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Abstract

Large scale multi-dimensional time series can be found in many disciplines, includ-
ing finance, econometrics, biomedical engineering, and industrial engineering
systems. It has long been recognized that the time dependent components of the
vector time series often reside in a subspace, leaving its complement independent
over time. In this paper we develop a method for projecting the time series onto a
low-dimensional time-series that is predictable, in the sense that an auto-regressive
model achieves low prediction error. Our formulation and method follow ideas from
principal component analysis, so we refer to the extracted low-dimensional time
series as principal time series. In one special case we can compute the optimal pro-
jection exactly; in others, we give a heuristic method that seems to work well in
practice. The effectiveness of the method is demonstrated on synthesized and real
time series.
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1 Introduction

High dimensional time series analysis and applications have become increasingly
important in many different domains. In many cases, the high dimensional time
series data are both cross-correlated and auto-correlated. Cross-correlations among
different time series make it possible to use a set of lower dimensional time series to
represent the original, high dimensional time series. For example, principal compo-
nent analysis (PCA) (Connor and Korajczyk 1986; Bai and Ng 2008) and general-
ized PCA (Choi 2012) methods utilize the cross-correlations among different time
series to extract lower dimensional factors that capture maximal variance. Although
PCA has seen wide use as a dimension reduction method, it does not focus on mod-
eling of auto-correlations or dynamics that can exist in time series data. Since auto-
correlations make it possible to predict future values from the past values, it is desir-
able to perform such low dimensional modeling of the dynamics.

In this work, a linear projection method is proposed to extract a lower dimen-
sional most predictable time series from high-dimensional time series. The entries
of the low dimensional time series are mutually uncorrelated so that they capture as
much dynamics as possible. The advantage of the proposed method is that it focuses
on extracting principal time series with most dynamics. Therefore, the dynamic fea-
tures of the high dimensional data are concentrated in a set of lower dimensional
time series, which makes it very useful for data prediction, dynamic feature extrac-
tion and visualization.

The proposed method has numerous potential applications, ranging from finance
to industrial engineering. In finance, if the high dimensional time series consist of
returns of some assets, applying the proposed method gives the most predictable
portfolio. In chemical processes, oscillations are usually undesirable (Thornhill and
Hégglund 1997; Thornhill et al. 2003) and applying the proposed method to the pro-
cess measurements can help detect the unwanted oscillations. In biomedical engi-
neering, electroencephalography (EEG) data can be characterized with waves with
different frequencies (Teplan 2002; Tatum 2014). Applying the proposed method to
EEG data has the potential to detect the different waves.

In this work, the extraction of principal time series and the VAR modeling of
the principal time series are achieved simultaneously by solving the optimization
problem (i.e., there is no need to refit a VAR model for the principal time series
after they are extracted). In addition, the extracted principal time series are best pre-
dictable from their past values and capture most of dynamics. This property makes
the proposed method very useful for prediction, dynamic feature extraction, and
visualization.
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2 The most predictable projected time series
2.1 Predictability of a time series

Consider a wide-sense stationary n-dimensional vector time series process
z, € R, t € Z, with
Ez, =0, EztzT =X, 1€l (1)

+7T T

Here X is the auto-covariance matrix for lag . The zero mean assumption is without
loss of generality, since this can be arranged by subtracting the mean from the origi-
nal process, if it is not zero. We refer to a time series with 2, = I as standardized.

Predictability measure
An M-memory auto-regressive (AR) predictor for z, has the form

L=A12 F A+ H Ay

where A, € R, i=1,2,...,M are the AR (matrix) coefficients. We define the
(M-memory) (un-)predictability measure for the time series as the smallest possible
mean square AR prediction error,

. s 112
a= A,I,T,I}AME 2 = &[I5 )

which has the same value for all . To simplify the notation for the rest of paper, we
define A = [A; - Ay

We can easily evaluate the predictability measure @. The objective can be
expressed as

=T P S Y
cese T
Elz, —2l2=Tr|Z,-2 2:2 AT+ A 21:20, .,EM;Z AT
ZM ZM—IZM—Z Z:0

The optimal AR coefficients are readily found to be

DI YR Y z
DINEED Y ) s,

AT=| % . M=2 B
Tyt Zya vt Zo Zy
assuming the inverse of the symmetric semidefinite block Toeplitz matrix above
exists. It follows that
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T -1
z T, [ - zﬁ;_l z
a=Tr|z,-| 2| | 5 T T Rua| (%2 3)

ZM ZM—I EM—2 Z:0 ZM

It can be shown that 0 < « < Tr X,. A low value of « indicates high predictability; a
high value of « indicates low predictability. The extreme case « = 0 means that the
AR model has zero residual, and the extreme case @ = Tr X, occurs when z, and z,
are uncorrelated for ¢ # s, so £, = 0 for 7 # 0, and the optimal AR coefficients are
all zero.

2.2 The most predictable projected time series

We can obtain a lower-dimensional time series x, € R™ as a linear function of the
original time series z, € R", as x, = WTz,, where W € R™"_ with m < n. We denote
the auto-covariance matrices of x, as
— T _ wT
S;=Exx,  =WZXW <€l

Our goal is to choose W so that the series x, is predictable, i.e., has a low value of a.
We evidently need to normalize W to rule out the solution W = 0; we do this with
the constraint

WIZW=25,=1

This ensures that Ex,xlT =1, i.e., the low-dimensional time series x, is standardized.
The most predictable projected time series is found by solving the optimization
problem

maximize f(W)

subjectto Sy =1, )
with variables W and A, where

ST SoST - Sy

f(W) — Tr 512 SI:SO:"'.S 512

Sl 1Sm-1Su—2 -+ So Su
The solution is evidently not unique; if Q is an orthonormal m X m matrix, then
F(WQ) = f(W). In other words, all solutions differ by an orthonormal matrix.
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2.3 Special case with exact solutions

Here we observe that when M = 1 and m = 1, the problem can be solved exactly. For
projection, the problem is

maximize ||WT21W||%
subject to WIZ W =1,

usmg S? =1to 31mp11fy the objective. This is readily solved. Define Z = 21/ W and

Z Z , to the problem is to maximize || Z7YZ ||2 subject to Z'Z = I.
Let Vv denote the eigenvector of Y + Y7 corresponding to the eigenvalue with
the maximum magnitude. Then V satisfies the constraint and maximizes the

objective value. Therefore, the optimal W is W* = N Ry,
Once an optimal W* is obtained, the optimal A* can be easily calculated as

*=STst =87 =W Efwr,

3 Algorithm

When M # 1, there is no exact solution to (4), to the best of our knowledge. Prob-
lem (4) is essentially an optimization problem over the Grassmannian manifold.
There has been research on how to address such optimization problems, including
Absil et al. (2009); Usevich and Markovsky (2014); Edelman et al. (1998). In this
section, we give a heuristic method that seems to work well in practice.

We will construct the columns of W € R™" sequentially. Each column is cho-
sen satisfy the constraint S, = I, while maximizing the predictability of the pro-
jected time series. In this section, we explain how to achieve this.

Assume that we have already constructed k columns of W, with Wk € R™* and
AF e RMk  (We initialize k = 0, W¥ =0, and A° =0 to construct the first col-
umn). Then, our goal is to choose W*! = [W* w], where w € R”, such that the
(k + 1)-dimensional projected time series is most predictable.

This is equivalent to the optimization problem

maximize f(W*+1)
subject to WA = [Wk w] (5)

Sk+1 =7

0 9

where W¥ is fixed and Si*' = (WA W+, We cannot find exact solutions to this
problem. However, we know how to solve for A**! exactly when W**! is fixed, and
how to solve for W¥*! exactly when A¥*!is fixed. We can iterate these two steps until
convergence to obtain an approximate solution to (5).

@ Springer



1194 Y.Dong et al.

3.1 Solving for A“*'with fixed w

When w is fixed, we can solve for A¥*! exactly. According to Sect. 2.1, when W+!
is known, the solution of A1 is

k+1 Qh+1.T k+1,T77 ) okl
Skl g SR S}(
LT _ Sk+1 Sk+1 Sk+1 T +1
AT >
k+1 k+1 ) k+1 k+1
SM 1 SM 2 SO SM

where St = WHITE whtl 7 e Z,

The time complex1ty for forming S¥*', ... SH! is O(M(k + 1)n?). Once S,
7=1,...,M are calculated, the time complexity for updating A**! is dominated by
the inversion step, which is O(M?3(k + 1)3). Therefore, the overall time complexity for
updating A¥*!is max {OM(k + 1)n?), OM>(k + 1)*)}.

3.2 Solving for w with fixed A¥*"

When A*t! is fixed, we can solve for W&+! exactly. With some derivations, the optimi-
zation problem for w can be expressed as

minimize f(w) = wIBw — 2cTw
subject to WETEZjw =0 (6)
wiZgw =1,

where B > 0, and B, ¢ are known. The derivation and expressions for B and ¢ can
be found in Appendix A. The solution of this problem can be obtained explicitly as
follows.

Let U € R0 be the orthogonal comlplement of 21/ *W* and UTU = I. Denote

the SVD decomposition of UTZ_1 /2 ZO UTZ 1 232_1/ U =VAVT with
A =diag(A;,.... 4, ), (A4 < Ay < 4,_). Then problem 6) can be transformed as
minimize f(z) =y Ay —2pTy o

subject to yTy = 1,

1/2 -1/2

where = [, f, -+ ] = V'U'E; "“cand w = Z /" UVy. The solution to prob-
lem (7) has the form y = (A 4+ ul)~! # where y can be obtained as the root of

5 ol
S+ pu?

that satisfies y > —A4,.
After u is found, the optimal w of problem (6) can be obtained as

* =3 PUvA + un'p.
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According to the expressions of B and ¢ in Appendix A, the time complexity for
forming B and ¢ is O(M?*n?). Once B and c are calculated, the time complexity for
updating w is dominated by the SVD step, which is O(n?). Therefore, the overall
time complexity for updating w is max {O(M*n?), 0(n*)}.

3.3 Complete algorithm

We have discussed algorithms to solve for A**! when W**! is fixed and to
solve for Wx+! = [W¥ w] when A¥*! is fixed. The complete procedure to con-
struct the (k + 1)th column of W is to iterate these two steps until convergence.
As discussed in Sects. 3.1 and 3.2, the time complexity for updating AM*! is
max {OM(k + Dn?), OM3(k + 1)*)}, and the time complexity for updating w is
max }O(Mznz), O(n*)}. In practice, it is often the case that m < n and M < n. There-
fore, the overall time complexity at each iteration step is O(n?).

Once W1, A1 are obtained, the same procedure can be applied to construct the
next column of W. The complete algorithm is given in Algorithm 1.

Algorithm 1 Complete algorithm for approximate solution to (4).

1: Set initial values of WO as a vector of zeros of proper size, and A® = 0.

2: for k=1,2,...do

3: repeat

4: Set w =20

5: Solve AF*+1 with fixed Wk+1 = [W* w)] according to §3.1
6: Solve Wkl = [W* w)] with fixed A¥+! according to §3.2
7 until termination condition is satisfied

8: end for

The heuristic method proposed has two advantages over directly solving the origi-
nal problem (4). First, there is no uniqueness issue in this recursive method, because
starting from the first column of W, each column of W is deterministic according to
the optimization problem (6). Second, the iterative procedure gives an indication of the
dimension of the predictable vector time series.

Let @, denote the predictability measure for the k dimensional projected time series,
or the value of the objective function in (4) with optimal W* and A*. Then, when
extracting the (k 4+ 1)th scalar time series, we have the following upper bound for e, |
of the (k + 1)-dimensional time series,

g <o +w Zow = + 1.

When the optimal «,, is very close to the upper bound a; + 1, we can draw two
conclusions. First, adding another scalar time series does not improve the prediction
of the k dimensional vector time series. Second, no other self-predictable scalar time
series can be extracted. These two facts suggest that all the predictable components
in the time series data are already extracted and hence, we can stop the iteration
procedure.
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4 Examples

In this section, we test our method by applying it to a synthesized high-dimensional
time series dataset and a quarterly GDP growth dataset. In both examples, we dem-
onstrate advantages of our proposed method over scalar time series AR fitting.

4.1 Simulation dataset

The proposed method is first tested on a synthesized dataset generated from the
model

X, =Bx,_; + Byx,_, +v,,

Y, = Px, Jlr/gn 8)
Z, = 0%, "7y,
where
1.1241  0.3045 0.3806 —-0.2482 0.3676  0.0328
B, = 03902 -0.8169 —-0.3114|, B, =(-0.4240 0.1101 0.0267
—-0.7166 —0.8630 1.0115 0.6011 -0.5975 —-0.3224

The matrix P € R1%%%3 js random matrix with orthonormal columns, Q € R1000x1000

is a random orthonormal matrix, v, is i.i.d. M0, 1) and e, is i.i.d A0, 0.02°1). T, is
the empirical covariance matrix of y,, calculated as

T
— 1 T
X, = T z:zl Yy

where T in the number of samples. In this example, 10,000 consecutive samples are
generated from the model. Hence, T = 10,000. The sample autocorrelation func-
tions of the true underlying predictable time series x, are plotted in Fig. 1. We can
see that there are strong temporal dependence in x,.

4.1.1 Scalar AR approach

We first fit a 2-memory AR model to each scalar time series in z, to check the pre-
dictability of each scalar time series. We use mean squared error (MSE) to evaluate
the prediction performance of the fitted AR predictors. We find that, of all 1000 sca-
lar time series, the minimal MSE is 0.9984 and the maximum MSE is 1.0000. Since
each scalar time series has approximately mean O and variance 1, this indicates that
2-memory scalar AR fitting fails to extract any significant predictability information
from the data. The autocorrelation functions of the first 3 scalar time series in z, are
plotted in Fig. 2. It is quite clear that there are no significant temporal dependence
that can be observed.
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Sample autocorrelation function of X,
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Fig. 1 Sample autocorrelation functions of the true underlying predictable time series

4.1.2 PCA approach

PCA has been widely utilized in literature to extract latent factors from vec-
tor time series. In this example, it is clear from the model assumption that the
empirical covariance of z, is approximately an identity matrix. Therefore, PCA
approach would extract the 3-dimensional latent time series as the first 3 scalar
time series in z,. As shown in Fig. 2, we can tell that this approach is not able to
successfully identify the most predictable factors.
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Sample autocorrelation function of z,
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Fig.2 Sample autocorrelation functions of the first 3 scalar time series in z,

4.1.3 Proposed approach

We apply the proposed method to this simulation dataset with 2-memory and
m = 3. The auto-covariance matrices of z, are estimated as
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Table 1 MSE of the extracted

. . . . Proposed method Canonical DiCCA
time series using different

transforma-

approaches tion

Ist extracted time series  0.0568 0.0876 0.0797

2nd extracted time series 0.0824 0.0787 0.1092

3rd extracted time series  0.0679 0.0974 0.1527
Table 2 Eigenvalues of the VAR models extracted using different approaches
True model Proposed method Canonical transformation DiCCA
—0.9560 —0.9522 —0.9535 —0.9641
0.9230 0.9302 0.9104 0.7303 + 0.5533i
0.7117 + 0.5542i 0.7164 + 0.55741 0.7072 + 0.54701 0.7303 — 0.5533i
0.7117 — 0.5542i 0.7164 — 0.5574i 0.7072 — 0.54701 0.6968 + 0.3303i
—0.2544 —0.2702 —0.2069 0.6968 — 0.3303i
0.1827 0.1943 0.1113 0.0624

and

Using the extracted VAR predictor, we find that the MSE of the extracted 3-dimen-
sional principal time series are given in Table 1. Since each of the principal time
series have approximately mean O and variance 1, the low MSEs indicate that the
extracted VAR predictor is able to make highly accurate predictions. This is a signif-
icant improvement over scalar AR predictors. The autocorrelation functions of the
3-dimensional principal time series extracted using the proposed method are plot-
ted in Fig. 3. It can be seen that there are indeed strong temporal dependence in the
extracted predictable time series.

In addition to predictability, we also want to check the similarity between the
extracted VAR model and the true model. According to Sect. 2.2 and the relation-
ships in (8), the recovered VAR model parameters A, and A, can be equivalent to the
true model parameters B;, B, up to a similarity transformation. Therefore, we check
how similar the two models are by comparing the eigenvalues of AIl %2 and
B, B,

I 0
are. Table 2 lists the two sets of eigenvalues ordered in terms of magnitude.

We can see that the two sets of eigenvalues are quite close to each other,
which implies that the recovered VAR model is close to the true model. The high

]. The closer the two sets of eigenvalues are, the more similar the two models
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Sample autocorrelation function of the extracted Xy
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Fig. 3 Sample autocorrelation functions of the 3-dimensional extracted predictable time series using pro-
posed method

predictability of the extracted principal time series and the successfully recovered
VAR model demonstrate the effectiveness of the proposed method.

4.1.4 DiCCA approach

According to the method described in Dong and Qin (2018a), a dynamic-inner
canonical correlation analysis (DiICCA) model with order 2 is built on the same data-
set. A key difference between DiCCA and the proposed method is that DICCA does
not consider interactions among different entries in x,. The MSE of the extracted
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3-dimensional time series are listed in Table 1, and eigenvalues of the recovered
VAR model are given in Table 2. Since DiCCA does not consider the predictabili-
ties among different entires in x,, it has higher MSE values and large differences
from the true eigenvalues.

4.1.5 Canonical transformation approach

According to the method described in Box and Tiao (1977), a full-dimensional VAR
model with 2-memory is fit to z, first, and the covariance matrix X(2) of the predic-
tion Z, is calculated. The linear transformation matrix W, is selected as the eigen-
vectors corresponding to the largest magnitude eigenvalues of matrix 2612(2). The
MSE values of the extracted 3-dimensional latent time series are listed in Table 1 as
well.

In fact, many methods that extract lower-dimensional predictable time series
involve fitting a high-dimensional VAR model (which can be very time consuming
when n and M are large), and do not consider the prediction models for the lower-
dimensional predictable time series in the objective functions. An AR model is
often fit subsequently after extracting the lower-dimensional predictable time series
for prediction purposes. In order to examine how closely this method recovers the
underlying model structure, a VAR model with 2-memory is fit to WIT Z,, and the
eigenvalues are listed in Table 2. Compare to the proposed method, it recovers the
small magnitude eigenvalues less accurately than the proposed method.

4.1.6 PFA approach and reduced rank AR approach

The predictable factor analysis (PFA) method developed in Richthofer and Wiskott
(2015) without nonlinear expansion and regularization was tested, as well as the
reduced rank AR approach discussed in Velu et al. (1986). In fact, we can show
that without special treatment, these two approaches are equivalent to the canonical
transformation method in Box and Tiao (1977), and the results are the same as the
results of the canonical transformation method.

4.2 GDP dataset

This dataset is composed of seasonally adjusted quarterly GDP growth data of 17
countries from 1961-Q2 to 2017-Q3. The 17 countries are selected based on the
largest GDP countries according to the world bank data in 2016 with complete GDP
growth records from 1961-Q2 to 2017-Q3, and this data is downloaded from https://
stats.oecd.org/index.aspx?queryid=350#. The 17 countries are United States, Japan,
United Kingdom, France, Italy, Canada, South Korea, Australia, Spain, Mexico,
Netherlands, Switzerland, Germany, Sweden, Belgium, Austria, and Norway.

Two approaches are applied to the first 135 samples from 1961-Q2 to 1994-Q4. The
first approach is to fit a single variable AR model to each country’s GDP data. The sec-
ond approach is to use the proposed method in this work to extract the most predictable
principal time series. For each approach, the 135 samples are preprocessed such that
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each variable has zero mean and unit variance, and an AR model with 1-memory is fit-
ted to the preprocessed data.

Table 3 summarizes the (un-)predictabilities of fitting single variable AR model to
two representative countries, Mexico and Belgium, the (un-) predictabilities of the one-
and two-dimensional most predictable time series extracted by the proposed method
and the (un-)predictabilities of naive zero predictor. The naive zero predictor is defined
to always predict zero. In this case, since all the variables are preprocessed to have zero
mean, the naive zero predictor is the essentially the same as the mean predictor, and the
corresponding (un-)predictabilities can serve as a reference to evaluate the performance
of other predictors. The reason we pick Mexico and Belgium is that they are the two
countries with the best predictabilities (lowest (un-)predictability values) using single
variable AR predictor.

We can see from Table 3 that both approaches result in lower (un-) predictabilities
than the naive zero predictor, indicating that both approaches give more efficient pre-
dictors that naive zero predictor. In addition, the improvements in the (un-)predictabili-
ties of principal time series extracted by the proposed method are much more obvious
than the improvements in the (un-) predictabilities of single variable AR predictor. This
implies that the principal time series extracted by the proposed method are significantly
more predictable than any individual scalar time series.

Figure 4 shows the prediction results of the two approaches. We can see that the
predictions of the principal time series extracted by our method are closer to their true
values, compared to the predictions of Mexico and Belgium’s scaled GDP using sin-
gle variable AR predictor. This again demonstrates the effectiveness of the proposed
method.

The predictor obtained for the 1 factor (m = 1) case using our proposed method is

% =0.7382x,_,.

The contribution or weight of each country is shown in Fig. 5. countries have rela-
tively large contributions, which are Japan, Italy, Spain, Germany and Belgium.
The predictor obtained for the 2 factors (m = 2) case is

~10.0149 —0.6208

X, =

. [0.7382 —0.0149]
xt_l.

Table 3 (Un-)predictabilities
of Mexico and Belgium using
single variable AR fitting, (un-)

(Un-)predictability (Un-)predictability of
naive zero predictor

predictabilities of principal time  pro 000 0.8289 1

series extracted by the proposed o ’

method and (un-)predictabilities Belgium, m = 1 0.7939 1

of naive zero predictor M=1m=1 0.4417 1
M=2m=1 1.0484 2

@ Springer



Extracting a low-dimensional predictable time series 1203

Single variable AR fit to Mexico with lag 1
T

4 T
o
a
[CaPy. _
3 / .
/ - _ -
ﬁ ok <= \7_/7_\‘5\_/—-\\_/, ¥:M:
°
-2 -
[}
&, | | | | | |
1965 1970 1975 1980 1985 1990
o
o
[O]
o
Q
2
(o3
3
o
s
[}
&, | | | | | |
1965 1970 1975 1980 1985 1990
4 Reduced rank AR fit with 1 factor
T T
oL
T P \J‘\'\/ AN /\/«< ,\/\"1 \X/)/ /) w
5 o[ ° 7= \y# N/ \\ \\\/,/,w\v/ K‘/o/’\ /1 WA\ N
5} \ m( \
8 XA 5y /_A\K/ \Y W //
2 .’,
4 ! ! I I I I
1965 1970 1975 1980 1985 1990
4 Reduced rank AR fit with 2 factors
T T
o _
- /R \/ <
= PN 7 AN~ * w)/
5 N \\/7/\\\/’ <\C“\\ ﬁ&w/'/\v‘\ M} 0&4\4’»/
& ) LA TS w‘/ g
2l v
4 1 ! I I I
1965 1970 1975 1980 1985 1990
4 Reduced rank AR fit with 2 factors
| | T T
|
2 [ :\ -
o
S / AN - -
g o T ,NXM/\* Mr\w7 W‘ﬁ'/“/\\ﬂ W /»W\"\ x\“v\,\q\ﬂ%-x;—\/\g/\y
w
2 “ " _
4 | | | | | |
1965 1970 1975 1980 1985 1990

Fig. 4 Prediction results using two approaches from 1961-Q3 to 1994-Q4. The solid blue line represents
the true values and the dashed red line represents the predicted values

The contribution or weight of each country is shown in Fig. 6. countries have rela-
tively large contributions, which are Japan, France, Korea, Australia, Mexico and
Austria.

4.3 GDP dataset prediction

Next, we examine the prediction performance of the predictors found in Sect. 4.2 on
unseen data. The data we use in this section are composed of data from 1994-Q4 to
2017-Q3 (samples from 135 to 226 in the same dataset as in Sect. 4.2). We under-
stand that the mean and variance of variables in this dataset are considerably differ-
ent from the mean and variance in the dataset analyzed in Sect. 4.2, especially due to
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Fig.5 Contribution of each country to the most predictable factor when memory is 1 and the number of
factors is 1

the financial crisis around 2008. However, we would still like to check whether the
predictors found in Sect. 4.2 persist.

First, we shift and scale each scalar time series with its corresponding mean
and standard deviation found in Sect. 4.2. Then, we apply the predictors found in
Sect. 4.2 to this preprocessed dataset to make predictions. It is worth noting that this
is a very challenging task as it covers the financial crisis period from 2007 to 2009.

We use MSE as a measure of how good the predictions are. Table 4 summa-
rizes the MSE when applying single variable AR predictor to Mexico and Bel-
gium, the MSE when applying the predictor to the principal time series obtained
using our proposed method and the MSE of naive zero predictor. The MSE of

Tablg 4 MSE of. Mexico .and MSE MSE of naive
Belgium using single variable

ero predictor
AR fitting, MSE of principal zero predt

time series extracted by the Mexico, m = 1 1.4072 1.8671

proposed method and MSE of .

naive zero predictor Belgium, m =1 0.3844 0.6536
M=1,m=1 0.5009 1.3902
M=2m=1 0.6961 1.5015
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Fig. 6 Contribution of each country to the most predictable factor when memory is 1 and the number of
factors is 2

naive zero predictor can be used as a reference to evaluate the performance of
the other two predictors.

We can see from Table 4 that both single variable AR predictors and our pro-
posed predictors perform better than naive zero predictor. However, our pro-
posed method provides dramatic improvements over the naive zero predictor
compared to the single variable AR predictors.

Figure 7 shows the prediction results. We can see that the predictions made
using the proposed method are more accurate than the predictions using single
variable AR predictor. In addition, the predictor found by our proposed method
generalizes well even during the financial crisis period. The first factor captures
the big drop around 2008.

5 Extensions and variations

There are several extensions of and variations on the problems that we describe
in this paper.
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Single variable AR m to Mexico with lag 1
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Fig.7 Prediction results using two approaches from 1995-Q1 to 2017-Q3. The solid blue line represents
the true values and the dashed red line represents the predicted values

5.1 Regularization

We can add regularization on W and A to the objective. We denote the regularized
problem as

maximize f(W) + r(A) + (W)
subject to S, =1, ©)

where r : R"™>*" _, R and # : R™" — R. r and 7 can be chosen to enforce certain
properties in A and W. For example, regularization using r(A) = ||A||» can be added
to avoid overfitting of the AR model; 7(A) = ||A||, can be added to encourage a par-
simonious structure of the AR model; 7(W) = ||W;||, enforces ith column of W to be
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sparse, such that the ith most predictable time series only depends on a few entries
in the high dimensional time series.

5.2 Low rank structure

In many cases, high dimensional time series have low rank structure. We can use this
low rank structure to reduce the computational complexity of our problem. When
the high dimensional time series has low rank structure, the covariance matrix X,
has many eigenvalues close 0. Let U denote the collections of all the eigenvectors of
%, corresponding to the significantly non-zero eigenvalues, then original inputs X,
7=0,1,...,M can be approximately transformed into ®,, 7 =0, 1,...,M, where
®, = U'E, U. Since the dimension of ®_ is much lower than the dimension of X, by
working with the new input series @, the computational complexity reduces signifi-
cantly. Let W, and A, denote the solutions with the new inputs @, then the solutions
with the original inputs X can be obtained as

W=0W, A=A,

5.3 Filtering

As an extension of the projection method, we can consider extracting a lower-dimen-
sional time series x, using a finite impulse response (FIR) filter with length L:

X = Wsz, + Wsz,_l + -+ WZzt_LH, teZ,

where W,, ..., W, € R™" are the filter coefficients. For L = 1, this reduces to the
projection problem (4). We can write this as

<y
x, =WT ijl , teZ,
Lp—L+1
where

W

w=|"

W,

<y

Define the following auto-covariance matrices of Z’:‘l
Z—L+1
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T

T T

z Z, I ...z%_l
Q=E| %1 || % | =] R Ea |
L4112 t-1+1 DIEPVIEREDYY

T T

<y py1 DPVIREE 2%—2
Q=g| “r || 4| =R s
Z—L+1 1 [ Z-L+2 PUDIERRDNY

The goal is to choose W so that the series x, is most predictable by an M-memory AR
predictor. Similar to the projection problem, we add the constraint S, = W/ QW =1
to rule out the trivial W = 0 case. This also ensures that the low-dimensional time
series x, is standardized.

6 Related work

The general problem of extracting low-dimensional latent variables from high-
dimensional time series has been studied for decades in many different research
fields from control systems, signal processing, to economics. Many methods have
been developed, and here we survey a subset of representative methods that are
closely related to the proposed method.

6.1 Extracting predictable latent variables

The extraction of predictable latent variables can be traced back to the work Box
and Tiao (1977), where canonical transformation is proposed to extract the lower
dimensional components ordered from least to most predictable. Mathematically,
the transformation matrix W in Box and Tiao (1977) is selected as the eigenvectors
corresponding to the m largest eigenvalues in X 13(2), where () = Ez.2l, and 2,
is the one-step ahead prediction of z, found in (2). It is clear that the method in Box
and Tiao (1977) is different from the proposed method unless M = land m = 1.

Later in Pena and Box (1987), the z, vector is decomposed into one component
that contains factors mixed up with noise, where the transformation matrix W is
obtained by analyzing the eigenstructure of the VAR model coefficients of z,, and
one component contains white noise.

The slow feature analysis (SFA) method proposed in Wiskott and Sejnowski
(2002) aims to extract a lower-dimensional “slowly varying” time series. Without
nonlinear expansion, SFA can be treated as a special case of the proposed method if
we restrict M = 1and A; = /. Even though “slowly varying” time series are predict-
able, predictable time series do not necessarily have slow variations. To deal with
this, the later work Richthofer and Wiskott (2015) proposed a more general predict-
able feature analysis (PFA) approach to extract lower-dimensional predictable time
series. In PFA method, the selection of the transformation matrix W involves an
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eigen-decomposition of E(z, — 2,)(z, — 2)". As we can see, the PFA method is in
fact closely related to the method in Box and Tiao (1977), and is only equivalent to
the proposed method when M = land m = 1.

In all the above mentioned methods except SFA, a VAR model needs to be fit for
the original high-dimensional time series. There have also been methods developed
that do not involve fitting a high-dimensional VAR model. For example, in Dong
and Qin (2018b, 2018a), dynamic-inner principal component analysis (DiPCA) and
DiCCA are developed to extract a lower-dimensional most predictable latent varia-
bles. In both methods, the columns of W are extracted sequentially, with a scalar AR
predictor for each entry in x,. DiPCA extracts each entry in x, such that it has maxi-
mal covariance between its predicted value using an AR predictor, while DiIiCCA
maximizes the correlation. In fact, it can be shown that DiCCA is a special case of
the proposed method where A, A,, ..., A,, are diagonal matrices.

Instead of using expected mean squared error as a predictability measure, there
have been methods developed using different predictability measures. For example,
forecastable component analysis (ForeCA) proposed in Goerg (2013) utilizes the
differential entropy as the predictability (forecastability) measure, which yields the
lower bound of the expected squared loss of any estimator. Graph-based predict-
able feature analysis (GPFA) in Weghenkel et al. (2017) maximizes a predictability
measure defined in terms of graph embedding. Dynamical component analysis in
Clark et al. (2019) uses mutual information between the past and future data. The
method developed in Stone (2001) proposed to use a measure of temporal predict-
ability for blind source separation. In atmospheric, optimal persistence analysis
(OPA) maximizes the decorrelation time (DelSole 2001), and average predictabil-
ity time decomposition (APTD) maximizes the average predictability time (DelSole
and Tippett 2009a, b).

6.2 Factor models

This work is also closely related to the extensively studied factor models in econo-
metrics. Here we analyze some representative methods and compare them with the
proposed method. The early work Brillinger (1981) is a frequency domain approach
that extracts dynamic principal components (DPC) as linear combinations of the
past and future observations to minimize the mean squared reconstruction error of
the original high-dimensional time series. Similar structure exists in Pefia and Yohai
(2016), which is a time domain approach that uses non-causal models. In the later
work Pefia et al. (2019), a causal model is utilized to extract one-sided dynamic prin-
cipal components (ODPC) as linear combinations of the current and past values of
the series that minimize the reconstruction mean squared error. All of these methods
extract latent factors differently from the proposed method, where the extraction of
x, only depends on the current data. In addition, these methods extract latent factors
by minimizing the mean squared reconstruction error, while the proposed method
minimizes the mean squared prediction error.

In Lam and Yao (2012); Lam et al. (2011), for standardized high-dimensional
time series, W is selected as the eigenvectors corresponding to the largest m
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eigenvalues in Z?i 1 Zl.TE,-. In Pan and Yao (2008), the latent factors are identified
via expanding the white noise space step by step. Compare to the proposed method,
these methods provide little characterization on the lower-dimensional x,. To make
predictions on x,, Lam et al. (2011) suggest to subsequently build an AR predictor.
However, in the proposed method, the extraction and prediction of x, are achieved
simultaneously by solving one optimization problem. A lot of the above analysis
were also given in Qin et al. (2020), where Lam and Yao (2012) is linked to sub-
space identification. Refer to Stock and Watson (2006), Stock and Watson (2011),
Forni et al. (2000), Amengual and Watson (2007), Bai and Ng (2007) for more gen-
eral discussions on factor models.

6.3 Reduced rank time series

Another related work is reduced rank time series modeling. Early work such as Rein-
sel (1983), Velu et al. (1986), Ahn and Reinsel (1988), Wang and Bessler (2004)
fit AR models to the vector time series with reduced rank coefficients. Later the
reduced rank time series models have been generalized into the structured AR mod-
eling problem (Basu et al. 2019; Alquier et al. 2020; Melnyk and Banerjee 2016;
Barratt et al. 2021), where regularization terms on the AR model coe