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Abstract

We consider the problem of forecasting net load over a future horizon such
as one day, using a trailing window of past net load values as well as date and
time. We focus on three variations on this problem: point forecasts, marginal
quantile forecasts, and generating conditional samples of the future values.
These tasks can be accomplished using methods that range from basic, such
as linear regression models, to sophisticated ones involving trees or neural net-
works. We propose a method that relies on linear regression using some custom
engineered time-based features to capture multiple periodicities, such as daily,
weekly, and seasonal, and their interactions, such as the variation in daily pat-
terns over the year. Our proposed models are readily interpretable, and rely on
efficient and reliable convex optimization to fit. At the same time, the method
has strong predictive power, outperforming baseline techniques, and gracefully
supports missing data. We illustrate our method on three years of hourly net
load data for the state of Rhode Island, comparing predictions made with var-
ious subsets of the features. We provide an open source implementation that
can be used for any time series that exhibits multiple periodicities.
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1 Introduction

Forecasting net load is vital for utility companies to plan their energy distri-
bution more effectively, as well as plan for contingencies. Forecasting net load
has become more challenging in recent years with renewable energy sources
coming on line, causing fluctuations in the net load [51]. In parallel, inter-
est in capturing the uncertainty in net load forecasts has been growing. For
example, the U.S. Department of Energy’s Solar Energy Technologies Office
organized a competition in 2023 to encourage the development of new proba-
bilistic forecasting methods for net load [55]. Our participation in this compe-
tition motivated us to develop a simple and interpretable method for net load
forecasting.

There is a vast literature on time series forecasting in general, and a large
literature on net load forecasting, reviewed in §1.3. These range from very
simple ones, such as using yesterday’s netload as a prediction of today’s, to
very sophisticated ones that rely on neural networks or collections of decision
trees. While the sophisticated methods can perform well, they have three
drawbacks worth mentioning. First, these approaches typically require consid-
erable data to train and validate. They rely on large corpora from which to
learn their models, and are thus susceptible to all the difficulties of corpus cura-
tion and are difficult to integrate with expert knowledge (e.g., physical models
or constraints). Second, they are not immediately interpretable, transparent,
or auditable. (While the intepretability of large neural network models is an
open area of research, the fact remains that model parameters are not directly
meaningful to an analyst.) Simply put, we do not know why they make the
forecasts they do, and they are hard to fix if they go awry, making it difficult
to put trust their predictions, even if the predictions are able to achieve high
accuracy scores on standard data sets. Third, these methods require large and
specialized computing hardware to train and, increasingly, to use [48, 58–60].
The material requirements underlying computation system are unfortunately
not often discussed in literature [50], but we feel are particularly relevant in
the context of the analysis of energy systems and net demand.

In this paper we focus on a relatively simple method for net load forecast-
ing that achieves good results, even when trained on not much data, and is
entirely interpretable, transparent, and auditable. It uses well known tech-
niques, such as linear quantile regression, with features that are natural and
interpretable. The features consist of a set of past realized values, as is used in
an autoregressive forecast, and some features that depend only on time, i.e.,
date and hour of day, informed by the quite old analysis of periodic phenom-
ena. The time-based features are used to capture periodicities in the data,
such as diurnal variation, weekly variation, and seasonal or annual variation.
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We include cross terms that allow us to model diurnal variation that varies
across the year. This method is simple enough that we can fully understand
it, with high confidence that it will never produce anomalous forecasts, and
the computations may be carried out on a standard laptop. Nonetheless, it is
powerful enough to make good predictions. These predictions are useful for,
e.g., model predictive control (MPC) of energy distribution [39, 46].

The method we propose gracefully handles missing data. Our method can
be almost fully automated using effective methods for choosing the hyperpa-
rameters that appear in it. It can be extended in simple ways, adding other
features such as weather forecasts, or engineering more complex features.

We illustrate our method on real net load data, hourly reported data over
four years for the state of Rhode Island. While our focus is on net load fore-
casting, our method is generic and can be used to forecast many other time
series that exhibit multiple periodicities. We have developed an open-source
implementation of our method.

1.1 Setting and tasks

We consider a real-valued time series, possibly with missing data,

y = (y1, . . . , yT ) ∈ (R ∪ {?})T ,

where yt = ? means that the value yt is missing. We let T = {t | yt ∈ R}
denote the set of known values.

Our underlying assumption is that y has statistics that include multiple
periodicities, such as daily, weekly, and annual. Moreover these can include
interactions, i.e., the shape of the daily variation can change (smoothly) over
the year.

Forecasting tasks. We focus on three related forecasting tasks, each of
which uses the past M values yt, . . . , yt−M+1 to make forecasts of the future
H values, yt+1, . . . , yt+H . We call M the memory of the forecaster and H the
forecast horizon, and introduce the notation

pt = (yt, . . . , yt−M+1), t =M, . . . , T, (1)

which is the vector of the M past values at time t, and

ft = (yt+1, . . . , yt+H), t = 1, . . . , T −H, (2)

the vector of the H future values at time t. Thus our forecasting tasks involve
predicting the future ft from the past pt. Note that pt and ft can contain
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missing values. For future use we note that

(pt)i = yt−i+1, t =M, . . . , T, i = 1, . . . ,M

and
(ft)i = yt+i, t = 1, . . . , T −H, i = 1, . . . ,H.

The forecasting tasks are:

• Point forecast. Estimate ft with forecasts denoted

f̂t = (ŷt+1, . . . , ŷt+H) ∈ RH .

Note that while the data ft can contain missing values, our forecasts f̂t
do not.

• Marginal quantile forecast. Estimate the η1, . . . , ηQ-quantiles of the en-
tries of ft. We denote these as

qt,j ∈ RH , j = 1, . . . , Q.

Here 0 ≤ η1 < · · · < ηQ ≤ 1 are the given quantiles to estimate.

• Generate samples of the future. Generate R plausible realizations of the
future values, denoted

ft,j ∈ RH , j = 1, . . . , R.

These are meant to be samples from the conditional distribution of ft.

These forecasts are based on the past pt, and can also depend on the time
index t. Each of our three forecasting tasks is a function F that maps pt, and
t, into the forecasts. For a point forecast, the function F maps pt and t to f̂t.
For a marginal quantile forecast, F maps pt and t to the quantiles qt,j . If we
are generating plausible samples of the future, F maps pt and t to ft,j .

1.2 Forecasting methods

Here we briefly describe some methods for carrying out forecasts, ranging from
simple to complex.

Rolling median forecast (RMF). The rolling median forecast focuses
on the smallest (fastest) periodicity in the data, with period Π (assumed to
be an integer number of periods). For i = 1, . . . ,H we form our estimate ŷt+i

as follows. First we find all indices τ ∈ T within our window of memory, i.e.,
t−M + 1 ≤ τ ≤ t, that matches t+ i modulo Π. We then take ŷt+i to be the
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median of the associated values. This method produces a Π-periodic forecast
f̂t. RMF is easily generalized to obtain marginal quantile forecasts, by simply
replacing the median of the past data as above with a quantile.

RMF is tolerant of missing data, since it works with the median of a set
of known past entries. It only fails when this set of past entries is empty. We
will assume that the set of indices is nonempty, i.e., there is at least one index
in our memory window that equals t+ i modulo Π.

As a specific example, suppose the base period is hours, and the smallest
period is Π = 24 (daily), and our memory window is M = 672 (four weeks).
To forecast yt+4 (four hours in the future) we take the median of the known
values in the set of past data

yt+4−24, yt+4−48, . . . yt+4−24×28.

In words: to predict the value at a particular hour, we take the median value
of the known data within our memory window that corresponds to the same
hour of the day. This is a very simple point forecast method, and is used as a
baseline in practice as well as competitions such as the Net Load Forecasting
Prize [55]. We will also use this as a baseline in our numerical experiments.

Regression. A regresssion point forecast has the form

f̂t = θconst + θtimeψt + θpastpt,

where ψt ∈ RN is a vector of features that are based on time only. The param-
eters in this model are θconst ∈ RH , the constant or offset term, θtime ∈ RH×N ,
the time-based parameter, and θpast ∈ RH×M , the autoregressive parameter.
To choose these parameters we use a loss function such as the absolute value,
which corresponds to estimating the median value. By replacing this loss func-
tion with one appropriate for estimating other quantiles, we obtain marginal
quantile forecasts.

One advantage of the linear regression method is that it is interpretable.
For example, θpastij is the amount by which our forecast of yt+i depends on the
past value pt−j+1. This is the forecasting method we will employ.

One critical issue that needs to be addressed in this regression model is
how to handle missing data in pt, both in training (i.e., choosing the model
coefficients) and also in forecasting. We will do this using a simple data fill
method described later in §3.2.

More complex models. We can also create forecasts using complex mod-
els, such as those based on neural networks or multiple decision trees. These
methods can work very well when a lot of data is available, but in general
result in non-interpretable models.
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Evaluating the forecasts. Forecasters are trained on training data, and
evaluated on out-of-sample test data. To judge performance we use the av-
erage absolute error (AAE) for point forecasts, and the continuous ranked
probability score (CRPS), or an approximation based on the specified quan-
tiles, for marginal quantile forecasts. Evaluating the performance of generated
future samples is a bit more complicated. One basic method is to evaluate the
log-likelihood, under the model used to generate the samples, on the realized
future values. An informal check of the generated samples is a Turing test,
where we challenge a domain expert to distinguish generated samples of the
future from the actual realized ones. Roughly speaking, we want the generated
samples to ‘look like’ the realized ones.

1.3 Related work

In recent years there has been a lot of interest in forecasting net load. Reliable
forecasts of net load are key for effective grid management, including demand
side management, scheduling storage systems for grid stability, and facilitat-
ing coordination between energy suppliers and network operators in smart
grids [30]. Most of the literature on net load forecasting focuses on point fore-
casting, while only a small fraction of them develop probabilistic forecasts. In
our review, we will start by describing the literature on probabilistic forecast-
ing methods, and then narrow our focus to probabilistic forecasting applied to
net load.

Probabilistic forecasting. Probabilistic forecasting is a generalization of
point forecasting, where the goal is to estimate the entire conditional distribu-
tion of the future values, given the past values of the time series and possibly
other regressors. It is also known as density forecasting when full conditional
distributions are estimated. If there is an assumption about the form of the
conditional distribution, then the problem is reduced to estimating the pa-
rameters of the distribution, given the past values and becomes a distribution
fitting problem.

The origins of probabilistic forecasting can be traced back to the 18th cen-
tury, with the expression of uncertainty in weather forecasts by J. Dalton [29]
in England and J. Lamarck [1] in France. The former used expressed uncer-
tainty in terms of odds, using sentences such as ‘the probability of a fair day to
that of a wet one is as ten to one’. More quantitative and principled approaches
to probabilistic forecasting were not developed until the 20th century. In 1920,
C. Hallenbeck [2] reported the results of an experiment in which forecasts of
rainfall in a 36 hour period were expressed in terms of numerical probabilities.
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A more rigorous approach to probabilistic forecasting was developed in the
last half of 20th century, with the development of statistical methods such as
kernel density estimation [5], Markov chain Monte Carlo (MCMC) [42, 54], and
quantile regression [22]. Although most of the literature on probabilistic fore-
casting comes from applications in meteorology, over the past several decades,
there has been a growing interest in probabilistic forecasting in other fields,
such as finance where it is used to estimate the risk of financial assets [20], or
calculate tail events and value-at-risk [19].

Quantile regression. Methods for estimating conditional quantiles in data
were first motivated by the idea of ‘robust regression’. Various formulations of
the robust estimation problem have been proposed over the years, with con-
ditional median (i.e., the 0.5 quantile) estimation being a popular approach
since the 19th century. The idea of minimizing the sum of absolute errors in
an over-determined system of equations actually predates the development of
least-squares minimization, having been proposed in the mid-18th century by
Boscovich and Simpson [13, 15]. In the 1970s, Koenker and Bassett proposed
that it might be interesting to consider regression of quantiles other than the
median, and they developed generalized quantile regression [10, 37]. The con-
cept of consistent quantile estimation (in which the different quantile estimated
are in the right order) is given in [24].

These methods rely on a ‘pinball loss’ function, defined later in (9). These
simple loss functions are nothing more than a linear combination of the abso-
lute value and a linear function. In quantile regression, we minimize the sum
of pinball losses over the training data, which gives a set of quantile estimates.
These quantiles can be estimated jointly or separately, and usually there are
computational advantages to estimating them separately. If quantiles are esti-
mated separately, there is the awkward possibility that the predicted quantiles
are out of order. This is called the ‘crossing quantiles’ problem [12]. One
common method to fix this in practice is to sort the predicted quantiles. More
recently Chernezhukov et al. [25, 27] showed that sorted quantiles not only
satisfy the natural monotonicity requirement, but also have smaller estima-
tion error than the out of order quantiles. It is also possible to fit the quantiles
together in such a way that there is no quantile crossing, but this results in a
larger fitting problem.

Analysis of periodic and quasi-periodic phenomena. The analy-
sis of repeating patterns in data is an age old problem. It is believed that
ancient Babylonian mathematicians used harmonic analysis to understand as-
tronomical observations as collections of ‘periodic phenomena’ [7]. In the 19th
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century, Fourier developed his theory of periodic functions as sums of infinite
series of trigonometric functions, on which we draw considerable inspiration for
our methods. Quasi-periodic functions are defined by being “almost periodic”
to within some tolerance, and the mathematical theory is “quite cumbersome
and abounds with various auxiliary terms, theorems, and lemmas.” [57]. Our
proposed method models stochastic processes that exhibit both periodic and
quasi-periodic statistics. Key to our approach is the ability to capture dynam-
ics at different time scales (i.e., multiple characteristic periods) with minimal
data. When the periods in question are incommensurable, the method pro-
vides a readily interpretable model of quasi-periodic statistics. Otherwise, our
method describes a model with periodic and quasi-periodic statistics, even in
the case where periods are integer multiples of each other. In the case of two
periods, the statistics are modeled to be approximately periodic on the time
scale of the shorter period, while being exactly periodic on the longer period.

Continuous ranked probability score (CRPS). The evaluation of
probabilistic forecasts has a rich history dating back to the 1950s, and first
appeared in the meteorological literature with the introduction of the Brier
score [3]. Later, the logarithmic scoring rule and quadratic scoring rule were
introduced in statistics by Good [4] and de Finetti [11]. Later many other
proper scoring rules such as discrete ranked probability score (DRPS) [6] and
continuous ranked probability score (CRPS) [8] were introduced, again in the
context of weather forecasting.

CRPS can be used as a metric to evaluate a model’s performance when the
target variable is continuous and the model predicts the target’s distribution.
For many distributions there is an analytic expression for the CRPS [45], and
for non-parametric predictions, one could use the CRPS with the empirical
cumulative distribution function. The CRPS is also very closely related to
the well-known mean absolute error (MAE) used in point forecasting, and can
be viewed as a generalization of the MAE to distributional predictions [18].
The MAE is a special case of the CRPS when the predicted distribution is
degenerate (i.e., a single point).

Net load forecasting. Load forecasting has become increasingly impor-
tant as the energy sector evolves, particularly with the rise of distributed en-
ergy resources like rooftop solar panels and battery storage. These technologies
have made electrical loads more volatile and unpredictable. To address this,
the focus has shifted from traditional deterministic forecasting to probabilistic
forecasting, which better captures uncertainties. This shift has been high-
lighted in various competitions aimed at pushing the boundaries of forecasting
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accuracy such as the Global Energy Forecasting Competition [34].
Probabilistic load forecasting (PLF) studies the range of possible load vari-

ations and their probabilities. It mainly uses three forms: interval forecasting,
quantile forecasting, and density forecasting [33]. Interval forecasting provides
a range within which the load is expected to lie with a certain probability.
Quantile forecasting predicts specific percentiles of the load distribution, of-
fering a more detailed view of potential load levels. Density forecasting aims
to predict the entire probability distribution of future loads, which is the most
comprehensive approach.

Parametric methods and non-parametric methods are two primary ways
to perform density forecasting. Parametric methods to predict load involve
fitting the forecast errors to a specific parametrized probability distribution,
such as the Weibull [14], Gaussian [16], Beta distributions [17, 21] or Gaussian
mixture models [28]. This requires a deterministic forecast as a basis. But
due to variability in load, assumed densities were not always accurate, and the
methods were not widely adopted. Non-parametric methods, such as quantile
regression, do not rely on predetermined distribution shapes, offering flexibil-
ity in handling load uncertainties. Quantile regression methods have also been
extensively used in the literature for load forecasting [31, 38, 41, 44]. One of
the common traits of these methods is that they use kernel density estimation
with a Gaussian kernel or a Gaussian process to estimate the conditional dis-
tribution of the load. Shu et al. [52] developed a density estimation method
based on transforming the individual quantile forecasts into the probability
density curves and obtaining the weighted combination of different probability
density forecasts.

Machine learning has played a significant role in enhancing PLF tech-
niques. Methods like quantile regression neural networks (QRNN) [49], gradi-
ent boosted regression trees [35], random forests for quantile forecasting [23],
and the use of deep learning methods [32, 40] have shown promise in improving
prediction accuracy. These advancements reflect a broader trend towards using
sophisticated computational methods to navigate the complexities of modern
energy systems. However, as previously discussed, methods based on large
neural network architectures suffer from a number of technical drawback in-
cluding substantial data requirements, a lack of interpretability and auditabil-
ity, and specialized, energy intensive computational requirements. Therefore,
we present our contribution as a more savvy, interpretable baseline forecasting
method that, at the very least, all more advanced approaches should be able
to significantly outperform, in order to justify these drawbacks.
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Data fill methods. Handling missing data in machine learning is a big
topic in itself [53]. The most straightforward strategy to handle missing data
in training a model is to delete any training data that contains missing values.
This can lead to considerable data loss, and especially in models with auto-
regressive features, since one missing value of yt leads to M missing values in
pt.

A method that does not suffer from data loss is to fill missing entries with
some reasonable value. This fill method must be causal, i.e., not depend on
data not available in time period t when the forecast is made at time t. This
allows it to be used when making actual forecasts.

One simple fill method is forward fill, where missing entries are filled using
the most recent known value. Forward fill can work well when there are not
long gaps in the data. Linear interpolation estimates missing values by inter-
polating between neighboring known points. This method is also not effective
when there are gaps of missing data, and in addition is noncausal when the
current value is unknown. A causal hybrid method can be used, such as carry-
ing out linear interpolation when both end points are known, and forward fill
when the later end point is not known. Another simple method fills missing
values with a basic statistic such as the mean, median, or mode, of the time
series values.

1.4 Outline

This paper is organized as follows. In §2 we describe a general method for
handling time variation in our forecasts, using features which depend only on
time. We introduce the concept of multiperiodic basis functions and explain
how to construct them. In §3 we describe our method for point forecasting,
marginal quantile forecasting and how to generate conditional samples. In §4
we provide a numerical example using real-world net load data. We go over
the data, explain how we instantiate our method, and show the results of our
experiments for the three tasks.

2 Smooth multiperiodic time features

In this section we describe our general method for handling time variation in
our forecasts, using time features, which are features that depend only on time.
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2.1 Multiperiodic basis functions

We start by creating an appropriate set of time-based basis functions ϕi : R →
R for i = 1, . . . , N . (We will evaluate these for integer values of t, i.e., at our
time periods, but they are defined for other values as well.) We interpret ϕi(t)
as the value of the ith time-based basis function at time t.

Period harmonics. Consider a period Π > 0, which need not be an in-
teger. Natural basis functions for a smooth Π-periodic function are the 2K
sinusoidal Fourier terms or harmonics up to K,

cos(2πkt/Π), sin(2πkt/Π), k = 1, . . . ,K.

We refer to k as the harmonic number. A basis function with harmonic number
k and period Π has period Π/k.

Multiple periods. To model different periodicities, we have Ki harmonics
for each of the periods Πi, i = 1, . . . ,M , with ΠP < · · · < Π1. This gives∑P

i=1Ki basis functions. Each of these basis functions has a harmonic number.

Cross terms. To model the interactions between the different periods, we
generate additional basis functions that are products of the basis functions
associated with different periods. If we take all such products we obtain∑

1≤i<j≤P

(2Ki)(2Kj)

cross term basis functions. (To simplify the model, we might not use all cross
terms.)

With each of these cross term or product basis functions we associate the
smaller period in the product, and we assign a harmonic number which is the
one associated with the smaller period. For example, consider the cross term

cos(2πkt/Π) sin(2πk̃/Π̃),

with Π < Π̃. We associate it with period Π, and assign harmonic number k to
it. Unless Π/Π̃ is rational, these cross term basis functions are not periodic,
but they are almost periodic [57].

Creating new features as products of existing features, as we do to create
the cross terms, is a well known technique in machine learning. For example,
it is used in the construction of wavelet bases [26, Ch. 5].
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Full basis. All together we have

N = 2
P∑
i=1

Ki + 4
∑

1≤i<j≤P

KiKj

time-based basis functions. We denote the basis functions as ϕ1, . . . , ϕN , with
associated harmonic numbers k1, . . . , kN . These range from min{K1, . . . ,KP }
to max{K1, . . . ,KP }. Note that all the basis functions are perpendicular to
each other.

We emphasize that the idea of using sinusoidal basis functions to encode
seasonal patterns is not a new idea, having already been described in Appendix
A of [46] for the purpose of establishing a seasonal baseline and in [43] in
the context of time series forecasting for PV data. More recently in [61] the
authors enforce smoothness by requiring estimated signal to be representable as
a linear combination of smooth basis functions such as splines and polynomials.
However, to the best of our knowledge, using cross terms to model interactions
between different periods is a novel idea and not previously described in the
literature. We consider this as an important contribution of our work because it
allows us to capture the interactions between different periods, such as diurnal
variation that varies across the year.

Time based features. Given the basis functions ϕ1, . . . , ϕN , we create
time-based feature vectors as

ψt = (ϕ1(t), . . . , ϕN (t)) ∈ RN , t = 1, . . . , T. (3)

The basis functions ϕi are defined for all real arguments, but in creating the
features we evaluate them only at integer times.

2.2 Example

Suppose t denotes hours, and we have P = 3 periodicities, annual, weekly, and
daily, corresponding to periods Π1 = 8765.8, Π2 = 168, and Π3 = 24. We take
K1 = 2, K2 = 3, K3 = 4, i.e., we use 2 harmonics for annual, 3 for weekly,
and 4 for daily periods. Examples of basis functions are

ϕi(t) = cos(2π3t/24),

which is a third harmonic of the daily period with harmonic number 3,

ϕi(t) = sin(2π2t/8765.8),
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which is a second harmonic of the annual period with harmonic number 2, and
their product

ϕi(t) = cos(2π3t/24) sin(2π2t/8765.8),

which is a daily-annual cross term, with harmonic number 3.
In this example there are 88 basis functions associated with the daily period,

30 basis functions associated with the weekly period, and 4 basis functions
associated with the annual period. The total number of basis functions is 122,
with harmonic numbers ranging from 1 to 4.

2.3 A roughness measure

Here we describe a simple quadratic roughness measure, that we use for regu-
larization when fitting a forecaster.

First consider the case when there is only one period Π1, with K1 har-
monics, so N = 2K1. A linear combination of these basis functions, f(t) =∑N

i=1 ciϕi(t), is a truncated Fourier series. We have

1

Π1

∫ Π1

0

(
f ′(t)

)2
dt =

1

2

N∑
i=1

k2i c
2
i .

This justifies
∑N

i=1 k
2
i c

2
i as a measure of roughness for the special case with

one period.
Motivated by this we define the roughness measure for the P different

periods as

Ri =
1

2

∑
j∈Pi

c2jk
2
j , i = 1, . . . , P, (4)

where Pi is the set of indices of basis functions associated with period i. Thus
we measure roughness separately for each period. Our overall roughness mea-
sure will be

R = λ1R1 + · · ·+ λPRP , (5)

where λ1, . . . , λP are positive hyperparameters associated with the different
periods. The roughness measure R is a function of the coefficients c1, . . . , cN ,
and the hyperparameters λ1, . . . , λP so we write it as R(c;λ).

3 Forecasts

3.1 Data split

We split the data into train, validation and test sets, each described by a subset
of the known time values T ⊆ {1, . . . , T}, denoted as T train, T val, and T test,
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respectively. We refer to T train ∪ T val as the in-sample data, and T test as the
out-of-sample data.

The in-sample and out-of-sample split is done sequentially, meaning that for
each in-sample t and out-of-sample s, we have t < s. Within the in-sample set,
train and validation sets are created by randomly splitting the in-sample set
with some predetermined target ratio ratio such 70% train and 30% validation.

3.2 Point forecast

We use a simple and interpretable linear regression forecast of future values,

f̂t = θconst + θtimeψt + θpastpt, (6)

where ψt ∈ RN is the time-based feature vector defined in (3) and pt ∈ (R ∪
{?})M is the vector of autoregressive features, i.e., past values, defined in (1).
The parameters of the model are the vector θconst ∈ RH , and the matrices
θtime ∈ RH×N and θpast ∈ RH×M .

Missing data in the past vectors. While the time-based feature vector
does ψt not contain missing data, the autoregressive feature vector pt can.
Indeed, each missing value in the original time series gives rise to a missing
entry in M different values of pt. To handle this we fill in missing entries
in each pt using forward fill method. First we fill the original time series by
replacing each unknown entry yt After forward filling of missing entries in yt, we
standardize it, i.e., subtract a median value and divide by the absolute error.
(The time-based features are already approximately standardized.) We use
the same symbol for these filled and standardized values, to keep the notation
simple. This fill in procedure is used for creating the vectors pt, but not the
future vectors ft to be used in training, which still contain missing values.

Fitting the point forecast model. To fit the parameters in the point
forecast model (6), we minimize the convex function∑

t,i|t+i∈T train

1

2
|(ft)i − (f̂t)i|+R(θtime;λtime) + λpast∥θpast∥2F , (7)

where ∥·∥F is the Frobenius norm. Note that the loss function, the first term in
the objective above, only uses known entries in the training set. The regressor
pt, however, is filled using the forward fill method, and also standardized.

The optimization problem (7) is separable across the entries of ft, which
means we can solve for each row of the parameters separately, in parallel.
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We use an absolute value loss function, which corresponds to forecasting the
median value. The fitting problem (7) has P +1 hyperparameters, λtime ∈ RP

and λpast ∈ R.

3.3 Hyperparameter selection

We use cross validation on the in-sample data to choose appropriate values of
the hyperparameters. For a given set of hyperparameters, we train the model
and evaluate the performance on the validation set using AAE on the known
entries, as in (7). We do this for a number of values of the hyperparameters,
and then choose one that achieves the smallest validation AAE, biasing our
choice toward larger values, i.e., more regularization. Once we choose the
hyperparameters, we re-train the model on the entire in-sample set. Finally,
we evaluate our model using the test data error, to be sure it is not too far
from the validation error.

Refined grid search. There are many methods for choosing candidate
hyperparameter values. One traditional method, useful when P (the number
of hyperparameters) is modest, is a grid search, where we evaluate all combi-
nations of Mgrid values of each parameter, spaced logarithmically over some
given range. Grid search is often carried out with a first crude parameter grid-
ding, with the candidate values spaced by a factor of ten or so; then, when
good values of these parameters are found, a more refined grid search is used
to focus in on parameters near the good ones found in the first crude search.
Gridding is practical only when (Mgrid)P+1, the number of hyperparameter
values for which we form a model, is modest.

Cyclical greedy search. Another simple method, which we have found
effective, uses a cyclical greedy search. We start with some initial choice of
hyperparameters. We choose one of the hyperparameters and increase it by
some factor such as η = 2, and evaluate it (provided it does not go above some
given upper limit). If it achieves smaller validation error, we take this as our
new value for that hyperparameter. If not, we decrease the hyperparameter
by the factor η, and try this value (provided it does not go below a given
lower limit). If this decreases the validation error, we take it as the new value;
otherwise we move on the next hyperparameter. We stop when one cycle
through all hyperparameters does not improve the validation error. Like a
grid search, this greedy method can also be run first with a crude search with
η = 3 or η = 10, and then with a finer search, using, e.g., η = 1.4.
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3.4 Marginal quantile forecasts

To estimate marginal quantiles we simply modify the loss function used in
(7) to estimate quantiles other than η = 0.5. For the ηj quantile, we choose
parameters by minimizing∑

t,i|t+i∈T train

ℓηj

(
(ft)i − (f̂t)i

)
+R(θtime;λtime) + λpast∥θpast∥2F , (8)

where ℓηj is the pinball loss associated with jth quantile ηj defined as

ℓηj ((ft)i, qt,j) =

{
ηj ((ft)i − qt,j) (ft)i ≥ qt,j
(1− ηj) ((ft)i − qt,j) (ft)i < qt,j .

(9)

Data split, standardization, regularization, and hyperparameter selection are
done exactly as in point forecast model described above, except that we use
the pinball loss (9) instead of the absolute value loss and use CRPS instead of
AAE to evaluate the performance of the model while tuning hyperparameters.
In fact, we use an approximation of the CRPS, which is the sum of the pinball
loss values. This is same as using pinball loss to judge the error for each
quantile separately.

As with the point forecast, the marginal quantile estimation problem can
be solved separately for each horizon h = 1, . . . ,H. Furthermore, it can also be
solved separately for each quantile j = 1, . . . , Q. But this creates the possibility
that the estimated quantiles are out of order. One way to ensure that the
estimated quantiles are in order is to sort them after fitting the model [25, 27].
Alternatively, we can couple the quantile estimates by adding the constraint
that the quantiles are in order, i.e.,

qt,j ≤ qt,j+1, j = 1, . . . , Q− 1, t = 1, . . . , T.

This is a convex constraint that ensures the quantile estimates are in order,
at least on the training data. Finding separate quantile models, in parallel,
followed by sorting the quantiles when needed, is faster and works well in
practice.

3.5 Conditional sample forecasts

The simplest model of the conditional distribution of ft, given pt and ψt, that
takes into account dependence among the entries of ft, is Gaussian. We model
ft, conditioned on pt and ψt, as

ft ∼ N (f̂t + µ,Σ), (10)
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where f̂t is our point estimate, µ is the point forecast error mean, and Σ ∈
RH×H the point forecast error covariance.

We define the point forecast errors or residuals as rt = ŷt − yt; our task
is to estimate its mean and covariance. One challenge here is missing data,
since the residual vector inherits missing entries from yt. The standard method
for fitting µ and Σ from samples r1, . . . , rT that contain missing entries is the
expectation-minimization (EM) method [9, 47]. A much more näıve method,
described below, also works well when regularization is used.

Empirical error mean and covariance. A simple and näıve estimate
of Σ is the empirical covariance, computed separately for each entry, using
only the known data values. We start with the empirical means of the entries
of r, using only known entries,

µemp
i =

1

|Si|
∑
t∈Si

(rt)i, i = 1, . . . ,H,

where S is the set of time periods for which (rt)i is known. We then form the
empirical covariance, over known entries, as

Σemp
ij =

1

|Sij |
∑
t∈Sij

((rt)i − µi)) ((rt)j − µj) ,

where Sij = Si ∩ Sj is the set of time periods where both (rt)i and (rt)j are
known. A well known potential drawback is that the empirical covariance
matrix Σemp need not be positive semidefinite, since the entries are found
separately. This is addressed with regularization decribed below, which also
improves the performance of the estimator.

Factor regularization. We describe a simple regularization method that
can improve the covariance estimate, either EM or empirical, which we de-
note as Σ̃. Regularization also addresses the issue of Σemp not being positive
semidefinite.

We use a factor form, Σ = FF T +D, where F ∈ RH×q and D ∈ RH×H is
diagonal with nonnegative entries, and q ≤ H is number of factors. We take
FF T as the rank q appromixation of Σ̃ obtained from an eigendecomposition.
(With the empirical covariance matrix we must choose q so that the first q
eigenvalues are nonnegative.) We choose D so that Σii = Σ̃ii, i = 1, . . . ,H [36].
The number of factors q can be chosen as the number of significant eigenvalues
of Σ̃.

Generating forecasts. To obtain samples ft,1, . . . , ft,R of the future, we
generate samples from the conditional distribution (10).
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4 Numerical example

4.1 Data

We used ISO New England (ISO-NE) electric energy load data for Rhode
Island between January 1 2020 and December 31 2022. The data is sampled
hourly, so in our full data set we have 26304 data values. There is no missing
data. This data can be accessed at [56]. We used data from January 1 2020
to December 31 2021 for in-sample training, and data from January 1 2022 to
December 31 2022 for test. There are 17544 data points for training and 8760
data points for test.

To visualize seasonal variation, we first look at daily average net load,
shown in figure 1. We observe that in-sample and test data are similar, with a
small increase in net load in the test period compared to the in-sample period.
The median of training data is 850.7 kWh and its mean absolute deviation is
150.9. The median of test data is 858.0 kWh and its mean absolute deviation
is 151.3. We also observe that there are 2 major peaks in energy demand each
year, a smaller one in winter and a larger one in summer.

Next, we look at the data at a finer scale. Figure 2 shows the demand
for the first week of January 2022 and the first week of August 2022, both in
the test data. We observe several expected phenomena, e.g., demand is higher
during the day than at night, and a bit higher in summer than in winter. We
can see some small variation over a week. One interesting observation is that
the shape of the daily demand in winter differs considerably from the shape of
the daily demand in summer. In winter we see a double bump, with peaks in
the morning and afternoon, while in summer we see a smoother daily variation
with one peak in the early afternoon. Also, even if the daily demand curves
are similar for the same season, they show some variation. For instance, the
daily demand on Monday 08-01-2022 is smaller and less smooth than the other
days of the week.
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Figure 2: Two different weeks of demand data on test set. Top. Winter. Bottom.
Summer.
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Figure 3: Cyclical hyperparameter tuning with η = 10, 3.16, and 1.87.

4.2 Prediction horizon, memory, and basis

We choose forecast horizon H = 24 (one day), and memory M = 72 (three
days). For our multiperiodic basis we choose P = 3 periodicities: daily, weekly,
and annual, corresponding to periods Π1 = 8765.8, Π2 = 168, and Π3 = 24.
We take K1 = 2,K2 = 3,K3 = 4.

4.3 Point forecast

We use cyclical greedy search as explained in §3.3 to choose hyperparameters

λpast = 10.00, λtime
1 = 316.23, λtime

2 = 316.23, λtime
3 = 31.62.

The hyperparameter search is shown in figure 3. Our search ends with coeffi-
cents associated with yearly and weekly terms more heavily regularized than
those associated with daily terms and past values. It is worth noting that
yearly variation still manifests itself through cross terms with other periodici-
ties.

We also show different versions of our forecasting model that includes sub-
sets of features as well as using a baseline method commonly used in practice
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Model AAE (kWh)
Baseline model 70.4
Time features alone 68.6
Past features alone 43.3
All features except cross terms 41.2
Full features 37.1

Table 1: AAE on test set for different models.

and compare their performances. For the models that need hyperparameter
tuning, we did cyclical greedy search for each of them and report results on
best values.

• Baseline model. This model is same as RMF presented in §1.2, using a
trailing window of the past 30 days’ median.

• Time features alone. This model uses the same multiperiodic features
but does not use past values of the time series.

• Past features alone. This model uses the past values of the time series,
but does not use time features.

• All features except cross terms. This model uses the past values of the
time series as well as time features but does not use cross terms.

Table 1 shows the average absolute error (AAE) on the test set for our
model and the other models. We see that just using past features gives a more
significant improvement on baseline than just using time features. Still, the
lowest AAE is achieved by combining these two types of features. We also
observe that the cross terms give a substantial reduction in AAE.

Figure 4 shows the AAE for different models across different horizons. We
observe that our proposed method gives the lowest AAE for all horizons.

Figure 5 shows the point forecasts using our proposed model. Both for
summer and winter we were able to come up with predictions that are close
to actual realizations.

Interpretability. We can interpret our model by simply looking at the
coefficients of θpast and θtime. Since our features are reasonably well standard-
ized, the magnitude of the coefficients can be used to explain which features
were important for the forecasted values.

Figure 6 shows entries of θpasth for horizons h = t + 1, t + 4, t + 16. First,
we observe that the coefficients are approximately sparse, with most of the
entries near zero. This shows that only a few past values of the time series
are important for the forecasted values. Next, we see that especially for near
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horizons, the largest coefficients are located at or near 24 hour intervals. This
can be interpreted as the model paying special attention to the previous values
24, 48, and 72 hours ago. Note that with increasing horizon, we observe more
volatility in the coefficients and less structure. This confirms our expectation
that last known values becomes less useful as we forecast further into the future.
We can similarly interpret the coefficients of θtime by looking at the magnitude
and sign of the entries and associating them with the basis functions.

Another way to interpret our model is to look at the norms of the rows of
θpast and θtime. Their relative norms can be used to investigate how important
time features are compared to past features for various horizons. Figure 7
shows the ℓ2 norm of rows of θpast and θtime. We observe that the norm of
rows of θpast generally decreases with increasing horizon whereas the norm of
rows of θtime increases with increasing horizon. This shows that past features
lose their relative importance as we forecast further into the future whereas
time features gain more importance.
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Model CRPS (kWh)
Baseline model 24.8
Time features alone 26.1
Past features alone 20.8
All features except cross terms 14.5
Full features 13.1

Table 2: Average CRPS on test set for different models.

4.4 Marginal quantile forecasts

We carried out cyclical greedy search to tune hyperparameters but this time
evaluated for distributional forecast performance as measured by CRPS, to
find the values

λpast = 10.00, λtime
1 = 316.23, λtime

2 = 316.23, λtime
3 = 31.62,

the same as the ones found for a point forecast.
We compare the performance of our proposed method with the models

described in section §4.3. Table 2 shows the average CRPS on the test set for
our model and the other models. We see similar results to the point forecast
case.

Figure 8 shows the CRPS for different models across different horizons. It
is very similar to figure 4 for point forecast. One major difference is that this
time importance of using time features together with past features becomes
more apparent. This is because the performance of the model with just past
features quickly deteriorates with increasing horizon and reaches the baseline
level.

Figure 9 shows the marginal quantile forecasts using our proposed model.
For winter we see tight bands of quantiles centered around the actual realiza-
tion. For summer, even though the actual realization was close to the estimated
median, the interquantile distance is much higher. This can be explained by
the fact that net load values in summer showed more volatility.
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Figure 10: Conditional generated samples. Top. Winter. Bottom. Summer.

4.5 Generating conditional samples

We used the same hyperparameters for generating conditional samples as the
ones used for point forecast. Figure 10 shows 3 conditional generated samples
for winter and summer. In all cases, we observe that the generated samples
are similar to the actual values of the time series.
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