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Abstract
We consider the problem of determining a sequence of payments among a set of 
entities that clear (if possible) the liabilities among them. We formulate this as an 
optimal control problem, which is convex when the objective function is, and there-
fore readily solved. For this optimal control problem, we give a number of useful 
and interesting convex costs and constraints that can be combined in any way for 
different applications. We describe a number of extensions, for example to handle 
unknown changes in cash and liabilities, to allow bailouts, to find the minimum time 
to clear the liabilities, or to minimize the number of non-cleared liabilities, when 
fully clearing the liabilities is impossible.

Keywords Liability clearing · Convex optimization · Optimal control

1 Introduction

Large, complex networks of liabilities are the foundation of modern financial sys-
tems. According to the FDIC, there were on the order of five thousand FDIC-insured 
banks in the United States at the end of 2019 (Federal Deposit Insurance Corpora-
tion 2019). Each of these banks owe each other money as a result of bank trans-
fers, loans, and securities issued. Inter-bank settlement is handled today by simple 
payment systems like Fedwire and CHIPS (Bekaert and Hodrick 2012, Sect. 2.4). 
Another example of complex liability networks are derivatives exchanges and bro-
kerages, where there are liabilities between clients in the form of derivatives con-
tracts or borrowed shares. A goal shared by all of the entities in these systems is to 
clear or remove liabilities, which reduces risk and complexity. Each system has its 
own goals and constraints in its mission to clear liabilities, which must be accounted 
for.
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We consider the general problem of liability clearing, which is to determine a 
sequence of payments between a set of financial entities to clear (if possible) the 
liabilities among them over a finite time horizon. We first observe that the dynam-
ics in liability clearing are linear, and describe methods that can be used to remove 
cycles of liability before any payments are made. We then formulate liability clear-
ing as an optimal control problem with convex objectives and constraints, where the 
system’s state is the cash held by each entity and the liabilities between each entity, 
and the input to the system is the payments made by each entity to other entities. 
This formulation has several benefits. First, we can naturally incorporate the goals 
and constraints in liability clearing in the stage cost function of our optimal control 
problem. Second, we can efficiently (globally) solve the problem since it is convex. 
Third, domain specific languages for convex optimization make it easy to prototype 
new liability clearing mechanisms.

We also extend our formulation to the case where there are exogenous unknown 
inputs to the dynamics, which represent uncertain future liabilities or cash flows. 
We propose a solution method based on model predictive control, or shrinking hori-
zon control, which, at each time step, predicts the future unknown inputs, plans a 
sequences of payments, and then uses just the first of those payments for the next 
time period. We then illustrate our method on several simulated numerical exam-
ples, comparing to a simple pro-rata payment baseline. At the end of the paper, we 
discuss extensions and variations of our problem, e.g., allowing bailouts, finding the 
minimum time to clear a set of liabilities, non-time-separable costs, infinite time lia-
bility control, and how to minimize the number of non-cleared liabilities.

Outline In Sect. 2 we discuss related work as well as its relation to our paper. In 
Sect. 3 we set out our notation, and describe the dynamics equations and constraints. 
In Sect. 4 we formulate liability clearing as a convex optimal control problem, and 
describe a number of useful and interesting convex costs and constraints. In Sect. 5 
we extend the optimal control formulation to the case where the dynamics are sub-
ject to additional uncontrollable exogenous terms, and propose a standard method 
called model predictive control for this problem. In Sect. 6 we illustrate the methods 
described in this paper by applying them to several numerical examples. In Sect. 7 
we conclude with a number of extensions and variations on our formulation.

2  Related work

The liability clearing problem was originally proposed by Eisenberg and Noe in 
2001 (Eisenberg and Noe 2001). Their formulation involves determining a single 
set of payments to be made between the entities, in contrast to ours, which assumes 
a sequence of payments are made. Their formulation assumes that these payments 
can be financed immediately by payments received, whereas we make the realistic 
financing constraint that entities cannot pay other entities more than the cash they 
have on hand. (This means that it may take multiple steps to clear liabilities.) In this 
way, our formulation can be viewed as a supply chain with cash as the commodity 
(Boyd and Vandenberghe 2018, Sect.  9.5), while their formulation can be viewed 
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as a network flow problem (Harris and Ross 1955), where cash can travel multiple 
steps through the network at once.

They also make the assumption that all liabilities have equal priority (Eisenberg 
and Noe 2001, Sect. 2.2), i.e., each entity makes payments proportional to its liabili-
ties to the other entities (we call this a pro-rata constraint; see Sect. 4.2). This means 
that instead of choosing a matrix of payments between all the entities, they only 
need to choose a vector of payments made by the entities; the payments are then 
distributed according to the proportion of liability (they call this vector the clear-
ing vector). Our formulation can include the constraint that payments are made in 
proportion to liability, but we observe that enforcing this constraint at each step is 
not the most efficient strategy for clearing liabilities (see Sect. 4.5). Because we can 
incorporate arbitrary (convex) costs and constraints, our formulation is more flexible 
and realistic.

Eisenberg and Noe’s original liability clearing formulation has been extended in 
multiple ways to include, e.g., default costs and rescue (Rogers and Veraart 2013), 
cross-holdings (Elsinger 2009,  Sect.  2), claims of different seniority (Elsinger 
2009, Sect.  6), fire sales (Cifuentes et  al. 2005), multiple assets (Feinstein 2019), 
and has been used to answer fundamental questions about contagion in and shocks 
to large financial networks (Glasserman and Young 2015; Feinstein et al. 2017). The 
extension of our methods to a couple of these cases is described in Sect.  7. The 
sensitivity of clearing vectors to liabilities has also been analyzed, using implicit 
differentiation (Feinstein et  al. 2018) and the Farkas lemma (Khabazian and Peng 
2019). Using the techniques of differentiable convex optimization solution maps 
(Agrawal et  al. 2019), we can perform similar sensitivity analysis of our liability 
control problems. Another tangential but related problem is modeling of liquidity 
risk and funding runs; of particular note here are the Diamond and Dybvig model of 
bank runs (Diamond and Dybvig 1983) and the Allen and Gale model of interbank 
lending (Allen and Gale 2000) (see, e.g., Glasserman and Young (2015, Sect. 4) for 
a survey).

Eisenberg and Noe’s formulation has also been extended to multiple periods. 
Capponi and Chen proposed a multi-period clearing framework with a lender of 
last resort (i.e., bailouts, see Sect. 7.1) and exogenous liabilities and cash flows (see 
Sect. 5.2), and proposed a number of heuristic policies for controlling risk (Capponi 
and Chen 2015). However, their formulation does not include the financing con-
straint, meaning liabilities can be (if possible) cleared in one step; their focus is more 
on cash injection and defaults. Other related works include an extension to continu-
ous time (Banerjee et al. 2018), incorporation of multiple maturities and insolvency 
law (Kusnetsov and Veraart 2019), incorporation of contingent payments (Banerjee 
and Feinstein 2019), and an infinite-time treatment (Bardoscia et al. 2019).

3  Notation and dynamics

In this section we set out our notation, and describe the dynamics equations and 
constraints.
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Entities and cash held We consider a financial system with n financial entities or 
agents, such as banks, which we refer to as entities 1,… , n . These entities make pay-
ments to each other over discrete time periods t = 1,… , T  , where T is the time hori-
zon. The time periods could be any length of time, e.g., each time period could rep-
resent a business day. We let ct ∈ R n

+
 denote the cash held by each of the entities, 

with (ct)i being the amount held by entity i in dollars at time period t. If the entities 
are banks, then the cash held is the bank’s reserves, i.e., physical cash and deposits 
at the central bank. If the entities are individuals or corporations, then the cash held 
is the amount of deposits at their bank.

Liability matrix Each entity has liabilities or obligations to the other entities, which 
represent promised future payments. We represent these liabilities by the liability 
matrix Lt ∈ R n×n

+
 , where, at time period t, (Lt)ij is the amount in dollars that entity 

i owes entity j (Eisenberg and Noe 2001, Sect. 2.2). We will assume that (Lt)ii = 0 , 
i.e., the entities do not owe anything to themselves. Note that Lt� ∈ R n

+
 is the vector 

of total liabilities of the entities, i.e., (Lt�)i is the total amount that entity i owes the 
other entities, in time period t, where � is the vector with all entries one. Similarly, 
LT
t
� ∈ R n

+
 is the vector of total amounts owed to the entities by others, i.e., (LT

t
�)i 

is the total amount owed to entity i by the others. The net liability of the entities 
at time period t is Lt� − LT

t
� , i.e., (Lt� − LT

t
�)i is the net liability of entity i. When 

(Lt)ij = 0 , we say that the liability between entity i and j is cleared (in time period t). 
The scalar quantity �TLt� is the total gross liability between all the entities. When it 
is zero, which occurs only when Lt = 0 , all liabilities between the entities have been 
cleared.

Payment matrix At each time step, each entity makes cash payments to other 
entities. We represent these payments by the payment matrix Pt ∈ R n×n

+
 , 

t = 1,… , T − 1 , where (Pt)ij is the amount in dollars that entity i pays entity 
j in time period t. We assume that (Pt)ii = 0 , i.e., entities do not pay themselves. 
Thus Pt� ∈ R n

+
 is the vector of total payments made by the entities to others in 

time period t, i.e., (Pt�)i is the total cash paid by entity i to the others. The vector 
PT
t
� ∈ R n

+
 is the vector of total payments received by the entities from others in 

time period t, i.e., (PT
t
�)i is the total payment received by entity i from the others. 

Each entity can pay others no more than the cash that it has on hand, so we have the 
constraint

where the inequality is meant elementwise.

Dynamics The liability and cash follow the linear dynamics

(1)Pt� ≤ ct, t = 1,… ,T − 1,

(2)L
t+1 =L

t
− P

t
, t = 1,… ,T − 1,
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The first equation says that the liability is reduced by the payments made, and the 
second says that the cash is reduced by the total payments and increased by the total 
payments received.

These dynamics can be extended to include an interest rate for cash, as well as 
additional cash flows into and out of the entities, and additional liabilities among the 
entities. For simplicity, we continue with the simple dynamics (2) and (3) above, and 
describe some of these extensions in Sect. 7.

Monotonicity of liabilities Since Lt ≥ 0 , these dynamics imply that

i.e., each entity cannot pay another entity more than its liability. We also observe 
that

where the inequality is elementwise, which means that each liability is non-increas-
ing in time. We conclude that if the liability of entity i to entity j is cleared in time 
period t, it will remain cleared for all future time periods. In other words, the spar-
sity pattern (i.e., which entries are nonzero) of Lt  cannot increase over time. The 
inequality (4) implies that once a liability between entries has cleared, no further 
payments will be made. This tells us that the sparsity patterns of Pt and Lt are no 
larger than the sparsity pattern of L1.

Net worth The net worth of each entity at the beginning of time period t is the 
cash it holds minus the total amount it owes others, plus the total amount owed to it 
by others, or

where wt ∈ R n
+
 is the vector of net worth of the entities. (The second and third 

terms are the negative net liability.) The net worth is an invariant under the dynam-
ics, since

Default If (w1)i < 0 , i.e., the initial net worth of entity i is negative, then it will have 
to default; it cannot reduce its net liability to zero. If an entity defaults, then it will 
find itself unable to fully pay the entities it owes money to, which might cause those 
entities to default as well. Such a situation is called a default cascade (Eisenberg and 
Noe 2001, Sect. 2.4).

(3)c
t+1 = c

t
− P

t
� + P

T

t
�, t = 1,… , T − 1.

(4)Pt ≤ Lt, t = 1,… , T − 1,

(5)Lt+1 ≤ Lt, t = 1,… , T − 1,

wt = ct − Lt� + LT
t
�,

w
t+1 = c

t+1 − L
t+1� + L

T

t+1
�,

= c
t
− P

t
� + P

T

t
� − (L

t
− P

t
)� + (L

t
− P

t
)T�,

= c
t
− L

t
� + L

T

t
�,

=w
t
.



 S. Barratt, S. Boyd 

1 3

3.1  Liability cycle removal

Graph interpretation The liabilities between the entities can be interpreted as a 
weighted directed graph, where the nodes represent the entities, and the directed 
edges represent liabilities between entities, with weights given by the liabilities. 
In this interpretation, the liability matrix is simply the weighted adjacency matrix.

Liability cycle removal Some of the liabilities between entities can be 
reduced or removed without the need to make payments between them. This hap-
pens when there are one or more liability cycles. A liability cycle is a cycle in the 
graph described above, or a sequence of positive liabilities that starts and ends 
at the same entity and does not visit an entity more than once. If there is a liabil-
ity cycle, then each liability in the cycle can be reduced by the smallest liability 
present in the cycle, which reduces at least one of the liabilities in the cycle to 
zero (which therefore breaks the cycle). Removing a liability cycle in this man-
ner keeps the net liabilities of each entity, Lt� − LT

t
� , constant. The simplest case 

occurs with a cycle of length two: If (Lt)ij and (Lt)ji are both positive, i.e., entities i 
and j each owe the other some positive amount, then we can replace these liabili-
ties with

which will reduce one of the two liabilities (the one that was originally smaller) to 
zero.

Given a liability matrix L, we give two ways to remove liability cycles, a 
greedy algorithm and a formulation of the problem as a linear program. This 
problem is referred to in the literature as portfolio compression (D’Errico and 
Roukny 2017; Schuldenzucker and Seuken 2019; Veraart 2019; Amini and Fein-
stein 2020) and payment netting (Shapiro 1978; O’Kane 2014, 2017).

Greedy cycle clearing algorithm The greedy cycle clearing algorithm begins by 
searching for a liability cycle, which can be done using a topological sort (Kahn 
1962). If there are no liability cycles, the algorithm terminates. On the other hand, 
if there is a liability cycle, the algorithm reduces each liability in the cycle by the 
smallest liability present in the cycle, thus removing the cycle. This process is 
repeated until there are no more liability cycles. This algorithm was first proposed in 
2009 in a patent filed by TriOptima (Brouwer 2009), a portfolio compression com-
pany owned by the CME group that has reported clearing over 1000 trillion dollars 
of liabilities through 2017.

Optimal cycle clearing via linear programming The greedy algorithm described 
above can be improved upon if our goal is not to just remove cycles, but also to 
remove as much total gross liability as possible. The problem is to find a new liabil-
ity matrix L̃ ≤ L with the smallest total gross liability, subject to the constraint that 
the net liabilities remains the same. This can be accomplished by solving the linear 
program

(Lt)ij −min{(Lt)ij, (Lt)ji}, (Lt)ji −min{(Lt)ij, (Lt)ji},
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with variable L̃.
To the best knowledge of the authors, the linear programming formulation of this 

problem was first proposed by Shapiro (1978). In his formulation, he incorporated 
transaction costs by making the objective ��(CT (L − L̃)) for a given transaction cost 
matrix C ∈ R n×n

+
 . Other objectives are possible, e.g., the sum of the squared liabili-

ties (O’Kane 2014, Sect. 3.3).
Liability cycle removal could be carried out before the payments have begun. 

From  (5), this implies that no cycles would appear; that is, Lt would contain no 
cycles for t = 1,… , T  . We note however that the methods described in this paper 
work regardless of whether there are cycles, or whether liability cycle removal has 
been carried out; that is, liability cycle removal is optional for the methods described 
in this paper.

4  Liability control

4.1  Optimal control formulation

We now formulate the problem of finding a suitable sequence of payments that 
clear (or at least reduce) the liabilities among the entities as a convex optimal con-
trol problem. Given an initial liability matrix Linit and cash cinit , the liability control 
problem is to choose a sequence of payments P1,… ,PT−1 so as to minimize a sum 
of stage costs,

where the function gt ∶ R n
+
× R n×n

+
× R n×n

+
→ R ∪ {+∞} is the (possibly time-

varying) stage cost, and gT ∶ R n
+
× R n×n

+
→ R ∪ {+∞} is the terminal stage cost.

Infinite values of the stage cost gt (or gT ) are used to express constraints on ct , 
Lt , or Pt . To impose the constraint (ct, Lt,Pt) ∈ Ct , we define gt(ct, Lt,Pt) = +∞ for 
(ct, Lt,Pt) ∉ Ct . As a simple example, the final stage cost

imposes the constraint that the sequence of payments must result in all liabilities 
cleared at the end of the time horizon. Here gT is the indicator function of the con-
straint LT = 0 . (The indicator function of a constraint has the value 0 when the con-
straint is satisfied, and +∞ when it is violated.)

The liability control problem has the form

(6)
minimize �T L̃�

subject to L� − LT� = L̃� − L̃T�,

0 ≤ L̃ ≤ L.

(7)
T−1∑

t=1

gt(ct, Lt,Pt) + gT (cT , LT ),

gT (cT , LT ) =

{
0 LT = 0,

∞ LT ≠ 0,
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with variables ct , Lt , t = 1,… , T  , and Pt , t = 1,… , T − 1 . (The constraint ct ≥ 0 is 
implied by Pt� ≤ ct .) We refer to this as the liability clearing control problem. It is 
specified by the stage cost functions g1,… , gT , the initial liability matrix Linit , and 
the initial cash vector cinit . We observe that the last four sets of inequality constraints 
could be absorbed into the stage cost functions gt and gT ; for clarity we include them 
in (8) explicitly.

Convexity We will make the assumption that the stage cost functions gt and gT are 
convex, which implies that the liability control problem  (8) is a convex optimiza-
tion problem (Boyd and Vandenberghe 2004). This implies that it can be (globally) 
solved efficiently, even at large scale; this is discussed further in Sect. 4.4. Perhaps 
more important from a practical point of view is that it can be solved with near total 
reliability, with no human intervention, and at high speed if needed.

We make the assumption not just because of the computational advantages that 
convexity confers, but also because there are very reasonable choices of the cost 
functions that satisfy the convexity assumption. It is also true that some reasonable 
cost functions are not convex; we give an example in Sect. 7.5.

4.2  Constraints

In this section we describe some examples of useful constraints, which can be com-
bined with each other or any of the cost functions described below. They are all 
convex.

Liability clearance We can constrain the liabilities to be fully cleared at time T with 
the constraint

If w1 ≱ 0 or the liabilities cannot be cleared in time, the liability clearing problem 
(8) with this constraint will be infeasible.

Pro-rata constraint The proportional liability of each entity is the proportion of its 
total liability that it owes to the other entities, which for entity i is (Lt)i∕(Lt�)i . We 
can constrain the final proportional liability of each entity to be equal to the initial 
proportional liability with the linear constraint

(8)

minimize
∑T−1

t=1
gt(ct, Lt,Pt) + gT (cT , LT )

subject to Lt+1 = Lt − Pt, t = 1,… , T − 1,

ct+1 = ct − Pt� + PT
t
�, t = 1,… , T − 1,

Pt� ≤ ct, t = 1,… , T − 1,

Pt ≥ 0, t = 1,… , T − 1,

Lt ≥ 0, t = 1,… , T ,

c1 = cinit , L1 = Linit , cT ≥ 0,

LT = 0.
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where ����(x) is the diagonal matrix with x on its diagonal. This constraint also 
holds if LT = 0 , i.e., the sequence of payments clears all liabilities.

Cash minimums Cash minimums, represented by the vector cmin ∈ R n
+
 , where 

(cmin)i is the minimum cash that the entity i is allowed to hold, can be enforced with 
the constraint

Cash minimums can arise for a number of reasons, one of them being reserve 
requirements for banks (Board of Governors 2020).

Payment maximums We can constrain the payment between entities to be below 
some maximum payment Pmax ∈ R n×n

+
 , where (Pmax)ij is the maximum allowable 

payment from entity i to entity j, with the constraint

We can impose a limit on how much cash each entity uses for payments with the 
constraint

where 0 < 𝛽 ≤ 1 is the fraction of the entity’s cash that can be used to make pay-
ments in each time period.

Payment deadlines Deadlines on payments are represented by the set

If (t, i, j) ∈ Ω , we require that the liability between entities i and j becomes zero at 
time t. This results in the constraints (Lt)ij = 0 for all (t, i, j) ∈ Ω.

Progress milestones We can impose the constraint that the liabilities are reduced 
by the fraction � ∈ (0, 1) in � time periods, with L� ≤ �L1.

4.3  Costs

In this section we list some interesting and useful convex stage costs. We note that 
any combination of the constraints above can be included with any combination of 
the costs listed below, by adding their indicator functions to the cost.

Weighted total gross liability A simple and useful stage cost is a weighted total 
gross liability,

(9)����(L1�)LT = ����(LT�)L1,

ct ≥ cmin, t = 1,… ,T .

Pt ≤ Pmax, t = 1,… ,T − 1.

Pt� ≤ �ct, t = 1,… , T − 1,

Ω ⊆ {1,… , T} × {1,… , n} × {1,… , n}.
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where the matrix C ∈ R n×n
+

 represents the (marginal) cost of each liability. When 
C = ��T (i.e., Cij = 1 for all i and j), this stage cost is simply the total gross liability 
�TLt� at time t. When C is not the all ones matrix, it encourages reducing liabilities 
Lij with higher weights Cij.

Total squared gross payment Another simple and useful stage cost is the total 
squared gross payment,

where D ∈ R n×n
+

 represents the cost of each squared payment, and the square is 
taken elementwise. This stage cost is meant to reduce the size of payments made 
between entities. As a result of the super-linearity of the square function, it is more 
sensitive to large payments between the entities than smaller ones. In control terms, 
the sum of squared payments is our control effort, which we would like to be small. 
It is a traditional term in optimal control.

Distance from cash to net worth If the liability is cleared, i.e., Lt = 0 , then the 
cash held by each entity will be equal to its net worth, or ct = wt . We can penalize 
the distance from the cash held by each entity to its net worth with, e.g., the cost 
function

If we want to make ct exactly equal to w1 in as many entries as possible as quickly as 
possible, we can replace the cost above with the �1 norm ‖ct − w1‖1.

Time-weighted stage cost Any of these stage costs can be time-weighted. That is, if 
the stage cost is time-invariant, i.e., gt = g for some stage cost g, the time-weighted 
stage cost is

where 𝛾 > 0 . For 𝛾 > 1 , this stage cost preferentially rewards the stage cost being 
decreased later (i.e., for large t); for 𝛾 < 1 , it represents a traditional discount factor, 
which preferentially rewards the stage cost being decreased earlier (i.e., for small t). 
With � = 1 , we treat stage costs at different time periods the same.

(10)gt(ct, Lt,Pt) = ��(CTLt) =

n∑

i=1

n∑

j=1

Cij(Lt)ij,

gt(ct, Lt,Pt) = ��(DTP2
t
) =

n∑

i=1

n∑

j=1

Dij(Pt)
2
ij
,

gt(ct, Lt,Pt) = ‖ct − w1‖22.

gt(ct, Lt,Pt) = � t−1g(ct, Lt,Pt),
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4.4  Computational efficiency

Since problem (8) is a convex optimization problem, it can be solved efficiently 
(Boyd and Vandenberghe 2004), even for very large problem sizes. The number 
of variables and constraints in the problem is on the order Tn2 . However, this con-
vex optimization problem is often very sparse. The inequalities (4) and (5) imply 
that Lt and Pt can only have nonzero entries where Linit does. This means that the 
number of variables can be reduced to order T���(Linit ) variables, where ���(Linit ) 
is the number of nonzero entries in the initial liability matrix. (In Appendix 1, 
we give an alternative formulation of the liability clearing control problem that 
exploits this sparsity preserving property.) Due to the block-banded nature of the 
optimal control problem, the computational complexity grows linearly in T; see, 
e.g., (Boyd and Vandenberghe 2004, Sect. A.3).

As a practical matter, we can easily solve the liability clearing problem with 
n = 1000 entities, ���(Linit ) = 5000 , and T = 20 , using generic methods running 
on an Intel i7-8700K CPU, in under a minute. Small problems, with say n = 10 
entities, ���(Linit ) = 30 , and T = 20 can be solved in under a millisecond, using 
techniques of code generation such as CVXGEN (Mattingley and Boyd 2009, 
2012).

It is very easy to express the liability clearing control problem using domain 
specific languages for convex optimization, such as CVX (Grant and Boyd 2008, 
2014), YALMIP (Lofberg 2004), CVXPY (Diamond and Boyd 2016; Agrawal 
et al. 2018), Convex.jl (Udell et al. 2014), and CVXR (Fu 2019). These languages 
make it easy to rapidly prototype and experiment with different cost functions and 
constraints.In each of these languages, the liability control problem can be speci-
fied in just a few tens of lines of very clear and transparent code.

4.5  Pro‑rata baseline method

We describe here a simple and intuitive scheme for determining cash payments 
P1,… ,PT−1 . We will use this as a baseline method to compare against the optimal 
control method described above.

The payment Pt is determined as follows. At each time step, each entity pays as 
much as possible pro-rata, i.e., in proportion to how much it owes the other enti-
ties, up to its liability. Define the liability proportion matrix as

so (Π)ij is the fraction of entity i’s total liability that it owes to entity j. The pro-rata 
baseline has the form

where min is taken elementwise. We will see that the (seemingly sensible) pro-rata 
baseline is not an efficient strategy for optimally clearing liabilities.

Π = ����(1∕(Linit�))Linit ,

(11)Pt = min(����(ct)Π,Lt),
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5  Liability control with exogenous unknown inputs

In this section we extend the optimal control formulation in Sect. 4 to handle additional 
(exogenous) terms in the liability and cash dynamics, unrelated to the clearing process 
and payments. When these additional terms are known, we obtain a straightforward 
generalization of the liability clearing control problem, with a few extra terms in the 
dynamics equations. For the case when they are not known ahead of time, we propose 
a standard method called model predictive control (MPC), or shrinking horizon control 
(Bemporad 2006; Rawlings and Mayne 2009; Mattingley et al. 2011). MPC has been 
used successfully in a wide variety of applications, for example, in supply chain man-
agement (Cho et al. 2003), finance (Boyd et al. 2017), automatic control (Falcone et al. 
2007; Blackmore et al. 2010), and energy management (Ma et al. 2011; Soltani et al. 
2011; Moehle et al. 2019). It has been observed to work well even when the forecasts 
are not particularly good (Wang and Boyd 2009, Sect. 4).

5.1  Optimal control with exogenous inputs

We replace the dynamics equations (2) and (3) with

where Wt ∈ R n×n is the liability adjustment at time t, and wt ∈ R n is the exogenous 
cash flow at time t. The liability adjustment Wt can originate from entities creating 
new liability agreements; the cash flow wt can originate from payments received or 
made by an entity, unrelated to clearing liabilities. The terms Wt and wt are exoge-
nous inputs in our dynamics, i.e., additional terms that affect the liabilities and cash, 
but are outside our control (at least, for the problem of clearing liabilities). The cash 
on hand constraint (1) is modified to be

where ct + wt is the cash on hand after the exogenous cash flow.
When the exogenous inputs are known (which might occur, for example, when all 

the exogenous cash flows and liability updates are planned or scheduled), we obtain 
a straightforward generalization of the liability clearing control problem,

with variables ct , Lt , and Pt.

(12)Lt+1 =Lt − Pt +Wt, t = 1,… , T − 1,

(13)ct+1 =ct − Pt� + PT
t
� + wt, t = 1,… , T − 1,

(14)Pt� ≤ ct + wt, t = 1,… , T − 1,

(15)

minimize
∑T−1

t=1
gt(ct, Lt,Pt) + gT (cT , LT )

subject to Lt+1 = Lt − Pt +Wt, t = 1,… , T − 1,

ct+1 = ct − Pt� + PT
t
� + wt, t = 1,… , T − 1,

Pt� ≤ ct + wt, t = 1,… , T − 1,

Pt ≥ 0, t = 1,… , T − 1,

ct ≥ 0, Lt ≥ 0, t = 1,… , T ,

c1 = cinit , L1 = Linit ,
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5.2  Optimal control with unknown exogenous inputs

We now consider a more common case, where wt and Wt are not known, or not 
fully known, when the sequence of payments is chosen. It would be impossible to 
choose the payment in time period t without knowing wt ; otherwise we cannot be 
sure to satisfy (14). For this reason we assume that Wt and wt are known at time 
period t, and therefore can be used when we choose the payment Pt . (An alterna-
tive interpretation is that the exogenous cash arrives before we make payments in 
period t.) Thus at time period t, when Pt is chosen, we assume that w1,… ,wt and 
W1,… ,Wt are all known.

Forecasts. At time period t, we do not know wt+1,… ,wT−1 or Wt+1,… ,WT−1 . 
Instead we use forecasts of these quantities, which we denote by

We interpret the subscript �|t as meaning our forecast of the quantity at time period 
� , made at time period t. These forecasts can range from sophisticated ones based 
on machine learning to very simple ones, like ŵ𝜏∣t = 0 , Ŵ𝜏∣t = 0 , i.e., we predict that 
there will be no future adjustments to the cash or liabilities. We will take ŵ𝜏|t = w𝜏 
and Ŵ𝜏|t = W𝜏 for � ≤ t ; that is, our ‘forecasts’ for the current and earlier times are 
simply the values that were observed.

Shrinking horizon policy We now describe a common heuristic for choosing Pt at 
time period t, called MPC. The idea is very simple: we solve the problem (15), over 
the remaining horizon from time periods t to T, replacing the unknown quantities 
with forecasts. That is, we solve the problem

with variables ct+1,… , cT , Lt+1,… , LT , and Pt,… ,PT−1 . In (16), ct and Lt are 
known; they are not variables, and we take Ŵt|t = Wt and ŵt|t = wt , which are 
known. We can interpret the solution of (16) as a plan of action from time period t 
to T.

We choose Pt as the value of Pt that is a solution of (16). Thus, at time period 
t we plan a sequence of payments (by solving (16)); then we act by actually mak-
ing the payments in the first step of our plan. MPC has been observed to perform 
well in many applications, even when the forecasts are not particularly good, or 
simplistic (e.g., zero).

ŵ𝜏∣t, Ŵ𝜏∣t, 𝜏 = t + 1,… , T − 1.

(16)

minimize
∑T−1

𝜏=t
g𝜏(c𝜏 , L𝜏 ,P𝜏) + gT (cT , LT )

subject to L𝜏+1 = L𝜏 − P𝜏 + Ŵ𝜏�t, 𝜏 = t,… , T − 1,

c𝜏+1 = c𝜏 − P𝜏� + PT
𝜏
� + ŵ𝜏�t, 𝜏 = t,… , T − 1,

P𝜏� ≤ c𝜏 + w𝜏 , 𝜏 = t,… , T − 1,

P𝜏 ≥ 0, 𝜏 = t,… , T − 1,

c𝜏 ≥ 0, L𝜏 ≥ 0, 𝜏 = t,… , T ,
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Pro-rata baseline policy We observe that the pro-rata baseline payments (11) are 
readily extended to the case when we have exogenous inputs, with wt and Wt known 
at time period t. First, we define the liability proportion matrix at time t as

where Lrun
t

= Linit +
∑t

�=1
W� is the running sum of liabilities. The pro-rata baseline 

policy then has the form

6  Examples

The code for all of these examples has been made available online at
www. github. com/ cvxgrp/ multi_ period_ liabi lity_ clear ing
We use CVXPY (Diamond and Boyd 2016; Agrawal et al. 2018) to formulate the 

problems and solve them with MOSEK (2020).

Initial liability matrix We use the same initial liability matrix Linit for each exam-
ple, with n = 200 entities. We choose the sparsity pattern of Linit as 2000 random 
off-diagonal entries (so on average, each entity has an initial liability to 10 others). 
The nonzero entries of Linit are then sampled independently from a standard log-
normal distribution. While we report results below for this one problem instance, 
numerical experiments with a wide variety of other instances show that the results 
are qualitatively similar. We note that our example is purely illustrative, and that 
further experimentation needs to be performed on problem instances that bear more 
structural similarity to real world financial networks (Boss et al. 2004).

6.1  Liability clearing

We consider the problem of clearing liabilities over T = 10 time steps, i.e., we have 
the constraint that the final liabilities are cleared, LT = 0 . We set the initial cash to 
the minimum nonnegative cash required so each entity has nonnegative net worth, or

where max is meant elementwise.
Total gross liability
The first stage cost function we consider is

the total gross liability at each time t. We compare the solution to the liability con-
trol problem (8) using this stage cost function with the pro-rata baseline method 
described in Sect.  4.5. The total gross liability and the number of non-cleared 

Πt = ����(1∕Lrun
t

)Lrun
t

,

(17)Pt = min(����(ct + wt)Πt, Lt +Wt).

cinit = max(Linit� − (Linit )T�, 0),

gt(ct, Lt,Pt) = �TLt�,

http://www.github.com/cvxgrp/multi_period_liability_clearing
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liabilities at each step of both sequences of payments are shown in Fig. 1. The opti-
mal sequence of payments clears the liabilities by t = 5 , while the baseline clears 
them by t = 8.

Risk-weighted liability
Suppose we believe that the risk of each entity is proportional to r = exp(−w1) , 

where exp is taken elementwise, i.e., higher net worth implies lower risk. A rea-
sonable stage cost function is then risk-weighted liability

This stage cost encourages clearing the liabilities for high risk entities before low 
risk entities. We compare the solution to the liability control problem (8) using this 
stage cost function with the pro-rata baseline method in Sect. 4.5. The total gross 
liability and the number of non-cleared liabilities at each step of both sequences of 
payments are shown in Fig.  2. We observe that the liabilities are still cleared by 
t = 5 , but the liabilities are much sparser, since the liabilities of high risk entities 
are cleared before those of low risk entities. We also note that the optimal payment 
sequence is much faster at reducing risk than the baseline.

gt(ct, Lt,Pt) = �TLtr.

Fig. 1  Minimizing the sum of total gross liabilities. The solid line is the optimal payment schedule. The 
dashed line is the pro-rata baseline method

Fig. 2  Minimizing the sum of risk-weighted liabilities. The solid line is the optimal payment schedule. 
The dashed line is the pro-rata baseline method
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Total squared gross paymentTo the total gross liability stage cost above, we add 
the total squared payments, resulting in the stage cost

where 𝜆 > 0 is a parameter. This choice of stage cost penalizes large payments, and 
stretches the liability clearing over a longer period of time. (We retain, however, the 
liability clearing constraint LT = 0 .) We plot the optimal total gross liability and the 
total squared gross payment for various values of � in Fig. 3. (We do not compare to 
the pro-rata baseline because it does not seek to make payments small.) 

6.2  Liability reduction

Suppose that some entities have negative initial net worth. This means that we will not 
be able to clear all of the liabilities; our goal is then to reduce the liabilities as much 
as possible, subject to the pro-rata constraint (9), ����(Linit�)LT = ����(LT�)L

init . We 
consider the same liability matrix as Sect. 6.1, but change the initial cash to

where U(−5, 5) is the uniform distribution on [−5, 5] , which in our case leads to 49 
entities with negative net worth. We consider the stage costs

The stage cost is the total gross liability, plus the indicator function of the constraint 
that each entity pays out no more than half of its available cash in each time period. 
We adjust the pro-rata baseline to

so that each entity pays no more than half its available cash, and increase the time 
horizon to T = 20 . The results are displayed in Fig. 4. The optimal scheme is able to 

gt(ct, Lt,Pt) = �TLt� + ��TP2
t
�,

(18)c1 = max(Linit� − (Linit )T� + z, 0), zi ∼ U(−5, 5), i = 1,… , n,

gt(ct, Lt,Pt) =

{
�TLt� Pt� ≤ ct∕2,

+∞ otherwise,
gT (cT , LT ) = �TLT�.

Pt = min(����(ct∕2)Π,Lt),

Fig. 3  Minimizing the sum of total gross liability plus total squared gross payment for various values of �
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reduce the liabilities faster than the baseline; both methods clear all but around 350 
of the original 2000 liabilities. (In Sect. 7.5 we will see an extension that directly 
includes the number of non-cleared liabilities in the stage cost.)

6.3  Exogenous unknown inputs

Next we consider the case where there are exogenous unknown inputs to the dynam-
ics. The cash flows and change in liabilities are sampled according to

where log(z1) ∼ N(0, I) and log(z2) ∼ N(0, 1) . At each time step t, we use the mean 
of the future inputs as the forecast, or

We sample the initial cash vector according to

We use the stage cost function gt(ct, Lt,Pt) = �TLt� and the MPC policy described 
in Sect. 5.2. We compared the shrinking horizon MPC policy with the (modified) 
pro-rata baseline policy described in Sect. 5.2. The results are displayed in Fig. 5; 
note that the total gross liability appears to reach a statistical steady state and the 
liabilities can never be fully cleared. The MPC policy appears to be better than the 
baseline at reducing liabilities.

7  Extensions and variations

In this section we mention some extensions and variations on the formulations 
described above.

wt = z1, (Wt)ij =

{
z2∕10 (Linit )ij > 0,

0 otherwise,
t = 1,… , T − 1,

ŵ𝜏∣t = e1∕2�, Ŵ𝜏∣t =

{
e1∕2∕10 (Linit )ij > 0,

0 otherwise,
𝜏 = t + 1,… , T − 1.

c1 = max(Linit� − (Linit )T� + z, 0), zi ∼ U(−5, 0), i = 1,… , n.

Fig. 4  Liability reduction example
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7.1  Bailouts

We can add an additional term to the dynamics that injects cash into the entities at 
various times, with presumably very high cost in the objective. With a linear objec-
tive term with sufficiently high weight, the bailout cash injections are zero, if it is 
possible to clear the liabilities without cash injection. We note that bailouts have 
been considered in Capponi and Chen (2015, Sect. 2.2).

7.2  Minimum time to clear liabilities

Instead of the time-separable cost function given in (8), we take as the objective the 
number of steps needed to clear all liabilities. That is, our objective is Tclr , defined 
as the minimum value of t for which Lt = 0 is feasible. It is easily shown that Tclr is a 
quasi-convex function of the liability sequence L1,… , LT (Boyd and Vandenberghe 
2004, Sect. 4.2.5), so this problem is readily solved using bisection, solving no more 
than log2 T  convex problems. If the liabilities cannot be cleared in up to T steps 
then we can find a T such that they can be cleared using the techniques described in 
Agrawal and Boyd (2020, Sect. 3).

7.3  Non‑time‑separable cost

The cost function in our basic formulation (8) is separable, i.e., a sum of terms for 
each t = 1,… , T  . This can be extended to include non-separable cost functions. We 
describe a few of these below. They are convex, but non-convex versions of the same 
objectives can also be employed, at the cost of computational efficiency to solve the 
problem globally.

Smooth payments Adding the term 
∑T−1

t=2
‖Pt − Pt−1‖2F to the cost, where ‖A‖F is 

the Frobenius norm, i.e., the square root of the sum of the squared entries of A, 

Fig. 5  Liability control with exogenous inputs



1 3

Multi-period liability clearing via convex optimal control  

causes smooth transitions in the payment matrix. This cost is sometimes called the 
Dirichlet energy (Boyd and Vandenberghe 2018, Sect. 7.3) or a Laplacian regulari-
zation term (Biemond et al. 1990).

Piecewise constant payments Adding the term 
∑T−1

t=2
‖Pt − Pt−1‖1 , where ‖A‖1 is 

the sum of absolute values of the entries of A, to the cost encourages the payment 
matrix to change in as few entries as possible between time steps. This cost is some-
times called the total variation penalty (Rudin et al. 1992).

Global payment restructuring Adding the term 
∑T−1

t=2
‖Pt − Pt−1‖F to the cost 

encourages the entire payment matrix to change at as few time steps as possible 
(Danaher et al. 2014).

Per-entity payment restructuring Adding the term 
∑T−1

t=2

∑n

i=1
‖PT

t
ei − PT

t−1
ei‖2 , 

where ei is the ith unit vector, to the cost encourages the rows of the payment matrix, 
i.e., the payments made by each entity, to change at as few time steps as possible. 
This penalty is sometimes called a group lasso penalty (Yuan and Lin 2006).

7.4  Infinite time liability control

In Sect.  5.2 we described what is often called shrinking horizon control, because 
at time period t, we solve for a sequence of payments Pt,… ,PT−1 over the remain-
ing horizon; the number of payments we optimize over (i.e., T − t ) shrinks as t 
increases. This formulation assumes there is a fixed horizon T.

It is also possible to consider a formulation with no fixed horizon T; the liability 
clearing is done over periods t = 1, 2,… without end. The exogenous inputs wt and 
Wt also continue without end. Since we have exogenous inputs, we will generally 
not be able to clear the liabilities; our goal is only to keep the liabilities small, while 
making if possible small payments. In this case we have a traditional infinite horizon 
control or regulator problem. In economics terms, this is an equilibrium payment 
scheme.

The MPC formulation is readily extended to this case, and is sometimes called 
receding horizon control (RHC), since we are always planning out T steps from the 
current time t. It is common to add a clearing constraint at the horizon in infinite 
time MPC or RHC formulations (Rawlings and Mayne 2009, Sect. 2.2).

7.5  Minimizing the number of non‑cleared liabilities

Another reasonable objective to consider is the number of non-cleared (i.e., remain-
ing) liabilities. In this case, the only cost is the number of nonzero entries in LT . This 
problem is non-convex, but it can be readily formulated as a mixed-integer convex 
program (MICP), and solved, albeit slowly, using standard MICP techniques such as 
branch-and-bound (Land and Doig 1960). It can also be approximately solved much 
quicker using heuristics, such as iterative weighted �1-minimization (Candes et al. 
2008).
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As a numerical example, we consider a smaller version of the initial liability 
matrix used in Sect. 6, with n = 40 and 400 nonzero initial liabilities. We sample the 
initial cash according to (18), so that the liabilities cannot be fully cleared, and use 
a time horizon T = 10 . Minimizing the sum of total gross liabilities takes 0.05 sec-
onds, resulting in 46 non-cleared liabilities and a final total gross liability of 22.52. 
By contrast, minimizing the number of non-cleared liabilities takes 22.93 seconds, 
resulting in only 10 non-cleared liabilities and a final total gross liability of 29.78. 
(The increase in computation time of a mixed-integer convex optimal control prob-
lem, compared to a convex optimal control problem of the same size, increases rap-
idly with problem size.)

As an extension of minimizing the number of non-cleared liabilities, we can con-
sider minimizing the number of non-cleared entities. If the ith row of Lt is zero, 
it means that entity i does not owe anything to the others, and we say this entity 
is cleared. We can easily add the number of non-cleared entities to our stage cost, 
using a mixed-integer convex formulation.

7.6  Distributed algorithm

As stated, the liability control problem (8) requires global coordination, i.e., full 
knowledge of the cash held and the liabilities between the entities throughout the 
optimization procedure. In many settings where cash, liabilities, or payments cannot 
be publicly disclosed, this is not possible.

It is possible to solve the liability control problem in a distributed manner where 
each entity only knows its cash and the payments and liabilities it is involved in dur-
ing the optimization procedure. That is, entity i only needs to know (ct)i , the ith row 
and column of Lt , and the ith row and column of Pt.

We can do this by adding a variable P̃t ∈ R n×n
+

 , the constraint P̃t = PT
t
 , 

t = 1,… , T  , and replacing the cash dynamics (3) with

(We can think of P̃T
t
 as a copy of Pt , and the constraint P̃t = PT

t
 as a consensus con-

straint, i.e., that the two variables must have the same value.) Then, by applying the 
alternating direction method of multipliers (ADMM) to the splitting (ct, Lt,Pt) and 
P̃t , we arrive at a distributed algorithm for the problem (Boyd et al. 2011). Each iter-
ation of the algorithm involves three steps; 1) each entity solves a separate control 
problem to compute their cash, outbound liabilities, and outbound payments; 2) each 
entity solves a separate least squares problem that depends on their inbound pay-
ments; and 3) each entity performs a separate dual variable update. When the stage 
cost is convex, this algorithm is guaranteed to converge to a (global) solution (Boyd 
et  al. 2011,Appendix A). Each step of the algorithm only requires coordination 
between entities connected in the liability graph, and hence preserves some level 
of privacy. Similar ideas have been used to develop distributed privacy-preserving 
implementations of predictive patient models across hospitals (Jochems et al. 2016) 
and energy management across microgrid systems (Liu et al. 2017).

ct+1 = ct − Pt� + P̃t�, t = 1,… , T − 1.
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8  Conclusions

We have formulated the multi-period liability clearing problem as a convex opti-
mal control problem. This formulation has many advantages, such as handling 
many constraints and objectives, low computational complexity, and the ability to 
handle liabilities (or other quantities) that change over time via model predictive 
control. While the method requires that the stage cost be a convex function, we 
have described many practical examples where this holds.

A Sparsity preserving formulation

In this section we describe a sparsity-preserving formulation of problem (8). We 
make use of the fact that Lt and Pt are at least as sparse as Linit (see Sect. 3).

First, let m = ���(Linit ) and Ik ∈ {1,… , n} × {1,… , n} , k = 1,… ,m , be the 
sparsity pattern of Linit , meaning (Linit )ij = 0 for all (i, j) ∉ Ik , k = 1,… ,m . Instead 
of working with the matrix variables Lt and Pt , we work with the vector variables 
lt ∈ R m

+
 and pt ∈ R m

+
 , which represent the nonzero entries of Lt and Pt (in the 

same order). That is,

The initial liability is given by linit ∈ R m
+
 , which contains the nonzero entries of 

Linit . The sparsity preserving formulation of the optimal control problem (8) has the 
form

where Srow ∈ R n×m sums the rows of Pt , i.e., Srowpt = Pt� , and Scol ∈ R n×m sums the 
columns of Pt , i.e., Scolpt = PT

t
� . The cost functions are applied only to the nonzero 

entries of Lt and Pt , so they take the form gt ∶ R n
+
× R m

+
× R m

+
→ R ∪ {+∞} and 

gT ∶ R n
+
× R m

+
→ R ∪ {+∞} . Problem (19) has just 2T(n + m) variables, which 

can be much fewer than the original 2T(n + n2) variables when m ≪ n2.
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(lt)k = (Lt)ij, (pt)k = (Pt)ij, (i, j) = Ik, k = 1,… ,m.

(19)

minimize
∑T−1

t=1
gt(ct, lt, pt) + gT (cT , lT )

subject to lt+1 = lt − pt, t = 1,… , T − 1,

ct+1 = ct − Srowpt + Scolpt, t = 1,… , T − 1,

Srowpt ≤ ct, t = 1,… , T − 1,

pt ≥ 0, t = 1,… , T − 1,

lt ≥ 0, t = 1,… , T ,

c1 = cinit , l1 = linit , cT ≥ 0,
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