
Vol.:(0123456789)

Optimization and Engineering
https://doi.org/10.1007/s11081-022-09737-0

1 3

RESEARCH ARTICLE

Multi‑period liability clearing via convex optimal control

Shane Barratt1 · Stephen Boyd1

Received: 24 March 2022 / Revised: 11 June 2022 / Accepted: 11 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
We consider the problem of determining a sequence of payments among a set of
entities that clear (if possible) the liabilities among them. We formulate this as an
optimal control problem, which is convex when the objective function is, and there-
fore readily solved. For this optimal control problem, we give a number of useful
and interesting convex costs and constraints that can be combined in any way for
different applications. We describe a number of extensions, for example to handle
unknown changes in cash and liabilities, to allow bailouts, to find the minimum time
to clear the liabilities, or to minimize the number of non-cleared liabilities, when
fully clearing the liabilities is impossible.

Keywords Liability clearing · Convex optimization · Optimal control

1 Introduction

Large, complex networks of liabilities are the foundation of modern financial sys-
tems. According to the FDIC, there were on the order of five thousand FDIC-insured
banks in the United States at the end of 2019 (Federal Deposit Insurance Corpora-
tion 2019). Each of these banks owe each other money as a result of bank trans-
fers, loans, and securities issued. Inter-bank settlement is handled today by simple
payment systems like Fedwire and CHIPS (Bekaert and Hodrick 2012, Sect. 2.4).
Another example of complex liability networks are derivatives exchanges and bro-
kerages, where there are liabilities between clients in the form of derivatives con-
tracts or borrowed shares. A goal shared by all of the entities in these systems is to
clear or remove liabilities, which reduces risk and complexity. Each system has its
own goals and constraints in its mission to clear liabilities, which must be accounted
for.

 * Stephen Boyd
 boyd@stanford.edu

1 Stanford University, Stanford, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-022-09737-0&domain=pdf

 S. Barratt, S. Boyd

1 3

We consider the general problem of liability clearing, which is to determine a
sequence of payments between a set of financial entities to clear (if possible) the
liabilities among them over a finite time horizon. We first observe that the dynam-
ics in liability clearing are linear, and describe methods that can be used to remove
cycles of liability before any payments are made. We then formulate liability clear-
ing as an optimal control problem with convex objectives and constraints, where the
system’s state is the cash held by each entity and the liabilities between each entity,
and the input to the system is the payments made by each entity to other entities.
This formulation has several benefits. First, we can naturally incorporate the goals
and constraints in liability clearing in the stage cost function of our optimal control
problem. Second, we can efficiently (globally) solve the problem since it is convex.
Third, domain specific languages for convex optimization make it easy to prototype
new liability clearing mechanisms.

We also extend our formulation to the case where there are exogenous unknown
inputs to the dynamics, which represent uncertain future liabilities or cash flows.
We propose a solution method based on model predictive control, or shrinking hori-
zon control, which, at each time step, predicts the future unknown inputs, plans a
sequences of payments, and then uses just the first of those payments for the next
time period. We then illustrate our method on several simulated numerical exam-
ples, comparing to a simple pro-rata payment baseline. At the end of the paper, we
discuss extensions and variations of our problem, e.g., allowing bailouts, finding the
minimum time to clear a set of liabilities, non-time-separable costs, infinite time lia-
bility control, and how to minimize the number of non-cleared liabilities.

Outline In Sect. 2 we discuss related work as well as its relation to our paper. In
Sect. 3 we set out our notation, and describe the dynamics equations and constraints.
In Sect. 4 we formulate liability clearing as a convex optimal control problem, and
describe a number of useful and interesting convex costs and constraints. In Sect. 5
we extend the optimal control formulation to the case where the dynamics are sub-
ject to additional uncontrollable exogenous terms, and propose a standard method
called model predictive control for this problem. In Sect. 6 we illustrate the methods
described in this paper by applying them to several numerical examples. In Sect. 7
we conclude with a number of extensions and variations on our formulation.

2 Related work

The liability clearing problem was originally proposed by Eisenberg and Noe in
2001 (Eisenberg and Noe 2001). Their formulation involves determining a single
set of payments to be made between the entities, in contrast to ours, which assumes
a sequence of payments are made. Their formulation assumes that these payments
can be financed immediately by payments received, whereas we make the realistic
financing constraint that entities cannot pay other entities more than the cash they
have on hand. (This means that it may take multiple steps to clear liabilities.) In this
way, our formulation can be viewed as a supply chain with cash as the commodity
(Boyd and Vandenberghe 2018, Sect. 9.5), while their formulation can be viewed

1 3

Multi-period liability clearing via convex optimal control

as a network flow problem (Harris and Ross 1955), where cash can travel multiple
steps through the network at once.

They also make the assumption that all liabilities have equal priority (Eisenberg
and Noe 2001, Sect. 2.2), i.e., each entity makes payments proportional to its liabili-
ties to the other entities (we call this a pro-rata constraint; see Sect. 4.2). This means
that instead of choosing a matrix of payments between all the entities, they only
need to choose a vector of payments made by the entities; the payments are then
distributed according to the proportion of liability (they call this vector the clear-
ing vector). Our formulation can include the constraint that payments are made in
proportion to liability, but we observe that enforcing this constraint at each step is
not the most efficient strategy for clearing liabilities (see Sect. 4.5). Because we can
incorporate arbitrary (convex) costs and constraints, our formulation is more flexible
and realistic.

Eisenberg and Noe’s original liability clearing formulation has been extended in
multiple ways to include, e.g., default costs and rescue (Rogers and Veraart 2013),
cross-holdings (Elsinger 2009, Sect. 2), claims of different seniority (Elsinger
2009, Sect. 6), fire sales (Cifuentes et al. 2005), multiple assets (Feinstein 2019),
and has been used to answer fundamental questions about contagion in and shocks
to large financial networks (Glasserman and Young 2015; Feinstein et al. 2017). The
extension of our methods to a couple of these cases is described in Sect. 7. The
sensitivity of clearing vectors to liabilities has also been analyzed, using implicit
differentiation (Feinstein et al. 2018) and the Farkas lemma (Khabazian and Peng
2019). Using the techniques of differentiable convex optimization solution maps
(Agrawal et al. 2019), we can perform similar sensitivity analysis of our liability
control problems. Another tangential but related problem is modeling of liquidity
risk and funding runs; of particular note here are the Diamond and Dybvig model of
bank runs (Diamond and Dybvig 1983) and the Allen and Gale model of interbank
lending (Allen and Gale 2000) (see, e.g., Glasserman and Young (2015, Sect. 4) for
a survey).

Eisenberg and Noe’s formulation has also been extended to multiple periods.
Capponi and Chen proposed a multi-period clearing framework with a lender of
last resort (i.e., bailouts, see Sect. 7.1) and exogenous liabilities and cash flows (see
Sect. 5.2), and proposed a number of heuristic policies for controlling risk (Capponi
and Chen 2015). However, their formulation does not include the financing con-
straint, meaning liabilities can be (if possible) cleared in one step; their focus is more
on cash injection and defaults. Other related works include an extension to continu-
ous time (Banerjee et al. 2018), incorporation of multiple maturities and insolvency
law (Kusnetsov and Veraart 2019), incorporation of contingent payments (Banerjee
and Feinstein 2019), and an infinite-time treatment (Bardoscia et al. 2019).

3 Notation and dynamics

In this section we set out our notation, and describe the dynamics equations and
constraints.

 S. Barratt, S. Boyd

1 3

Entities and cash held We consider a financial system with n financial entities or
agents, such as banks, which we refer to as entities 1,… , n . These entities make pay-
ments to each other over discrete time periods t = 1,… , T , where T is the time hori-
zon. The time periods could be any length of time, e.g., each time period could rep-
resent a business day. We let ct ∈ R n

+
 denote the cash held by each of the entities,

with (ct)i being the amount held by entity i in dollars at time period t. If the entities
are banks, then the cash held is the bank’s reserves, i.e., physical cash and deposits
at the central bank. If the entities are individuals or corporations, then the cash held
is the amount of deposits at their bank.

Liability matrix Each entity has liabilities or obligations to the other entities, which
represent promised future payments. We represent these liabilities by the liability
matrix Lt ∈ R n×n

+
 , where, at time period t, (Lt)ij is the amount in dollars that entity

i owes entity j (Eisenberg and Noe 2001, Sect. 2.2). We will assume that (Lt)ii = 0 ,
i.e., the entities do not owe anything to themselves. Note that Lt� ∈ R n

+
 is the vector

of total liabilities of the entities, i.e., (Lt�)i is the total amount that entity i owes the
other entities, in time period t, where � is the vector with all entries one. Similarly,
LT
t
� ∈ R n

+
 is the vector of total amounts owed to the entities by others, i.e., (LT

t
�)i

is the total amount owed to entity i by the others. The net liability of the entities
at time period t is Lt� − LT

t
� , i.e., (Lt� − LT

t
�)i is the net liability of entity i. When

(Lt)ij = 0 , we say that the liability between entity i and j is cleared (in time period t).
The scalar quantity �TLt� is the total gross liability between all the entities. When it
is zero, which occurs only when Lt = 0 , all liabilities between the entities have been
cleared.

Payment matrix At each time step, each entity makes cash payments to other
entities. We represent these payments by the payment matrix Pt ∈ R n×n

+
 ,

t = 1,… , T − 1 , where (Pt)ij is the amount in dollars that entity i pays entity
j in time period t. We assume that (Pt)ii = 0 , i.e., entities do not pay themselves.
Thus Pt� ∈ R n

+
 is the vector of total payments made by the entities to others in

time period t, i.e., (Pt�)i is the total cash paid by entity i to the others. The vector
PT
t
� ∈ R n

+
 is the vector of total payments received by the entities from others in

time period t, i.e., (PT
t
�)i is the total payment received by entity i from the others.

Each entity can pay others no more than the cash that it has on hand, so we have the
constraint

where the inequality is meant elementwise.

Dynamics The liability and cash follow the linear dynamics

(1)Pt� ≤ ct, t = 1,… ,T − 1,

(2)L
t+1 =L

t
− P

t
, t = 1,… ,T − 1,

1 3

Multi-period liability clearing via convex optimal control

The first equation says that the liability is reduced by the payments made, and the
second says that the cash is reduced by the total payments and increased by the total
payments received.

These dynamics can be extended to include an interest rate for cash, as well as
additional cash flows into and out of the entities, and additional liabilities among the
entities. For simplicity, we continue with the simple dynamics (2) and (3) above, and
describe some of these extensions in Sect. 7.

Monotonicity of liabilities Since Lt ≥ 0 , these dynamics imply that

i.e., each entity cannot pay another entity more than its liability. We also observe
that

where the inequality is elementwise, which means that each liability is non-increas-
ing in time. We conclude that if the liability of entity i to entity j is cleared in time
period t, it will remain cleared for all future time periods. In other words, the spar-
sity pattern (i.e., which entries are nonzero) of Lt cannot increase over time. The
inequality (4) implies that once a liability between entries has cleared, no further
payments will be made. This tells us that the sparsity patterns of Pt and Lt are no
larger than the sparsity pattern of L1.

Net worth The net worth of each entity at the beginning of time period t is the
cash it holds minus the total amount it owes others, plus the total amount owed to it
by others, or

where wt ∈ R n
+
 is the vector of net worth of the entities. (The second and third

terms are the negative net liability.) The net worth is an invariant under the dynam-
ics, since

Default If (w1)i < 0 , i.e., the initial net worth of entity i is negative, then it will have
to default; it cannot reduce its net liability to zero. If an entity defaults, then it will
find itself unable to fully pay the entities it owes money to, which might cause those
entities to default as well. Such a situation is called a default cascade (Eisenberg and
Noe 2001, Sect. 2.4).

(3)c
t+1 = c

t
− P

t
� + P

T

t
�, t = 1,… , T − 1.

(4)Pt ≤ Lt, t = 1,… , T − 1,

(5)Lt+1 ≤ Lt, t = 1,… , T − 1,

wt = ct − Lt� + LT
t
�,

w
t+1 = c

t+1 − L
t+1� + L

T

t+1
�,

= c
t
− P

t
� + P

T

t
� − (L

t
− P

t
)� + (L

t
− P

t
)T�,

= c
t
− L

t
� + L

T

t
�,

=w
t
.

 S. Barratt, S. Boyd

1 3

3.1 Liability cycle removal

Graph interpretation The liabilities between the entities can be interpreted as a
weighted directed graph, where the nodes represent the entities, and the directed
edges represent liabilities between entities, with weights given by the liabilities.
In this interpretation, the liability matrix is simply the weighted adjacency matrix.

Liability cycle removal Some of the liabilities between entities can be
reduced or removed without the need to make payments between them. This hap-
pens when there are one or more liability cycles. A liability cycle is a cycle in the
graph described above, or a sequence of positive liabilities that starts and ends
at the same entity and does not visit an entity more than once. If there is a liabil-
ity cycle, then each liability in the cycle can be reduced by the smallest liability
present in the cycle, which reduces at least one of the liabilities in the cycle to
zero (which therefore breaks the cycle). Removing a liability cycle in this man-
ner keeps the net liabilities of each entity, Lt� − LT

t
� , constant. The simplest case

occurs with a cycle of length two: If (Lt)ij and (Lt)ji are both positive, i.e., entities i
and j each owe the other some positive amount, then we can replace these liabili-
ties with

which will reduce one of the two liabilities (the one that was originally smaller) to
zero.

Given a liability matrix L, we give two ways to remove liability cycles, a
greedy algorithm and a formulation of the problem as a linear program. This
problem is referred to in the literature as portfolio compression (D’Errico and
Roukny 2017; Schuldenzucker and Seuken 2019; Veraart 2019; Amini and Fein-
stein 2020) and payment netting (Shapiro 1978; O’Kane 2014, 2017).

Greedy cycle clearing algorithm The greedy cycle clearing algorithm begins by
searching for a liability cycle, which can be done using a topological sort (Kahn
1962). If there are no liability cycles, the algorithm terminates. On the other hand,
if there is a liability cycle, the algorithm reduces each liability in the cycle by the
smallest liability present in the cycle, thus removing the cycle. This process is
repeated until there are no more liability cycles. This algorithm was first proposed in
2009 in a patent filed by TriOptima (Brouwer 2009), a portfolio compression com-
pany owned by the CME group that has reported clearing over 1000 trillion dollars
of liabilities through 2017.

Optimal cycle clearing via linear programming The greedy algorithm described
above can be improved upon if our goal is not to just remove cycles, but also to
remove as much total gross liability as possible. The problem is to find a new liabil-
ity matrix L̃ ≤ L with the smallest total gross liability, subject to the constraint that
the net liabilities remains the same. This can be accomplished by solving the linear
program

(Lt)ij −min{(Lt)ij, (Lt)ji}, (Lt)ji −min{(Lt)ij, (Lt)ji},

1 3

Multi-period liability clearing via convex optimal control

with variable L̃.
To the best knowledge of the authors, the linear programming formulation of this

problem was first proposed by Shapiro (1978). In his formulation, he incorporated
transaction costs by making the objective ��(CT (L − L̃)) for a given transaction cost
matrix C ∈ R n×n

+
 . Other objectives are possible, e.g., the sum of the squared liabili-

ties (O’Kane 2014, Sect. 3.3).
Liability cycle removal could be carried out before the payments have begun.

From (5), this implies that no cycles would appear; that is, Lt would contain no
cycles for t = 1,… , T . We note however that the methods described in this paper
work regardless of whether there are cycles, or whether liability cycle removal has
been carried out; that is, liability cycle removal is optional for the methods described
in this paper.

4 Liability control

4.1 Optimal control formulation

We now formulate the problem of finding a suitable sequence of payments that
clear (or at least reduce) the liabilities among the entities as a convex optimal con-
trol problem. Given an initial liability matrix Linit and cash cinit , the liability control
problem is to choose a sequence of payments P1,… ,PT−1 so as to minimize a sum
of stage costs,

where the function gt ∶ R n
+
× R n×n

+
× R n×n

+
→ R ∪ {+∞} is the (possibly time-

varying) stage cost, and gT ∶ R n
+
× R n×n

+
→ R ∪ {+∞} is the terminal stage cost.

Infinite values of the stage cost gt (or gT) are used to express constraints on ct ,
Lt , or Pt . To impose the constraint (ct, Lt,Pt) ∈ Ct , we define gt(ct, Lt,Pt) = +∞ for
(ct, Lt,Pt) ∉ Ct . As a simple example, the final stage cost

imposes the constraint that the sequence of payments must result in all liabilities
cleared at the end of the time horizon. Here gT is the indicator function of the con-
straint LT = 0 . (The indicator function of a constraint has the value 0 when the con-
straint is satisfied, and +∞ when it is violated.)

The liability control problem has the form

(6)
minimize �T L̃�

subject to L� − LT� = L̃� − L̃T�,

0 ≤ L̃ ≤ L.

(7)
T−1∑

t=1

gt(ct, Lt,Pt) + gT (cT , LT),

gT (cT , LT) =

{
0 LT = 0,

∞ LT ≠ 0,

 S. Barratt, S. Boyd

1 3

with variables ct , Lt , t = 1,… , T , and Pt , t = 1,… , T − 1 . (The constraint ct ≥ 0 is
implied by Pt� ≤ ct .) We refer to this as the liability clearing control problem. It is
specified by the stage cost functions g1,… , gT , the initial liability matrix Linit , and
the initial cash vector cinit . We observe that the last four sets of inequality constraints
could be absorbed into the stage cost functions gt and gT ; for clarity we include them
in (8) explicitly.

Convexity We will make the assumption that the stage cost functions gt and gT are
convex, which implies that the liability control problem (8) is a convex optimiza-
tion problem (Boyd and Vandenberghe 2004). This implies that it can be (globally)
solved efficiently, even at large scale; this is discussed further in Sect. 4.4. Perhaps
more important from a practical point of view is that it can be solved with near total
reliability, with no human intervention, and at high speed if needed.

We make the assumption not just because of the computational advantages that
convexity confers, but also because there are very reasonable choices of the cost
functions that satisfy the convexity assumption. It is also true that some reasonable
cost functions are not convex; we give an example in Sect. 7.5.

4.2 Constraints

In this section we describe some examples of useful constraints, which can be com-
bined with each other or any of the cost functions described below. They are all
convex.

Liability clearance We can constrain the liabilities to be fully cleared at time T with
the constraint

If w1 ≱ 0 or the liabilities cannot be cleared in time, the liability clearing problem
(8) with this constraint will be infeasible.

Pro-rata constraint The proportional liability of each entity is the proportion of its
total liability that it owes to the other entities, which for entity i is (Lt)i∕(Lt�)i . We
can constrain the final proportional liability of each entity to be equal to the initial
proportional liability with the linear constraint

(8)

minimize
∑T−1

t=1
gt(ct, Lt,Pt) + gT (cT , LT)

subject to Lt+1 = Lt − Pt, t = 1,… , T − 1,

ct+1 = ct − Pt� + PT
t
�, t = 1,… , T − 1,

Pt� ≤ ct, t = 1,… , T − 1,

Pt ≥ 0, t = 1,… , T − 1,

Lt ≥ 0, t = 1,… , T ,

c1 = cinit , L1 = Linit , cT ≥ 0,

LT = 0.

1 3

Multi-period liability clearing via convex optimal control

where ����(x) is the diagonal matrix with x on its diagonal. This constraint also
holds if LT = 0 , i.e., the sequence of payments clears all liabilities.

Cash minimums Cash minimums, represented by the vector cmin ∈ R n
+
 , where

(cmin)i is the minimum cash that the entity i is allowed to hold, can be enforced with
the constraint

Cash minimums can arise for a number of reasons, one of them being reserve
requirements for banks (Board of Governors 2020).

Payment maximums We can constrain the payment between entities to be below
some maximum payment Pmax ∈ R n×n

+
 , where (Pmax)ij is the maximum allowable

payment from entity i to entity j, with the constraint

We can impose a limit on how much cash each entity uses for payments with the
constraint

where 0 < 𝛽 ≤ 1 is the fraction of the entity’s cash that can be used to make pay-
ments in each time period.

Payment deadlines Deadlines on payments are represented by the set

If (t, i, j) ∈ Ω , we require that the liability between entities i and j becomes zero at
time t. This results in the constraints (Lt)ij = 0 for all (t, i, j) ∈ Ω.

Progress milestones We can impose the constraint that the liabilities are reduced
by the fraction � ∈ (0, 1) in � time periods, with L� ≤ �L1.

4.3 Costs

In this section we list some interesting and useful convex stage costs. We note that
any combination of the constraints above can be included with any combination of
the costs listed below, by adding their indicator functions to the cost.

Weighted total gross liability A simple and useful stage cost is a weighted total
gross liability,

(9)����(L1�)LT = ����(LT�)L1,

ct ≥ cmin, t = 1,… ,T .

Pt ≤ Pmax, t = 1,… ,T − 1.

Pt� ≤ �ct, t = 1,… , T − 1,

Ω ⊆ {1,… , T} × {1,… , n} × {1,… , n}.

 S. Barratt, S. Boyd

1 3

where the matrix C ∈ R n×n
+

 represents the (marginal) cost of each liability. When
C = ��T (i.e., Cij = 1 for all i and j), this stage cost is simply the total gross liability
�TLt� at time t. When C is not the all ones matrix, it encourages reducing liabilities
Lij with higher weights Cij.

Total squared gross payment Another simple and useful stage cost is the total
squared gross payment,

where D ∈ R n×n
+

 represents the cost of each squared payment, and the square is
taken elementwise. This stage cost is meant to reduce the size of payments made
between entities. As a result of the super-linearity of the square function, it is more
sensitive to large payments between the entities than smaller ones. In control terms,
the sum of squared payments is our control effort, which we would like to be small.
It is a traditional term in optimal control.

Distance from cash to net worth If the liability is cleared, i.e., Lt = 0 , then the
cash held by each entity will be equal to its net worth, or ct = wt . We can penalize
the distance from the cash held by each entity to its net worth with, e.g., the cost
function

If we want to make ct exactly equal to w1 in as many entries as possible as quickly as
possible, we can replace the cost above with the �1 norm ‖ct − w1‖1.

Time-weighted stage cost Any of these stage costs can be time-weighted. That is, if
the stage cost is time-invariant, i.e., gt = g for some stage cost g, the time-weighted
stage cost is

where 𝛾 > 0 . For 𝛾 > 1 , this stage cost preferentially rewards the stage cost being
decreased later (i.e., for large t); for 𝛾 < 1 , it represents a traditional discount factor,
which preferentially rewards the stage cost being decreased earlier (i.e., for small t).
With � = 1 , we treat stage costs at different time periods the same.

(10)gt(ct, Lt,Pt) = ��(CTLt) =

n∑

i=1

n∑

j=1

Cij(Lt)ij,

gt(ct, Lt,Pt) = ��(DTP2
t
) =

n∑

i=1

n∑

j=1

Dij(Pt)
2
ij
,

gt(ct, Lt,Pt) = ‖ct − w1‖22.

gt(ct, Lt,Pt) = � t−1g(ct, Lt,Pt),

1 3

Multi-period liability clearing via convex optimal control

4.4 Computational efficiency

Since problem (8) is a convex optimization problem, it can be solved efficiently
(Boyd and Vandenberghe 2004), even for very large problem sizes. The number
of variables and constraints in the problem is on the order Tn2 . However, this con-
vex optimization problem is often very sparse. The inequalities (4) and (5) imply
that Lt and Pt can only have nonzero entries where Linit does. This means that the
number of variables can be reduced to order T���(Linit) variables, where ���(Linit)
is the number of nonzero entries in the initial liability matrix. (In Appendix 1,
we give an alternative formulation of the liability clearing control problem that
exploits this sparsity preserving property.) Due to the block-banded nature of the
optimal control problem, the computational complexity grows linearly in T; see,
e.g., (Boyd and Vandenberghe 2004, Sect. A.3).

As a practical matter, we can easily solve the liability clearing problem with
n = 1000 entities, ���(Linit) = 5000 , and T = 20 , using generic methods running
on an Intel i7-8700K CPU, in under a minute. Small problems, with say n = 10
entities, ���(Linit) = 30 , and T = 20 can be solved in under a millisecond, using
techniques of code generation such as CVXGEN (Mattingley and Boyd 2009,
2012).

It is very easy to express the liability clearing control problem using domain
specific languages for convex optimization, such as CVX (Grant and Boyd 2008,
2014), YALMIP (Lofberg 2004), CVXPY (Diamond and Boyd 2016; Agrawal
et al. 2018), Convex.jl (Udell et al. 2014), and CVXR (Fu 2019). These languages
make it easy to rapidly prototype and experiment with different cost functions and
constraints.In each of these languages, the liability control problem can be speci-
fied in just a few tens of lines of very clear and transparent code.

4.5 Pro‑rata baseline method

We describe here a simple and intuitive scheme for determining cash payments
P1,… ,PT−1 . We will use this as a baseline method to compare against the optimal
control method described above.

The payment Pt is determined as follows. At each time step, each entity pays as
much as possible pro-rata, i.e., in proportion to how much it owes the other enti-
ties, up to its liability. Define the liability proportion matrix as

so (Π)ij is the fraction of entity i’s total liability that it owes to entity j. The pro-rata
baseline has the form

where min is taken elementwise. We will see that the (seemingly sensible) pro-rata
baseline is not an efficient strategy for optimally clearing liabilities.

Π = ����(1∕(Linit�))Linit ,

(11)Pt = min(����(ct)Π,Lt),

 S. Barratt, S. Boyd

1 3

5 Liability control with exogenous unknown inputs

In this section we extend the optimal control formulation in Sect. 4 to handle additional
(exogenous) terms in the liability and cash dynamics, unrelated to the clearing process
and payments. When these additional terms are known, we obtain a straightforward
generalization of the liability clearing control problem, with a few extra terms in the
dynamics equations. For the case when they are not known ahead of time, we propose
a standard method called model predictive control (MPC), or shrinking horizon control
(Bemporad 2006; Rawlings and Mayne 2009; Mattingley et al. 2011). MPC has been
used successfully in a wide variety of applications, for example, in supply chain man-
agement (Cho et al. 2003), finance (Boyd et al. 2017), automatic control (Falcone et al.
2007; Blackmore et al. 2010), and energy management (Ma et al. 2011; Soltani et al.
2011; Moehle et al. 2019). It has been observed to work well even when the forecasts
are not particularly good (Wang and Boyd 2009, Sect. 4).

5.1 Optimal control with exogenous inputs

We replace the dynamics equations (2) and (3) with

where Wt ∈ R n×n is the liability adjustment at time t, and wt ∈ R n is the exogenous
cash flow at time t. The liability adjustment Wt can originate from entities creating
new liability agreements; the cash flow wt can originate from payments received or
made by an entity, unrelated to clearing liabilities. The terms Wt and wt are exoge-
nous inputs in our dynamics, i.e., additional terms that affect the liabilities and cash,
but are outside our control (at least, for the problem of clearing liabilities). The cash
on hand constraint (1) is modified to be

where ct + wt is the cash on hand after the exogenous cash flow.
When the exogenous inputs are known (which might occur, for example, when all

the exogenous cash flows and liability updates are planned or scheduled), we obtain
a straightforward generalization of the liability clearing control problem,

with variables ct , Lt , and Pt.

(12)Lt+1 =Lt − Pt +Wt, t = 1,… , T − 1,

(13)ct+1 =ct − Pt� + PT
t
� + wt, t = 1,… , T − 1,

(14)Pt� ≤ ct + wt, t = 1,… , T − 1,

(15)

minimize
∑T−1

t=1
gt(ct, Lt,Pt) + gT (cT , LT)

subject to Lt+1 = Lt − Pt +Wt, t = 1,… , T − 1,

ct+1 = ct − Pt� + PT
t
� + wt, t = 1,… , T − 1,

Pt� ≤ ct + wt, t = 1,… , T − 1,

Pt ≥ 0, t = 1,… , T − 1,

ct ≥ 0, Lt ≥ 0, t = 1,… , T ,

c1 = cinit , L1 = Linit ,

1 3

Multi-period liability clearing via convex optimal control

5.2 Optimal control with unknown exogenous inputs

We now consider a more common case, where wt and Wt are not known, or not
fully known, when the sequence of payments is chosen. It would be impossible to
choose the payment in time period t without knowing wt ; otherwise we cannot be
sure to satisfy (14). For this reason we assume that Wt and wt are known at time
period t, and therefore can be used when we choose the payment Pt . (An alterna-
tive interpretation is that the exogenous cash arrives before we make payments in
period t.) Thus at time period t, when Pt is chosen, we assume that w1,… ,wt and
W1,… ,Wt are all known.

Forecasts. At time period t, we do not know wt+1,… ,wT−1 or Wt+1,… ,WT−1 .
Instead we use forecasts of these quantities, which we denote by

We interpret the subscript �|t as meaning our forecast of the quantity at time period
� , made at time period t. These forecasts can range from sophisticated ones based
on machine learning to very simple ones, like ŵ𝜏∣t = 0 , Ŵ𝜏∣t = 0 , i.e., we predict that
there will be no future adjustments to the cash or liabilities. We will take ŵ𝜏|t = w𝜏
and Ŵ𝜏|t = W𝜏 for � ≤ t ; that is, our ‘forecasts’ for the current and earlier times are
simply the values that were observed.

Shrinking horizon policy We now describe a common heuristic for choosing Pt at
time period t, called MPC. The idea is very simple: we solve the problem (15), over
the remaining horizon from time periods t to T, replacing the unknown quantities
with forecasts. That is, we solve the problem

with variables ct+1,… , cT , Lt+1,… , LT , and Pt,… ,PT−1 . In (16), ct and Lt are
known; they are not variables, and we take Ŵt|t = Wt and ŵt|t = wt , which are
known. We can interpret the solution of (16) as a plan of action from time period t
to T.

We choose Pt as the value of Pt that is a solution of (16). Thus, at time period
t we plan a sequence of payments (by solving (16)); then we act by actually mak-
ing the payments in the first step of our plan. MPC has been observed to perform
well in many applications, even when the forecasts are not particularly good, or
simplistic (e.g., zero).

ŵ𝜏∣t, Ŵ𝜏∣t, 𝜏 = t + 1,… , T − 1.

(16)

minimize
∑T−1

𝜏=t
g𝜏(c𝜏 , L𝜏 ,P𝜏) + gT (cT , LT)

subject to L𝜏+1 = L𝜏 − P𝜏 + Ŵ𝜏�t, 𝜏 = t,… , T − 1,

c𝜏+1 = c𝜏 − P𝜏� + PT
𝜏
� + ŵ𝜏�t, 𝜏 = t,… , T − 1,

P𝜏� ≤ c𝜏 + w𝜏 , 𝜏 = t,… , T − 1,

P𝜏 ≥ 0, 𝜏 = t,… , T − 1,

c𝜏 ≥ 0, L𝜏 ≥ 0, 𝜏 = t,… , T ,

 S. Barratt, S. Boyd

1 3

Pro-rata baseline policy We observe that the pro-rata baseline payments (11) are
readily extended to the case when we have exogenous inputs, with wt and Wt known
at time period t. First, we define the liability proportion matrix at time t as

where Lrun
t

= Linit +
∑t

�=1
W� is the running sum of liabilities. The pro-rata baseline

policy then has the form

6 Examples

The code for all of these examples has been made available online at
www. github. com/ cvxgrp/ multi_ period_ liabi lity_ clear ing
We use CVXPY (Diamond and Boyd 2016; Agrawal et al. 2018) to formulate the

problems and solve them with MOSEK (2020).

Initial liability matrix We use the same initial liability matrix Linit for each exam-
ple, with n = 200 entities. We choose the sparsity pattern of Linit as 2000 random
off-diagonal entries (so on average, each entity has an initial liability to 10 others).
The nonzero entries of Linit are then sampled independently from a standard log-
normal distribution. While we report results below for this one problem instance,
numerical experiments with a wide variety of other instances show that the results
are qualitatively similar. We note that our example is purely illustrative, and that
further experimentation needs to be performed on problem instances that bear more
structural similarity to real world financial networks (Boss et al. 2004).

6.1 Liability clearing

We consider the problem of clearing liabilities over T = 10 time steps, i.e., we have
the constraint that the final liabilities are cleared, LT = 0 . We set the initial cash to
the minimum nonnegative cash required so each entity has nonnegative net worth, or

where max is meant elementwise.
Total gross liability
The first stage cost function we consider is

the total gross liability at each time t. We compare the solution to the liability con-
trol problem (8) using this stage cost function with the pro-rata baseline method
described in Sect. 4.5. The total gross liability and the number of non-cleared

Πt = ����(1∕Lrun
t

)Lrun
t

,

(17)Pt = min(����(ct + wt)Πt, Lt +Wt).

cinit = max(Linit� − (Linit)T�, 0),

gt(ct, Lt,Pt) = �TLt�,

http://www.github.com/cvxgrp/multi_period_liability_clearing

1 3

Multi-period liability clearing via convex optimal control

liabilities at each step of both sequences of payments are shown in Fig. 1. The opti-
mal sequence of payments clears the liabilities by t = 5 , while the baseline clears
them by t = 8.

Risk-weighted liability
Suppose we believe that the risk of each entity is proportional to r = exp(−w1) ,

where exp is taken elementwise, i.e., higher net worth implies lower risk. A rea-
sonable stage cost function is then risk-weighted liability

This stage cost encourages clearing the liabilities for high risk entities before low
risk entities. We compare the solution to the liability control problem (8) using this
stage cost function with the pro-rata baseline method in Sect. 4.5. The total gross
liability and the number of non-cleared liabilities at each step of both sequences of
payments are shown in Fig. 2. We observe that the liabilities are still cleared by
t = 5 , but the liabilities are much sparser, since the liabilities of high risk entities
are cleared before those of low risk entities. We also note that the optimal payment
sequence is much faster at reducing risk than the baseline.

gt(ct, Lt,Pt) = �TLtr.

Fig. 1 Minimizing the sum of total gross liabilities. The solid line is the optimal payment schedule. The
dashed line is the pro-rata baseline method

Fig. 2 Minimizing the sum of risk-weighted liabilities. The solid line is the optimal payment schedule.
The dashed line is the pro-rata baseline method

 S. Barratt, S. Boyd

1 3

Total squared gross paymentTo the total gross liability stage cost above, we add
the total squared payments, resulting in the stage cost

where 𝜆 > 0 is a parameter. This choice of stage cost penalizes large payments, and
stretches the liability clearing over a longer period of time. (We retain, however, the
liability clearing constraint LT = 0 .) We plot the optimal total gross liability and the
total squared gross payment for various values of � in Fig. 3. (We do not compare to
the pro-rata baseline because it does not seek to make payments small.)

6.2 Liability reduction

Suppose that some entities have negative initial net worth. This means that we will not
be able to clear all of the liabilities; our goal is then to reduce the liabilities as much
as possible, subject to the pro-rata constraint (9), ����(Linit�)LT = ����(LT�)L

init . We
consider the same liability matrix as Sect. 6.1, but change the initial cash to

where U(−5, 5) is the uniform distribution on [−5, 5] , which in our case leads to 49
entities with negative net worth. We consider the stage costs

The stage cost is the total gross liability, plus the indicator function of the constraint
that each entity pays out no more than half of its available cash in each time period.
We adjust the pro-rata baseline to

so that each entity pays no more than half its available cash, and increase the time
horizon to T = 20 . The results are displayed in Fig. 4. The optimal scheme is able to

gt(ct, Lt,Pt) = �TLt� + ��TP2
t
�,

(18)c1 = max(Linit� − (Linit)T� + z, 0), zi ∼ U(−5, 5), i = 1,… , n,

gt(ct, Lt,Pt) =

{
�TLt� Pt� ≤ ct∕2,

+∞ otherwise,
gT (cT , LT) = �TLT�.

Pt = min(����(ct∕2)Π,Lt),

Fig. 3 Minimizing the sum of total gross liability plus total squared gross payment for various values of �

1 3

Multi-period liability clearing via convex optimal control

reduce the liabilities faster than the baseline; both methods clear all but around 350
of the original 2000 liabilities. (In Sect. 7.5 we will see an extension that directly
includes the number of non-cleared liabilities in the stage cost.)

6.3 Exogenous unknown inputs

Next we consider the case where there are exogenous unknown inputs to the dynam-
ics. The cash flows and change in liabilities are sampled according to

where log(z1) ∼ N(0, I) and log(z2) ∼ N(0, 1) . At each time step t, we use the mean
of the future inputs as the forecast, or

We sample the initial cash vector according to

We use the stage cost function gt(ct, Lt,Pt) = �TLt� and the MPC policy described
in Sect. 5.2. We compared the shrinking horizon MPC policy with the (modified)
pro-rata baseline policy described in Sect. 5.2. The results are displayed in Fig. 5;
note that the total gross liability appears to reach a statistical steady state and the
liabilities can never be fully cleared. The MPC policy appears to be better than the
baseline at reducing liabilities.

7 Extensions and variations

In this section we mention some extensions and variations on the formulations
described above.

wt = z1, (Wt)ij =

{
z2∕10 (Linit)ij > 0,

0 otherwise,
t = 1,… , T − 1,

ŵ𝜏∣t = e1∕2�, Ŵ𝜏∣t =

{
e1∕2∕10 (Linit)ij > 0,

0 otherwise,
𝜏 = t + 1,… , T − 1.

c1 = max(Linit� − (Linit)T� + z, 0), zi ∼ U(−5, 0), i = 1,… , n.

Fig. 4 Liability reduction example

 S. Barratt, S. Boyd

1 3

7.1 Bailouts

We can add an additional term to the dynamics that injects cash into the entities at
various times, with presumably very high cost in the objective. With a linear objec-
tive term with sufficiently high weight, the bailout cash injections are zero, if it is
possible to clear the liabilities without cash injection. We note that bailouts have
been considered in Capponi and Chen (2015, Sect. 2.2).

7.2 Minimum time to clear liabilities

Instead of the time-separable cost function given in (8), we take as the objective the
number of steps needed to clear all liabilities. That is, our objective is Tclr , defined
as the minimum value of t for which Lt = 0 is feasible. It is easily shown that Tclr is a
quasi-convex function of the liability sequence L1,… , LT (Boyd and Vandenberghe
2004, Sect. 4.2.5), so this problem is readily solved using bisection, solving no more
than log2 T convex problems. If the liabilities cannot be cleared in up to T steps
then we can find a T such that they can be cleared using the techniques described in
Agrawal and Boyd (2020, Sect. 3).

7.3 Non‑time‑separable cost

The cost function in our basic formulation (8) is separable, i.e., a sum of terms for
each t = 1,… , T . This can be extended to include non-separable cost functions. We
describe a few of these below. They are convex, but non-convex versions of the same
objectives can also be employed, at the cost of computational efficiency to solve the
problem globally.

Smooth payments Adding the term
∑T−1

t=2
‖Pt − Pt−1‖2F to the cost, where ‖A‖F is

the Frobenius norm, i.e., the square root of the sum of the squared entries of A,

Fig. 5 Liability control with exogenous inputs

1 3

Multi-period liability clearing via convex optimal control

causes smooth transitions in the payment matrix. This cost is sometimes called the
Dirichlet energy (Boyd and Vandenberghe 2018, Sect. 7.3) or a Laplacian regulari-
zation term (Biemond et al. 1990).

Piecewise constant payments Adding the term
∑T−1

t=2
‖Pt − Pt−1‖1 , where ‖A‖1 is

the sum of absolute values of the entries of A, to the cost encourages the payment
matrix to change in as few entries as possible between time steps. This cost is some-
times called the total variation penalty (Rudin et al. 1992).

Global payment restructuring Adding the term
∑T−1

t=2
‖Pt − Pt−1‖F to the cost

encourages the entire payment matrix to change at as few time steps as possible
(Danaher et al. 2014).

Per-entity payment restructuring Adding the term
∑T−1

t=2

∑n

i=1
‖PT

t
ei − PT

t−1
ei‖2 ,

where ei is the ith unit vector, to the cost encourages the rows of the payment matrix,
i.e., the payments made by each entity, to change at as few time steps as possible.
This penalty is sometimes called a group lasso penalty (Yuan and Lin 2006).

7.4 Infinite time liability control

In Sect. 5.2 we described what is often called shrinking horizon control, because
at time period t, we solve for a sequence of payments Pt,… ,PT−1 over the remain-
ing horizon; the number of payments we optimize over (i.e., T − t) shrinks as t
increases. This formulation assumes there is a fixed horizon T.

It is also possible to consider a formulation with no fixed horizon T; the liability
clearing is done over periods t = 1, 2,… without end. The exogenous inputs wt and
Wt also continue without end. Since we have exogenous inputs, we will generally
not be able to clear the liabilities; our goal is only to keep the liabilities small, while
making if possible small payments. In this case we have a traditional infinite horizon
control or regulator problem. In economics terms, this is an equilibrium payment
scheme.

The MPC formulation is readily extended to this case, and is sometimes called
receding horizon control (RHC), since we are always planning out T steps from the
current time t. It is common to add a clearing constraint at the horizon in infinite
time MPC or RHC formulations (Rawlings and Mayne 2009, Sect. 2.2).

7.5 Minimizing the number of non‑cleared liabilities

Another reasonable objective to consider is the number of non-cleared (i.e., remain-
ing) liabilities. In this case, the only cost is the number of nonzero entries in LT . This
problem is non-convex, but it can be readily formulated as a mixed-integer convex
program (MICP), and solved, albeit slowly, using standard MICP techniques such as
branch-and-bound (Land and Doig 1960). It can also be approximately solved much
quicker using heuristics, such as iterative weighted �1-minimization (Candes et al.
2008).

 S. Barratt, S. Boyd

1 3

As a numerical example, we consider a smaller version of the initial liability
matrix used in Sect. 6, with n = 40 and 400 nonzero initial liabilities. We sample the
initial cash according to (18), so that the liabilities cannot be fully cleared, and use
a time horizon T = 10 . Minimizing the sum of total gross liabilities takes 0.05 sec-
onds, resulting in 46 non-cleared liabilities and a final total gross liability of 22.52.
By contrast, minimizing the number of non-cleared liabilities takes 22.93 seconds,
resulting in only 10 non-cleared liabilities and a final total gross liability of 29.78.
(The increase in computation time of a mixed-integer convex optimal control prob-
lem, compared to a convex optimal control problem of the same size, increases rap-
idly with problem size.)

As an extension of minimizing the number of non-cleared liabilities, we can con-
sider minimizing the number of non-cleared entities. If the ith row of Lt is zero,
it means that entity i does not owe anything to the others, and we say this entity
is cleared. We can easily add the number of non-cleared entities to our stage cost,
using a mixed-integer convex formulation.

7.6 Distributed algorithm

As stated, the liability control problem (8) requires global coordination, i.e., full
knowledge of the cash held and the liabilities between the entities throughout the
optimization procedure. In many settings where cash, liabilities, or payments cannot
be publicly disclosed, this is not possible.

It is possible to solve the liability control problem in a distributed manner where
each entity only knows its cash and the payments and liabilities it is involved in dur-
ing the optimization procedure. That is, entity i only needs to know (ct)i , the ith row
and column of Lt , and the ith row and column of Pt.

We can do this by adding a variable P̃t ∈ R n×n
+

 , the constraint P̃t = PT
t
 ,

t = 1,… , T , and replacing the cash dynamics (3) with

(We can think of P̃T
t
 as a copy of Pt , and the constraint P̃t = PT

t
 as a consensus con-

straint, i.e., that the two variables must have the same value.) Then, by applying the
alternating direction method of multipliers (ADMM) to the splitting (ct, Lt,Pt) and
P̃t , we arrive at a distributed algorithm for the problem (Boyd et al. 2011). Each iter-
ation of the algorithm involves three steps; 1) each entity solves a separate control
problem to compute their cash, outbound liabilities, and outbound payments; 2) each
entity solves a separate least squares problem that depends on their inbound pay-
ments; and 3) each entity performs a separate dual variable update. When the stage
cost is convex, this algorithm is guaranteed to converge to a (global) solution (Boyd
et al. 2011,Appendix A). Each step of the algorithm only requires coordination
between entities connected in the liability graph, and hence preserves some level
of privacy. Similar ideas have been used to develop distributed privacy-preserving
implementations of predictive patient models across hospitals (Jochems et al. 2016)
and energy management across microgrid systems (Liu et al. 2017).

ct+1 = ct − Pt� + P̃t�, t = 1,… , T − 1.

1 3

Multi-period liability clearing via convex optimal control

8 Conclusions

We have formulated the multi-period liability clearing problem as a convex opti-
mal control problem. This formulation has many advantages, such as handling
many constraints and objectives, low computational complexity, and the ability to
handle liabilities (or other quantities) that change over time via model predictive
control. While the method requires that the stage cost be a convex function, we
have described many practical examples where this holds.

A Sparsity preserving formulation

In this section we describe a sparsity-preserving formulation of problem (8). We
make use of the fact that Lt and Pt are at least as sparse as Linit (see Sect. 3).

First, let m = ���(Linit) and Ik ∈ {1,… , n} × {1,… , n} , k = 1,… ,m , be the
sparsity pattern of Linit , meaning (Linit)ij = 0 for all (i, j) ∉ Ik , k = 1,… ,m . Instead
of working with the matrix variables Lt and Pt , we work with the vector variables
lt ∈ R m

+
 and pt ∈ R m

+
 , which represent the nonzero entries of Lt and Pt (in the

same order). That is,

The initial liability is given by linit ∈ R m
+
 , which contains the nonzero entries of

Linit . The sparsity preserving formulation of the optimal control problem (8) has the
form

where Srow ∈ R n×m sums the rows of Pt , i.e., Srowpt = Pt� , and Scol ∈ R n×m sums the
columns of Pt , i.e., Scolpt = PT

t
� . The cost functions are applied only to the nonzero

entries of Lt and Pt , so they take the form gt ∶ R n
+
× R m

+
× R m

+
→ R ∪ {+∞} and

gT ∶ R n
+
× R m

+
→ R ∪ {+∞} . Problem (19) has just 2T(n + m) variables, which

can be much fewer than the original 2T(n + n2) variables when m ≪ n2.

Acknowledgements The authors would like to thank Zachary Feinstein and Luitgard Veraart for their
helpful discussion and comments on an early draft of the paper. The authors would also like to thank
Daniel Saedi for general discussions about banking. Shane Barratt is supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1656518.

(lt)k = (Lt)ij, (pt)k = (Pt)ij, (i, j) = Ik, k = 1,… ,m.

(19)

minimize
∑T−1

t=1
gt(ct, lt, pt) + gT (cT , lT)

subject to lt+1 = lt − pt, t = 1,… , T − 1,

ct+1 = ct − Srowpt + Scolpt, t = 1,… , T − 1,

Srowpt ≤ ct, t = 1,… , T − 1,

pt ≥ 0, t = 1,… , T − 1,

lt ≥ 0, t = 1,… , T ,

c1 = cinit , l1 = linit , cT ≥ 0,

 S. Barratt, S. Boyd

1 3

References

Agrawal A, Boyd S (2020) Disciplined quasiconvex programming. Optim Lett 14:1643–1657
Agrawal A, Verschueren R, Diamond S, Boyd S (2018) A rewriting system for convex optimization prob-

lems. J Control Decis 5(1):42–60
Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter JZ (2019) Differentiable convex optimization

layers. In: Advances in neural information processing systems, pp 9558–9570
Allen F, Gale D (2000) Financial contagion. J Polit Econ 108(1):1–33
Amini H, Feinstein Z (2020) Optimal network compression. https:// arxiv. org/ abs/ 2008. 08733, August
Banerjee T, Feinstein Z (2019) Impact of contingent payments on systemic risk in financial networks. Math

Financ Econ 13(4):617–636
Banerjee T, Bernstein A, Feinstein Z (2018) Dynamic clearing and contagion in financial networks. arXiv

preprint arXiv: 1801. 02091
Bardoscia M, Ferrara G, Vause N, Yoganayagam M (2019) Full payment algorithm. Available at SSRN
Bekaert G, Hodrick R (2012) International financial management, 2nd edn. Pearson Education, London
Bemporad A (2006) Model predictive control design: New trends and tools. In: IEEE conference on decision

and control, pp 6678–6683
Biemond J, Lagendijk R, Mersereau R (1990) Iterative methods for image deblurring. Proc IEEE

78(5):856–883
Blackmore L, Açikmeşe B, Scharf D (2010) Minimum-landing-error powered-descent guidance for Mars

landing using convex optimization. J Guid Control Dyn 33(4):1161–1171
Board of Governors of the Federal Reserve System. Reserve requirements. https:// www. feder alres erve. gov/

monet arypo licy/ reser vereq. htm, March 2020
Boss M, Elsinger H, Summer M, Thurner S (2004) Network topology of the interbank market. Quant Financ

4(6):677–684
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Boyd S, Vandenberghe L (2018) Introduction to applied linear algebra: vectors, matrices, and least squares.

Cambridge University Press, Cambridge
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via

the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122
Boyd S, Busseti E, Diamond S, Kahn R, Koh K, Nystrup P, Speth J (2017) Multi-period trading via convex

optimization. Found Trends® Optim 3(1):1–76
Brouwer D (2009) System and method of implementing massive early terminations of long term financial

contracts. US Patent 7,613,649
Candes E, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted �1 minimization. J Fourier Anal Appl

14(5–6):877–905
Capponi A, Chen P-C (2015) Systemic risk mitigation in financial networks. J Econ Dyn Control 58:152–166
Cho E, Thoney K, Hodgson T, King R (2003) Supply chain planning: Rolling horizon scheduling of multi-

factory supply chains. In: Proceedings of the conference on winter simulation: driving innovation, pp
1409–1416

Cifuentes R, Ferrucci G, Shin HS (2005) Liquidity risk and contagion. J Eur Econ Assoc 3(2–3):556–566
Danaher P, Wang P, Witten D (2014) The joint graphical lasso for inverse covariance estimation across multi-

ple classes. J R Stat Soc: Ser B (Stat Methodol) 76(2):373–397
Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. J

Mach Learn Res 17(83):1–5
Diamond D, Dybvig P (1983) Bank runs, deposit insurance, and liquidity. J Polit Econ 91(3):401–419
D’Errico M, Roukny T (2017) Compressing over-the-counter markets. Technical report, European Systemic

Risk Board
Eisenberg L, Noe T (2001) Systemic risk in financial systems. Manag Sci 47(2):236–249
Elsinger H (2009) Financial networks, cross holdings, and limited liability. Working Papers, Oesterreichische

Nationalbank (Austrian Central Bank) (156)
Falcone P, Borrelli F, Asgari J, Tseng H, Hrovat D (2007) Predictive active steering control for autonomous

vehicle systems. IEEE Trans Control Syst Technol 15(3):566–580
Federal Deposit Insurance Corporation. Statistics at a glance. https:// www. fdic. gov/ bank/ stati stical/ stats/

2019d ec/ indus try. pdf, December 2019
Feinstein Z (2019) Obligations with physical delivery in a multilayered financial network. SIAM J Financ

Math 10(4):877–906
Feinstein Z, Rudloff B, Weber S (2017) Measures of systemic risk. SIAM J Financ Math 8(1):672–708

https://arxiv.org/abs/2008.08733
http://arxiv.org/abs/1801.02091
https://www.federalreserve.gov/monetarypolicy/reservereq.htm
https://www.federalreserve.gov/monetarypolicy/reservereq.htm
https://www.fdic.gov/bank/statistical/stats/2019dec/industry.pdf
https://www.fdic.gov/bank/statistical/stats/2019dec/industry.pdf

1 3

Multi-period liability clearing via convex optimal control

Feinstein Z, Pang W, Rudloff B, Schaanning E, Sturm S, Wildman M (2018) Sensitivity of the Eisenberg-
Noe clearing vector to individual interbank liabilities. SIAM J Financ Math 9(4):1286–1325

Fu A, Narasimhan B, Boyd S (2019) CVXR: an R package for disciplined convex optimization. J Stat Softw
Glasserman P, Young H (2015) How likely is contagion in financial networks? J Bank Financ 50:383–399
Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Recent advances in

learning and control. Lecture Notes in Control and Information Sciences. Springer, Berlin, pp 95–110
Grant M, Boyd S (2014) CVX: Matlab software for disciplined convex programming, version 2.1
Harris T, Ross F (1955) Fundamentals of a method for evaluating rail net capacities. Technical report, RAND

Corp, Santa Monica, CA
Jochems A, Deist TM, Van Soest J, Eble M, Bulens P, Coucke P, Dries W, Lambin P, Dekker A (2016)

Distributed learning: developing a predictive model based on data from multiple hospitals without data
leaving the hospital–a real life proof of concept. Radiother Oncol 121(3):459–467

Kahn A (1962) Topological sorting of large networks. Commun ACM 5(11):558–562
Khabazian A, Peng J (2019) Vulnerability analysis of the financial network. Manag Sci 65(7):3302–3321
Kusnetsov M, Veraart L (2019) Interbank clearing in financial networks with multiple maturities. SIAM J

Financ Math 10(1):37–67
Land A, Doig A (1960) An automatic method of solving discrete programming problems. Econometrica

28(3):497–520
Liu Y, Gooi HB, Xin H (2017) Distributed energy management for the multi-microgrid system based on

ADMM. In: Power & energy society general meeting. IEEE, pp 1–5
Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE international

conference on robotics and automation. IEEE, pp 284–289
Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P (2011) Model predictive control for the operation

of building cooling systems. IEEE Trans Control Syst Technol 20(3):796–803
Mattingley J, Boyd S (2009) Automatic code generation for real-time convex optimization. In: Convex opti-

mization in signal processing and communications, pp 1–41
Mattingley J, Boyd S (2012) CVXGEN: a code generator for embedded convex optimization. Optim Eng

13(1):1–27
Mattingley J, Wang Y, Boyd S (2011) Receding horizon control. IEEE Control Syst Mag 31(3):52–65
Moehle N, Busseti E, Boyd S, Wytock M (2019) Dynamic energy management. In: Large scale optimization

in supply chains and smart manufacturing. Springer, Berlin, pp 69–126
MOSEK optimization suite (2020). https:// www. mosek. com
O’Kane D (2014) Optimizing the compression cycle: algorithms for multilateral netting in OTC derivatives

markets. Available at SSRN 2273802
O’Kane D (2017) Optimising the multilateral netting of fungible OTC derivatives. Quant Financ

17(10):1523–1534
Rawlings J, Mayne D (2009) Model predictive control: theory and design. Nob Hill Publishing, San

Francisco
Rogers L, Veraart L (2013) Failure and rescue in an interbank network. Manag Sci 59(4):882–898
Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Non-

linear Phenom 60(1–4):259–268
Schuldenzucker S, Seuken S (2019) Portfolio compression in financial networks: incentives and systemic

risk. Available at SSRN
Shapiro A (1978) Payments netting in international cash management. J Int Bus Stud 9(2):51–58
Soltani M, Wisniewski R, Brath P, Boyd S (2011) Load reduction of wind turbines using receding horizon

control. In: IEEE international conference on control applications. IEEE, pp 852–857
Udell M, Mohan K, Zeng D, Hong J, Diamond S, Boyd S (2014) Convex optimization in Julia. Workshop on

high performance technical computing in dynamic languages
Veraart L (2019) When does portfolio compression reduce systemic risk? Available at SSRN 3488398
Wang Y, Boyd S (2009) Performance bounds for linear stochastic control. Syst Control Lett 58(3):178–182
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc: Ser

B (Stat Methodol) 68(1):49–67

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.mosek.com

	Multi-period liability clearing via convex optimal control
	Abstract
	1 Introduction
	2 Related work
	3 Notation and dynamics
	3.1 Liability cycle removal

	4 Liability control
	4.1 Optimal control formulation
	4.2 Constraints
	4.3 Costs
	4.4 Computational efficiency
	4.5 Pro-rata baseline method

	5 Liability control with exogenous unknown inputs
	5.1 Optimal control with exogenous inputs
	5.2 Optimal control with unknown exogenous inputs

	6 Examples
	6.1 Liability clearing
	6.2 Liability reduction
	6.3 Exogenous unknown inputs

	7 Extensions and variations
	7.1 Bailouts
	7.2 Minimum time to clear liabilities
	7.3 Non-time-separable cost
	7.4 Infinite time liability control
	7.5 Minimizing the number of non-cleared liabilities
	7.6 Distributed algorithm

	8 Conclusions
	Acknowledgements
	References

