · · .We let K = {k1, k2, . . .} denote the set of iterations
where the update was accepted. We distinguish two cases: |K | = ∞ and |K | < ∞.

Infinite updates

We assume |K | = ∞. First we establish that δks → 0 as s → ∞. Since k = ks is an
accepted step, from step 6 of the algorithm we have

ηδks ≤ h(xks ) − h(xks+1) = h(xks ) − h(xks+1).
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Summing this inequality from s = 1 to s = l and dividing by η gives

l∑

s=1

δks ≤ h(xk1) − h(xkl+1)

η
≤ h(x0) − h�

η
,

which implies that δks is summable, and so converges to zero as s → ∞.
Since x̃ ks+1 minimizes ĥks (x) + (ρ/2)‖x − xks‖22, we have

∂ ĥks
(
x̃ ks+1

)
+ ρ(x̃ ks+1 − xks ) 	 0.

Using x̃ ks+1 = xks+1 = xks+1 , we have

ρ(xks − xks+1) ∈ ∂ ĥks
(
xks+1

)
.

It follows that

h� = h(x�) ≥ ĥks (x�) ≥ ĥks (xks+1) + ρ(xks − xks+1)T (x� − xks+1).

We first rewrite this as

h� − ĥks (xks+1)

ρ
≥ (xks − xks+1)T (x� − xks ) + (xks − xks+1)T (xks − xks+1))

= (xks − xks+1)T (x� − xks ) + ‖xks − xks+1‖22,

and then in the form we will use below,

2(xks − xks+1)T (x� − xks ) ≤ (2/ρ)
(
h� − ĥks (xks+1)

)
− 2‖xks − xks+1‖22.

Now we use a standard subgradient algorithm argument. We have

‖xks+1 − x�‖22 = ‖xks − x�‖22 + ‖xks+1 − xks‖22 + 2(xks − xks+1)T (x� − xks )

≤ ‖xks − x�‖22 + (2/ρ)
(
h� − ĥks (xks+1)

)
− ‖xks+1 − xks‖22

= ‖xks − x�‖22 + (2/ρ)
(
h� − h(xks ) + δks

)
.

Summing this inequality from s = 1 to s = l and re-arranging yields

(2/ρ)

l∑

s=1

(
h(xks ) − h�

)
≤ ‖xk1 − x�‖22 − ‖xkl+1 − x�‖22 + (2/ρ)

l∑

s=1

δks

≤ ‖xk1 − x�‖22 + 2(h(x0) − h�)/ηρ.

It follows that the nonnegative series h(xks )−h� is summable, and therefore, h(xks ) →
h� as s → ∞.
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Finite updates

We assume |K | < ∞, with p = max K its largest entry. It follows that for any k > p,
we have h(xk) − h

(
x̃ k+1

)
< ηδk . Note that xk = x p for all k ≥ p + 1. Moreover,

using

‖x̃ k+2 − x p‖22 = ‖x̃ k+2 − x̃ k+1‖22 +
∥∥∥x̃ k+1 − x p

∥∥∥
2

2
− 2

(
x p − x̃ k+1

)T
(x̃ k+2 − x̃ k+1)

with ρ(x p − x̃ k+1) ∈ ∂ ĥk
(
x̃ k+1

)
and ĥk+1(x̃ k+2) ≥ ĥk(x̃ k+2), we get

δk − δk+1 ≥ ĥk+1(x̃ k+2) − ĥk
(
x̃ k+1

)
− ρ

(
x p − x̃ k+1

)T
(x̃ k+2 − x̃ k+1)

+(ρ/2)
∥∥∥x̃ k+2 − x̃ k+1

∥∥∥
2

2

≥ (ρ/2)
∥∥∥x̃ k+2 − x̃ k+1

∥∥∥
2

2
.

Therefore, δk ≥ δk+1 + (ρ/2)
∥∥x̃ k+2 − x̃ k+1

∥∥2
2 for all k ≥ p + 1. Then from

ĥk(x p) ≥ ĥk
(
x̃ k+1

)
+ ρ(x p − x̃ k+1)T (x p − x̃ k+1)

= h(xk) − δk + (ρ/2)
∥∥∥x p − x̃ k+1

∥∥∥
2

2
,

it follows that
∥∥x p − x̃ k+1

∥∥2
2 ≤ 2δk/ρ ≤ 2δ p/ρ.

Now we use the assumption that f and g are Lipschitz continuous with Lipschitz
constant L for all x ∈ dom g. Every q ∈ ∂ f̂ k(x) has the form q = ∑

t≤k θt qt , with
θt ≥ 0 and

∑
t θt = 1, a convex combination of normal vectors of active constraints at

x , where qt ∈ ∂ f (xt ). Therefore, ĥk(x) = f̂ k(x) + g(x) is 2L-Lipschitz continuous.
Combining this with

δk ≤ h(xk) − ĥk
(
x̃ k+1

)
, −ηδk ≤ h

(
x̃ k+1

)
− h(xk),

we have

(1 − η)δk ≤ h
(
x̃ k+1

)
− h

(
x̃ k

)
+ ĥk

(
x̃ k

)
− ĥk

(
x̃ k+1

)
≤ 4L

∥∥∥x̃ k − x̃ k+1
∥∥∥
2
.

Therefore, from

(1 − η)2ρ

32L2

∑

k≥p

(
δk

)2 ≤
∑

k≥p

(
δk − δk+1

)
≤ δ p,
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we can establish that δk converges to zero as k → ∞. This implies

lim
k→∞

(
ĥk

(
x̃ k+1

)
+ (ρ/2)

∥∥∥x̃ k+1 − x p
∥∥∥
2

2

)
= h(x p).

Also from lim
k→∞

(
h(x p) − h

(
x̃ k+1

)) = 0 and
∥∥x p − x̃ k+1

∥∥2
2 ≤ 2δk

ρ
, it follows that

lim
k→∞ĥk

(
x̃ k+1

)
= h(x p), lim

k→∞

∥∥∥x p − x̃ k+1
∥∥∥
2

2
= 0.

Hence, we get 0 ∈ ∂h(x p), which implies h(x p) = h�.
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