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Abstract
Large scale multi-dimensional time series can be found in many disciplines, includ-
ing finance, econometrics, biomedical engineering, and industrial engineering 
systems. It has long been recognized that the time dependent components of the 
vector time series often reside in a subspace, leaving its complement independent 
over time. In this paper we develop a method for projecting the time series onto a 
low-dimensional time-series that is predictable, in the sense that an auto-regressive 
model achieves low prediction error. Our formulation and method follow ideas from 
principal component analysis, so we refer to the extracted low-dimensional time 
series as principal time series. In one special case we can compute the optimal pro-
jection exactly; in others, we give a heuristic method that seems to work well in 
practice. The effectiveness of the method is demonstrated on synthesized and real 
time series.
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1 Introduction

High dimensional time series analysis and applications have become increasingly 
important in many different domains. In many cases, the high dimensional time 
series data are both cross-correlated and auto-correlated. Cross-correlations among 
different time series make it possible to use a set of lower dimensional time series to 
represent the original, high dimensional time series. For example, principal compo-
nent analysis (PCA) (Connor and Korajczyk 1986; Bai and Ng 2008) and general-
ized PCA (Choi 2012) methods utilize the cross-correlations among different time 
series to extract lower dimensional factors that capture maximal variance. Although 
PCA has seen wide use as a dimension reduction method, it does not focus on mod-
eling of auto-correlations or dynamics that can exist in time series data. Since auto-
correlations make it possible to predict future values from the past values, it is desir-
able to perform such low dimensional modeling of the dynamics.

In this work, a linear projection method is proposed to extract a lower dimen-
sional most predictable time series from high-dimensional time series. The entries 
of the low dimensional time series are mutually uncorrelated so that they capture as 
much dynamics as possible. The advantage of the proposed method is that it focuses 
on extracting principal time series with most dynamics. Therefore, the dynamic fea-
tures of the high dimensional data are concentrated in a set of lower dimensional 
time series, which makes it very useful for data prediction, dynamic feature extrac-
tion and visualization.

The proposed method has numerous potential applications, ranging from finance 
to industrial engineering. In finance, if the high dimensional time series consist of 
returns of some assets, applying the proposed method gives the most predictable 
portfolio. In chemical processes, oscillations are usually undesirable (Thornhill and 
Hägglund 1997; Thornhill et al. 2003) and applying the proposed method to the pro-
cess measurements can help detect the unwanted oscillations. In biomedical engi-
neering, electroencephalography (EEG) data can be characterized with waves with 
different frequencies (Teplan 2002; Tatum 2014). Applying the proposed method to 
EEG data has the potential to detect the different waves.

In this work, the extraction of principal time series and the VAR modeling of 
the principal time series are achieved simultaneously by solving the optimization 
problem (i.e., there is no need to refit a VAR model for the principal time series 
after they are extracted). In addition, the extracted principal time series are best pre-
dictable from their past values and capture most of dynamics. This property makes 
the proposed method very useful for prediction, dynamic feature extraction, and 
visualization.
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2  The most predictable projected time series

2.1  Predictability of a time series

Consider a wide-sense stationary n-dimensional vector time series process 
zt ∈ �n , t ∈ � , with

Here Σ� is the auto-covariance matrix for lag � . The zero mean assumption is without 
loss of generality, since this can be arranged by subtracting the mean from the origi-
nal process, if it is not zero. We refer to a time series with Σ0 = I as standardized.

Predictability measure
An M-memory auto-regressive (AR) predictor for zt has the form

where Ai ∈ �n×n , i = 1, 2,… ,M are the AR (matrix) coefficients. We define the 
(M-memory) (un-)predictability measure for the time series as the smallest possible 
mean square AR prediction error,

which has the same value for all t. To simplify the notation for the rest of paper, we 
define A =

[
A1 ⋯ AM

]
.

We can easily evaluate the predictability measure � . The objective can be 
expressed as

The optimal AR coefficients are readily found to be

assuming the inverse of the symmetric semidefinite block Toeplitz matrix above 
exists. It follows that

(1)� zt = 0, � ztz
T
t+�

= Σ� , � ∈ �.

ẑt = A1zt−1 + A2zt−2 +⋯ + AMzt−M ,

(2)𝛼 = min
A1,…,AM

� ‖‖zt − ẑt
‖‖22,

� ‖zt − ẑt‖22 = ��

⎛
⎜⎜⎜⎜⎝
Σ0 − 2

⎡⎢⎢⎢⎣

Σ1

Σ2

⋮

ΣM

⎤⎥⎥⎥⎦

T

AT + A

⎡⎢⎢⎢⎣

Σ0Σ
T
1
⋯ΣT

M−1

Σ1Σ0 ⋯ΣT
M−2

⋮ ⋮ ⋱ ⋮

ΣM−1ΣM−2 ⋯Σ0

⎤⎥⎥⎥⎦
AT

⎞
⎟⎟⎟⎟⎠
.

AT =

⎡⎢⎢⎢⎣

Σ0 ΣT
1

⋯ ΣT
M−1

Σ1 Σ0 ⋯ ΣT
M−2

⋮ ⋮ ⋱ ⋮

ΣM−1 ΣM−2 ⋯ Σ0

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣

Σ1

Σ2

⋮

ΣM

⎤⎥⎥⎥⎦
,



1192 Y. Dong et al.

1 3

It can be shown that 0 ≤ � ≤ �� Σ0 . A low value of � indicates high predictability; a 
high value of � indicates low predictability. The extreme case � = 0 means that the 
AR model has zero residual, and the extreme case � = �� Σ0 occurs when zt and zs 
are uncorrelated for t ≠ s , so Σ� = 0 for � ≠ 0 , and the optimal AR coefficients are 
all zero.

2.2  The most predictable projected time series

We can obtain a lower-dimensional time series xt ∈ �m as a linear function of the 
original time series zt ∈ �n , as xt = WTzt , where W ∈ �n×m , with m < n . We denote 
the auto-covariance matrices of xt as

Our goal is to choose W so that the series xt is predictable, i.e., has a low value of � . 
We evidently need to normalize W to rule out the solution W = 0 ; we do this with 
the constraint

This ensures that � xtx
T
t
= I , i.e., the low-dimensional time series xt is standardized.

The most predictable projected time series is found by solving the optimization 
problem

with variables W and A, where

The solution is evidently not unique; if Q is an orthonormal m × m matrix, then 
f (WQ) = f (W) . In other words, all solutions differ by an orthonormal matrix.

(3)� = ��

⎛
⎜⎜⎜⎜⎝
Σ0 −

⎡
⎢⎢⎢⎣

Σ1

Σ2

⋮

ΣM

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

Σ0 ΣT
1

⋯ ΣT
M−1

Σ1 Σ0 ⋯ ΣT
M−2

⋮ ⋮ ⋱ ⋮

ΣM−1 ΣM−2 ⋯ Σ0

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

Σ1

Σ2

⋮

ΣM

⎤
⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
.

S� = � xtx
T
t+�

= WTΣ�W, � ∈ �.

WTΣ0W = S0 = I.

(4)
maximize f (W)

subject to S0 = I,

f (W) = ��

⎡⎢⎢⎢⎣

S1
S2
⋮

SM

⎤⎥⎥⎥⎦

T ⎡⎢⎢⎢⎣

S0S
T
1
⋯ ST

M−1

S1S0 ⋯ ST
M−2

⋮ ⋮ ⋱ ⋮

SM−1SM−2 ⋯ S0

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣

S1
S2
⋮

SM

⎤⎥⎥⎥⎦
.
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2.3  Special case with exact solutions

Here we observe that when M = 1 and m = 1 , the problem can be solved exactly. For 
projection, the problem is

using S0 = I to simplify the objective. This is readily solved. Define Z = Σ
1∕2

0
W and 

Y = Σ
−1∕2

0
Σ1Σ

−1∕2

0
 , to the problem is to maximize ‖ZTYZ‖2

F
 subject to ZTZ = I.

Let V denote the eigenvector of Y + YT corresponding to the eigenvalue with 
the maximum magnitude. Then V satisfies the constraint and maximizes the 
objective value. Therefore, the optimal W is W⋆ = Σ

−1∕2

0
V .

Once an optimal W⋆ is obtained, the optimal A⋆ can be easily calculated as

3  Algorithm

When M ≠ 1 , there is no exact solution to (4), to the best of our knowledge. Prob-
lem (4) is essentially an optimization problem over the Grassmannian manifold. 
There has been research on how to address such optimization problems, including 
Absil et al. (2009); Usevich and Markovsky (2014); Edelman et al. (1998). In this 
section, we give a heuristic method that seems to work well in practice.

We will construct the columns of W ∈ �n×m sequentially. Each column is cho-
sen satisfy the constraint S0 = I , while maximizing the predictability of the pro-
jected time series. In this section, we explain how to achieve this.

Assume that we have already constructed k columns of W, with Wk ∈ �n×k and 
Ak ∈ �k×Mk . (We initialize k = 0 , Wk = 0 , and A0 = 0 to construct the first col-
umn). Then, our goal is to choose Wk+1 = [Wk w] , where w ∈ �n , such that the 
(k + 1)-dimensional projected time series is most predictable.

This is equivalent to the optimization problem

where Wk is fixed and Sk+1
0

= (Wk+1)TΣ0W
k+1 . We cannot find exact solutions to this 

problem. However, we know how to solve for Ak+1 exactly when Wk+1 is fixed, and 
how to solve for Wk+1 exactly when Ak+1 is fixed. We can iterate these two steps until 
convergence to obtain an approximate solution to (5).

maximize ‖WTΣ1W‖2
F

subject to WTΣ0W = I,

A⋆ = ST
1
S−1
0

= ST
1
= (W⋆)TΣT

1
W⋆.

(5)
maximize f (Wk+1)

subject to Wk+1 = [Wk w]

Sk+1
0

= I,



1194 Y. Dong et al.

1 3

3.1  Solving for Ak+1 with fixed w

When w is fixed, we can solve for Ak+1 exactly. According to Sect. 2.1, when Wk+1 
is known, the solution of Ak+1 is

where Sk+1
�

= Wk+1,TΣ�W
k+1 , � ∈ �.

The time complexity for forming Sk+1
1

,… , Sk+1
M

 is O(M(k + 1)n2) . Once Sk+1
�

 , 
� = 1,… ,M are calculated, the time complexity for updating Ak+1 is dominated by 
the inversion step, which is O(M3(k + 1)3) . Therefore, the overall time complexity for 
updating Ak+1 is max

{
O(M(k + 1)n2),O(M3(k + 1)3)

}
.

3.2  Solving for w with fixed Ak+1

When Ak+1 is fixed, we can solve for Wk+1 exactly. With some derivations, the optimi-
zation problem for w can be expressed as

where B ≻ 0 , and B, c are known. The derivation and expressions for B and c can 
be found in Appendix A. The solution of this problem can be obtained explicitly as 
follows.

Let U ∈ �n×(n−k) be the orthogonal complement of Σ1∕2

0
Wk and UTU = I . Denote 

the SVD decomposition of UTΣ
−1∕2

0
BΣ

−1∕2

0
U as UTΣ

−1∕2

0
BΣ

−1∕2

0
U = VΛVT with 

Λ = ����(�1,… , �n−k) , ( �1 ≤ �2 ⋯ ≤ �n−k ). Then, problem (6) can be transformed as

where � = [�1 �2 ⋯ �n−k] = VTUTΣ
−1∕2

0
c and w = Σ

−1∕2

0
UVy . The solution to prob-

lem (7) has the form y = (Λ + �I)−1� where � can be obtained as the root of

that satisfies 𝜇 > −𝜆1.
After � is found, the optimal w of problem (6) can be obtained as

Ak+1,T =

⎡
⎢⎢⎢⎣

Sk+1
0

S
k+1,T

1
⋯ S

k+1,T

M−1

Sk+1
1

Sk+1
0

⋯ S
k+1,T

M−2

⋮ ⋮ ⋱ ⋮

Sk+1
M−1

Sk+1
M−2

⋯ Sk+1
0

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

Sk+1
1

Sk+1
2

⋮

Sk+1
M

⎤
⎥⎥⎥⎦
,

(6)
minimize f (w) = wTBw − 2cTw

subject to Wk,TΣ0w = 0

wTΣ0w = 1,

(7)
minimize f (z) = yTΛy − 2�Ty

subject to yTy = 1,

n−k∑
i=1

�2
i

(�i + �)2
= 1

w⋆ = Σ
−1∕2

0
UV(Λ + 𝜇I)−1𝛽.
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According to the expressions of B and c in Appendix A, the time complexity for 
forming B and c is O(M2n2) . Once B and c are calculated, the time complexity for 
updating w is dominated by the SVD step, which is O(n3) . Therefore, the overall 
time complexity for updating w is max

{
O(M2n2),O(n3)

}
.

3.3  Complete algorithm

We have discussed algorithms to solve for Ak+1 when Wk+1 is fixed and to 
solve for Wk+1 = [Wk w] when Ak+1 is fixed. The complete procedure to con-
struct the (k + 1)th column of W is to iterate these two steps until convergence. 
As discussed in Sects. 3.1 and 3.2, the time complexity for updating Ak+1 is 
max

{
O(M(k + 1)n2),O(M3(k + 1)3)

}
 , and the time complexity for updating w is 

max
{
O(M2n2),O(n3)

}
 . In practice, it is often the case that m ≪ n and M ≪ n . There-

fore, the overall time complexity at each iteration step is O(n3).
Once Wk+1,Ak+1 are obtained, the same procedure can be applied to construct the 

next column of W. The complete algorithm is given in Algorithm 1. 

The heuristic method proposed has two advantages over directly solving the origi-
nal problem (4). First, there is no uniqueness issue in this recursive method, because 
starting from the first column of W, each column of W is deterministic according to 
the optimization problem (6). Second, the iterative procedure gives an indication of the 
dimension of the predictable vector time series.

Let �k denote the predictability measure for the k dimensional projected time series, 
or the value of the objective function in (4) with optimal Wk and Ak . Then, when 
extracting the (k + 1) th scalar time series, we have the following upper bound for �k+1 
of the (k + 1)-dimensional time series,

When the optimal �k+1 is very close to the upper bound �k + 1 , we can draw two 
conclusions. First, adding another scalar time series does not improve the prediction 
of the k dimensional vector time series. Second, no other self-predictable scalar time 
series can be extracted. These two facts suggest that all the predictable components 
in the time series data are already extracted and hence, we can stop the iteration 
procedure.

�k+1 ≤ �k + wTΣ0w = �k + 1.
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4  Examples

In this section, we test our method by applying it to a synthesized high-dimensional 
time series dataset and a quarterly GDP growth dataset. In both examples, we dem-
onstrate advantages of our proposed method over scalar time series AR fitting.

4.1  Simulation dataset

The proposed method is first tested on a synthesized dataset generated from the 
model

where

The matrix P ∈ �1000×3 is random matrix with orthonormal columns, Q ∈ �1000×1000 
is a random orthonormal matrix, vt is i.i.d. N(0, I) and et is i.i.d N(0, 0.022I) . Σy is 
the empirical covariance matrix of yt , calculated as

where T in the number of samples. In this example, 10,000 consecutive samples are 
generated from the model. Hence, T = 10, 000 . The sample autocorrelation func-
tions of the true underlying predictable time series xt are plotted in Fig. 1. We can 
see that there are strong temporal dependence in xt.

4.1.1  Scalar AR approach

We first fit a 2-memory AR model to each scalar time series in zt to check the pre-
dictability of each scalar time series. We use mean squared error (MSE) to evaluate 
the prediction performance of the fitted AR predictors. We find that, of all 1000 sca-
lar time series, the minimal MSE is 0.9984 and the maximum MSE is 1.0000. Since 
each scalar time series has approximately mean 0 and variance 1, this indicates that 
2-memory scalar AR fitting fails to extract any significant predictability information 
from the data. The autocorrelation functions of the first 3 scalar time series in zt are 
plotted in Fig. 2. It is quite clear that there are no significant temporal dependence 
that can be observed.

(8)
xt = B1xt−1 + B2xt−2 + vt,

yt = Pxt + et,

zt = QΣ
−1∕2
y yt,

B1 =

⎡⎢⎢⎣

1.1241 0.3045 0.3806

0.3902 − 0.8169 − 0.3114

−0.7166 − 0.8630 1.0115

⎤⎥⎥⎦
, B2 =

⎡⎢⎢⎣

−0.2482 0.3676 0.0328

−0.4240 0.1101 0.0267

0.6011 − 0.5975 − 0.3224

⎤⎥⎥⎦
.

Σy =
1

T

T∑
t=1

yty
T
t
,
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4.1.2  PCA approach

PCA has been widely utilized in literature to extract latent factors from vec-
tor time series. In this example, it is clear from the model assumption that the 
empirical covariance of zt is approximately an identity matrix. Therefore, PCA 
approach would extract the 3-dimensional latent time series as the first 3 scalar 
time series in zt . As shown in Fig. 2, we can tell that this approach is not able to 
successfully identify the most predictable factors.
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Fig. 1  Sample autocorrelation functions of the true underlying predictable time series
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4.1.3  Proposed approach

We apply the proposed method to this simulation dataset with 2-memory and 
m = 3 . The auto-covariance matrices of zt are estimated as
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and

Using the extracted VAR predictor, we find that the MSE of the extracted 3-dimen-
sional principal time series are given in Table 1. Since each of the principal time 
series have approximately mean 0 and variance 1, the low MSEs indicate that the 
extracted VAR predictor is able to make highly accurate predictions. This is a signif-
icant improvement over scalar AR predictors. The autocorrelation functions of the 
3-dimensional principal time series extracted using the proposed method are plot-
ted in Fig. 3. It can be seen that there are indeed strong temporal dependence in the 
extracted predictable time series.

In addition to predictability, we also want to check the similarity between the 
extracted VAR model and the true model. According to Sect. 2.2 and the relation-
ships in (8), the recovered VAR model parameters A1 and A2 can be equivalent to the 
true model parameters B1 , B2 up to a similarity transformation. Therefore, we check 

how similar the two models are by comparing the eigenvalues of 
[
A1 A2

I 0

]
 and [

B1 B2

I 0

]
 . The closer the two sets of eigenvalues are, the more similar the two models 

are. Table 2 lists the two sets of eigenvalues ordered in terms of magnitude.
We can see that the two sets of eigenvalues are quite close to each other, 

which implies that the recovered VAR model is close to the true model. The high 

Σ� =
1

T −M

T−M∑
t=1

ztz
T
t+�

, � = 1, 2.

Σ−� = ΣT
�
, � = 1, 2.

Table 1  MSE of the extracted 
time series using different 
approaches

Proposed method Canonical 
transforma-
tion

DiCCA 

1st extracted time series 0.0568 0.0876 0.0797
2nd extracted time series 0.0824 0.0787 0.1092
3rd extracted time series 0.0679 0.0974 0.1527

Table 2  Eigenvalues of the VAR models extracted using different approaches

True model Proposed method Canonical transformation DiCCA 

− 0.9560 − 0.9522 − 0.9535 − 0.9641
0.9230 0.9302 0.9104 0.7303 + 0.5533i
0.7117 + 0.5542i 0.7164 + 0.5574i 0.7072 + 0.5470i 0.7303 − 0.5533i
0.7117 − 0.5542i 0.7164 − 0.5574i 0.7072 − 0.5470i 0.6968 + 0.3303i
− 0.2544 − 0.2702 − 0.2069 0.6968 − 0.3303i
0.1827 0.1943 0.1113 0.0624
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predictability of the extracted principal time series and the successfully recovered 
VAR model demonstrate the effectiveness of the proposed method.

4.1.4  DiCCA approach

According to the method described in Dong and Qin (2018a), a dynamic-inner 
canonical correlation analysis (DiCCA) model with order 2 is built on the same data-
set. A key difference between DiCCA and the proposed method is that DiCCA does 
not consider interactions among different entries in xt . The MSE of the extracted 
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Fig. 3  Sample autocorrelation functions of the 3-dimensional extracted predictable time series using pro-
posed method
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3-dimensional time series are listed in Table  1, and eigenvalues of the recovered 
VAR model are given in Table 2. Since DiCCA does not consider the predictabili-
ties among different entires in xt , it has higher MSE values and large differences 
from the true eigenvalues.

4.1.5  Canonical transformation approach

According to the method described in Box and Tiao (1977), a full-dimensional VAR 
model with 2-memory is fit to zt first, and the covariance matrix Σ(ẑ) of the predic-
tion ẑt is calculated. The linear transformation matrix W1 is selected as the eigen-
vectors corresponding to the largest magnitude eigenvalues of matrix Σ−1

0
Σ(ẑ) . The 

MSE values of the extracted 3-dimensional latent time series are listed in Table 1 as 
well.

In fact, many methods that extract lower-dimensional predictable time series 
involve fitting a high-dimensional VAR model (which can be very time consuming 
when n and M are large), and do not consider the prediction models for the lower-
dimensional predictable time series in the objective functions. An AR model is 
often fit subsequently after extracting the lower-dimensional predictable time series 
for prediction purposes. In order to examine how closely this method recovers the 
underlying model structure, a VAR model with 2-memory is fit to WT

1
zt , and the 

eigenvalues are listed in Table 2. Compare to the proposed method, it recovers the 
small magnitude eigenvalues less accurately than the proposed method.

4.1.6  PFA approach and reduced rank AR approach

The predictable factor analysis (PFA) method developed in Richthofer and Wiskott 
(2015) without nonlinear expansion and regularization was tested, as well as the 
reduced rank AR approach discussed in Velu et  al. (1986). In fact, we can show 
that without special treatment, these two approaches are equivalent to the canonical 
transformation method in Box and Tiao (1977), and the results are the same as the 
results of the canonical transformation method.

4.2  GDP dataset

This dataset is composed of seasonally adjusted quarterly GDP growth data of 17 
countries from 1961-Q2 to 2017-Q3. The 17 countries are selected based on the 
largest GDP countries according to the world bank data in 2016 with complete GDP 
growth records from 1961-Q2 to 2017-Q3, and this data is downloaded from https:// 
stats. oecd. org/ index. aspx? query id= 350#. The 17 countries are United States, Japan, 
United Kingdom, France, Italy, Canada, South Korea, Australia, Spain, Mexico, 
Netherlands, Switzerland, Germany, Sweden, Belgium, Austria, and Norway.

Two approaches are applied to the first 135 samples from 1961-Q2 to 1994-Q4. The 
first approach is to fit a single variable AR model to each country’s GDP data. The sec-
ond approach is to use the proposed method in this work to extract the most predictable 
principal time series. For each approach, the 135 samples are preprocessed such that 

https://stats.oecd.org/index.aspx?queryid=350
https://stats.oecd.org/index.aspx?queryid=350
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each variable has zero mean and unit variance, and an AR model with 1-memory is fit-
ted to the preprocessed data.

Table 3 summarizes the (un-)predictabilities of fitting single variable AR model to 
two representative countries, Mexico and Belgium, the (un-) predictabilities of the one- 
and two-dimensional most predictable time series extracted by the proposed method 
and the (un-)predictabilities of naïve zero predictor. The naïve zero predictor is defined 
to always predict zero. In this case, since all the variables are preprocessed to have zero 
mean, the naïve zero predictor is the essentially the same as the mean predictor, and the 
corresponding (un-)predictabilities can serve as a reference to evaluate the performance 
of other predictors. The reason we pick Mexico and Belgium is that they are the two 
countries with the best predictabilities (lowest (un-)predictability values) using single 
variable AR predictor.

We can see from Table 3 that both approaches result in lower (un-) predictabilities 
than the naïve zero predictor, indicating that both approaches give more efficient pre-
dictors that naïve zero predictor. In addition, the improvements in the (un-)predictabili-
ties of principal time series extracted by the proposed method are much more obvious 
than the improvements in the (un-) predictabilities of single variable AR predictor. This 
implies that the principal time series extracted by the proposed method are significantly 
more predictable than any individual scalar time series.

Figure 4 shows the prediction results of the two approaches. We can see that the 
predictions of the principal time series extracted by our method are closer to their true 
values, compared to the predictions of Mexico and Belgium’s scaled GDP using sin-
gle variable AR predictor. This again demonstrates the effectiveness of the proposed 
method.

The predictor obtained for the 1 factor (m = 1) case using our proposed method is

The contribution or weight of each country is shown in Fig. 5. countries have rela-
tively large contributions, which are Japan, Italy, Spain, Germany and Belgium.

The predictor obtained for the 2 factors (m = 2) case is

x̂t = 0.7382xt−1.

x̂t =

[
0.7382 − 0.0149

0.0149 − 0.6208

]
xt−1.

Table 3  (Un-)predictabilities 
of Mexico and Belgium using 
single variable AR fitting, (un-)
predictabilities of principal time 
series extracted by the proposed 
method and (un-)predictabilities 
of naïve zero predictor

(Un-)predictability (Un-)predictability of 
naïve zero predictor

Mexico, m = 1 0.8289 1
Belgium, m = 1 0.7939 1
M = 1 , m = 1 0.4417 1
M = 2 , m = 1 1.0484 2
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The contribution or weight of each country is shown in Fig. 6. countries have rela-
tively large contributions, which are Japan, France, Korea, Australia, Mexico and 
Austria.

4.3  GDP dataset prediction

Next, we examine the prediction performance of the predictors found in Sect. 4.2 on 
unseen data. The data we use in this section are composed of data from 1994-Q4 to 
2017-Q3 (samples from 135 to 226 in the same dataset as in Sect. 4.2). We under-
stand that the mean and variance of variables in this dataset are considerably differ-
ent from the mean and variance in the dataset analyzed in Sect. 4.2, especially due to 
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Fig. 4  Prediction results using two approaches from 1961-Q3 to 1994-Q4. The solid blue line represents 
the true values and the dashed red line represents the predicted values
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the financial crisis around 2008. However, we would still like to check whether the 
predictors found in Sect. 4.2 persist.

First, we shift and scale each scalar time series with its corresponding mean 
and standard deviation found in Sect. 4.2. Then, we apply the predictors found in 
Sect. 4.2 to this preprocessed dataset to make predictions. It is worth noting that this 
is a very challenging task as it covers the financial crisis period from 2007 to 2009.

We use MSE as a measure of how good the predictions are. Table 4 summa-
rizes the MSE when applying single variable AR predictor to Mexico and Bel-
gium, the MSE when applying the predictor to the principal time series obtained 
using our proposed method and the MSE of naïve zero predictor. The MSE of 
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Fig. 5  Contribution of each country to the most predictable factor when memory is 1 and the number of 
factors is 1

Table 4  MSE of Mexico and 
Belgium using single variable 
AR fitting, MSE of principal 
time series extracted by the 
proposed method and MSE of 
naïve zero predictor

MSE MSE of naïve 
zero predictor

Mexico, m = 1 1.4072 1.8671
Belgium, m = 1 0.3844 0.6536
M = 1, m = 1 0.5009 1.3902
M = 2, m = 1 0.6961 1.5015
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naïve zero predictor can be used as a reference to evaluate the performance of 
the other two predictors.

We can see from Table 4 that both single variable AR predictors and our pro-
posed predictors perform better than naïve zero predictor. However, our pro-
posed method provides dramatic improvements over the naïve zero predictor 
compared to the single variable AR predictors.

Figure 7 shows the prediction results. We can see that the predictions made 
using the proposed method are more accurate than the predictions using single 
variable AR predictor. In addition, the predictor found by our proposed method 
generalizes well even during the financial crisis period. The first factor captures 
the big drop around 2008.

5  Extensions and variations

There are several extensions of and variations on the problems that we describe 
in this paper.
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Fig. 6  Contribution of each country to the most predictable factor when memory is 1 and the number of 
factors is 2
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5.1  Regularization

We can add regularization on W and A to the objective. We denote the regularized 
problem as

where r ∶ �mM×m
→ � and r̃ ∶ �n×m

→ � . r and r̃ can be chosen to enforce certain 
properties in A and W. For example, regularization using r(A) = ‖A‖F can be added 
to avoid overfitting of the AR model; r(A) = ‖A‖1 can be added to encourage a par-
simonious structure of the AR model; r̃(W) = ‖‖Wi

‖‖1 enforces ith column of W to be 

(9)
maximize f (W) + r(A) + r̃(W)

subject to S0 = I,
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Fig. 7  Prediction results using two approaches from 1995-Q1 to 2017-Q3. The solid blue line represents 
the true values and the dashed red line represents the predicted values
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sparse, such that the ith most predictable time series only depends on a few entries 
in the high dimensional time series.

5.2  Low rank structure

In many cases, high dimensional time series have low rank structure. We can use this 
low rank structure to reduce the computational complexity of our problem. When 
the high dimensional time series has low rank structure, the covariance matrix Σ0 
has many eigenvalues close 0. Let Ũ denote the collections of all the eigenvectors of 
Σ0 corresponding to the significantly non-zero eigenvalues, then original inputs Σ� , 
� = 0, 1,… ,M can be approximately transformed into Φ� , � = 0, 1,… ,M , where 
Φ𝜏 = ŨTΣ𝜏Ũ . Since the dimension of Φ� is much lower than the dimension of Σ� , by 
working with the new input series Φ� , the computational complexity reduces signifi-
cantly. Let W� and A� denote the solutions with the new inputs Φ� , then the solutions 
with the original inputs Σ� can be obtained as

5.3  Filtering

As an extension of the projection method, we can consider extracting a lower-dimen-
sional time series xt using a finite impulse response (FIR) filter with length L:

where W1,… ,WL ∈ �n×m are the filter coefficients. For L = 1 , this reduces to the 
projection problem (4). We can write this as

where

Define the following auto-covariance matrices of 

⎡⎢⎢⎢⎣

zt
zt−1
⋮

zt−L+1

⎤⎥⎥⎥⎦
:

W = ŨW𝜙, A = A𝜙.

xt = WT
1
zt +WT

2
zt−1 +⋯ +WT

L
zt−L+1, t ∈ �,

xt = WT

⎡
⎢⎢⎢⎣

zt
zt−1
⋮

zt−L+1

⎤
⎥⎥⎥⎦
, t ∈ �,

W =

⎡
⎢⎢⎢⎣

W1

W2

⋮

WL

⎤
⎥⎥⎥⎦
.
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The goal is to choose W so that the series xt is most predictable by an M-memory AR 
predictor. Similar to the projection problem, we add the constraint S0 = WTΩ0W = I 
to rule out the trivial W = 0 case. This also ensures that the low-dimensional time 
series xt is standardized.

6  Related work

The general problem of extracting low-dimensional latent variables from high-
dimensional time series has been studied for decades in many different research 
fields from control systems, signal processing, to economics. Many methods have 
been developed, and here we survey a subset of representative methods that are 
closely related to the proposed method.

6.1  Extracting predictable latent variables

The extraction of predictable latent variables can be traced back to the work Box 
and Tiao (1977), where canonical transformation is proposed to extract the lower 
dimensional components ordered from least to most predictable. Mathematically, 
the transformation matrix W in Box and Tiao (1977) is selected as the eigenvectors 
corresponding to the m largest eigenvalues in Σ−1

0
Σ(ẑ) , where Σ(ẑ) = � ẑt ẑ

T
t
 , and ẑt 

is the one-step ahead prediction of zt found in (2). It is clear that the method in Box 
and Tiao (1977) is different from the proposed method unless M = 1 and m = 1.

Later in Pena and Box (1987), the zt vector is decomposed into one component 
that contains factors mixed up with noise, where the transformation matrix W is 
obtained by analyzing the eigenstructure of the VAR model coefficients of zt , and 
one component contains white noise.

The slow feature analysis (SFA) method proposed in Wiskott and Sejnowski 
(2002) aims to extract a lower-dimensional “slowly varying” time series. Without 
nonlinear expansion, SFA can be treated as a special case of the proposed method if 
we restrict M = 1 and A1 = I . Even though “slowly varying” time series are predict-
able, predictable time series do not necessarily have slow variations. To deal with 
this, the later work Richthofer and Wiskott (2015) proposed a more general predict-
able feature analysis (PFA) approach to extract lower-dimensional predictable time 
series. In PFA method, the selection of the transformation matrix W involves an 

Ω0 = �

⎡
⎢⎢⎢⎣

zt
zt−1
⋮

zt−L+1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

zt
zt−1
⋮

zt−L+1

⎤
⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣

Σ0Σ
T
1
⋯ΣT

L−1

Σ1Σ0 ⋯ΣT
L−2

⋮ ⋮ ⋱ ⋮

ΣL−1ΣL−2 ⋯Σ0

⎤
⎥⎥⎥⎦
,

Ω1 = �

⎡
⎢⎢⎢⎣

zt
zt−1
⋮

zt−L+1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

zt+1
zt
⋮

zt−L+2

⎤
⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣

Σ1Σ0 ⋯ΣT
L−2

Σ2Σ1 ⋯ΣT
L−3

⋮ ⋮ ⋱ ⋮

ΣLΣL−1 ⋯Σ1

⎤
⎥⎥⎥⎦
.



1209

1 3

Extracting a low-dimensional predictable time series  

eigen-decomposition of �(zt − ẑt)(zt − ẑt)
T . As we can see, the PFA method is in 

fact closely related to the method in Box and Tiao (1977), and is only equivalent to 
the proposed method when M = 1 and m = 1.

In all the above mentioned methods except SFA, a VAR model needs to be fit for 
the original high-dimensional time series. There have also been methods developed 
that do not involve fitting a high-dimensional VAR model. For example, in Dong 
and Qin (2018b, 2018a), dynamic-inner principal component analysis (DiPCA) and 
DiCCA are developed to extract a lower-dimensional most predictable latent varia-
bles. In both methods, the columns of W are extracted sequentially, with a scalar AR 
predictor for each entry in xt . DiPCA extracts each entry in xt such that it has maxi-
mal covariance between its predicted value using an AR predictor, while DiCCA 
maximizes the correlation. In fact, it can be shown that DiCCA is a special case of 
the proposed method where A1,A2,… ,AM are diagonal matrices.

Instead of using expected mean squared error as a predictability measure, there 
have been methods developed using different predictability measures. For example, 
forecastable component analysis (ForeCA) proposed in Goerg (2013) utilizes the 
differential entropy as the predictability (forecastability) measure, which yields the 
lower bound of the expected squared loss of any estimator. Graph-based predict-
able feature analysis (GPFA) in Weghenkel et al. (2017) maximizes a predictability 
measure defined in terms of graph embedding. Dynamical component analysis in 
Clark et al. (2019) uses mutual information between the past and future data. The 
method developed in Stone (2001) proposed to use a measure of temporal predict-
ability for blind source separation. In atmospheric, optimal persistence analysis 
(OPA) maximizes the decorrelation time (DelSole 2001), and average predictabil-
ity time decomposition (APTD) maximizes the average predictability time (DelSole 
and Tippett 2009a, b).

6.2  Factor models

This work is also closely related to the extensively studied factor models in econo-
metrics. Here we analyze some representative methods and compare them with the 
proposed method. The early work Brillinger (1981) is a frequency domain approach 
that extracts dynamic principal components (DPC) as linear combinations of the 
past and future observations to minimize the mean squared reconstruction error of 
the original high-dimensional time series. Similar structure exists in Peña and Yohai 
(2016), which is a time domain approach that uses non-causal models. In the later 
work Peña et al. (2019), a causal model is utilized to extract one-sided dynamic prin-
cipal components (ODPC) as linear combinations of the current and past values of 
the series that minimize the reconstruction mean squared error. All of these methods 
extract latent factors differently from the proposed method, where the extraction of 
xt only depends on the current data. In addition, these methods extract latent factors 
by minimizing the mean squared reconstruction error, while the proposed method 
minimizes the mean squared prediction error.

In Lam and Yao (2012); Lam et  al. (2011), for standardized high-dimensional 
time series, W is selected as the eigenvectors corresponding to the largest m 
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eigenvalues in 
∑M

i=1
ΣT
i
Σi . In Pan and Yao (2008), the latent factors are identified 

via expanding the white noise space step by step. Compare to the proposed method, 
these methods provide little characterization on the lower-dimensional xt . To make 
predictions on xt , Lam et al. (2011) suggest to subsequently build an AR predictor. 
However, in the proposed method, the extraction and prediction of xt are achieved 
simultaneously by solving one optimization problem. A lot of the above analysis 
were also given in Qin et al. (2020), where Lam and Yao (2012) is linked to sub-
space identification. Refer to Stock and Watson (2006), Stock and Watson (2011), 
Forni et al. (2000), Amengual and Watson (2007), Bai and Ng (2007) for more gen-
eral discussions on factor models.

6.3  Reduced rank time series

Another related work is reduced rank time series modeling. Early work such as Rein-
sel (1983), Velu et  al. (1986), Ahn and Reinsel (1988), Wang and Bessler (2004) 
fit AR models to the vector time series with reduced rank coefficients. Later the 
reduced rank time series models have been generalized into the structured AR mod-
eling problem (Basu et  al. 2019; Alquier et  al. 2020; Melnyk and Banerjee 2016; 
Barratt et  al. 2021), where regularization terms on the AR model coefficients are 
imposed to encourage certain structures, such as low rank and sparsity. In summary, 
most of these papers focus on a parsimonious parametrization on the vector time 
series models, rather than extracting low-dimensional predictable time series.

6.4  State space models

The proposed method also has connections with state space models. There have 
been many ways to fit a state space model to vector time series, such as expectation-
maximization (EM) (Shumway and Stoffer 1982), and N4SID (Moonen et al. 1989; 
Van Overschee and De Moor 1993) and CVA approach (Larimore 1983). In state 
space models, there have been methods developed to encourage sparse or low rank 
structures on the state transition matrix, such as She et al. (2018), Chen et al. (2017). 
Instead of adding regularizations on the state transition matrix, Angelosante et al. 
(2009), Charles et al. (2011) directly regularize the latent state to be sparse or low 
rank. In addition, there have been approaches that consider more general settings. 
For example, Lin and Michailidis (2020), Kost et al. (2018) consider the identifica-
tion of linear dynamical systems with serially correlated output noise components. 
In the work of Qin et al. (2020), state space models are also compared with latent 
variable models, and it pointed out that subspace identification does not naturally 
yield reduced dimensional models.

In summary, the key difference between the proposed method and many of the 
existing methods is that first, it extracts low-dimensional predictable time series 
without fitting a full-dimensional VAR model; second, the extraction of principal 
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time series and the VAR modeling of the principal time series are achieved simulta-
neously by solving the optimization problem.

7  Conclusion

In this paper we have described a new method to extract a low-dimensional most 
predictable time series from high-dimensional time series, in the sense that an auto-
regressive model achieves minimum prediction error. The method is heuristic, since 
the algorithm does not guarantee globally optimal. Numerical examples suggest, 
however, that the method works very well in practice.

Appendix A derivation of (6)

We show how to derive the expression (6) in this appendix. For simplicity, we ignore 
the superscript k + 1 in Ak+1 , Ak+1

i
 , i = 1,… ,M , and Sk+1

�
 , � ∈ � , and the superscript 

k in Wk.
When A is fixed, we have

We divide Ai , i = 1, 2,… ,M into the following submatrices,

where Ai,11 ∈ �k×k , Ai,12 ∈ �k×1 , Ai,21 ∈ �1×k , Ai,22 ∈ � . With this notation, we can 
expand ��(AiSi) as

where d is a constant. For the second term in f(w), we have

f (w) = ��

⎛
⎜⎜⎜⎝
−2A

⎡
⎢⎢⎢⎣

S1
S2
⋮

SM

⎤
⎥⎥⎥⎦
+ A

⎡
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S0S
T
1
⋯ ST

M−1

S1S0 ⋯ ST
M−2

⋮ ⋮ ⋱ ⋮

SM−1SM−2 ⋯ S0

⎤
⎥⎥⎥⎦
AT

⎞
⎟⎟⎟⎠

= −2
∑M

i=1
��(AiSi)

+ ��

⎡⎢⎢⎢⎣

S0S
T
1
⋯ ST

M−1

S1S0 ⋯ ST
M−2

⋮ ⋮ ⋱ ⋮

SM−1SM−2 ⋯ S0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

AT
1
A1A

T
1
A2 ⋯AT

1
AM

AT
2
A1A

T
2
A2 ⋯AT

2
AM

⋮ ⋮ ⋱ ⋮

AT
M
A1A

T
M
A2 ⋯AT

M
AM

⎤⎥⎥⎥⎦
.

Ai =

[
Ai,11 Ai,12

Ai,21 Ai,22

]
for i = 1, 2,… ,M,

��(AiSi) = ��

[
Ai,11Ai,12

Ai,21Ai,22

] [
WTΣiWWTΣiw

wTΣiWwTΣiw

]

= wT (Ai,22Σi)w + (ΣiWAi,12 + ΣT
i
WAT

i,21
)Tw + d,
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where ��(Sj−iAT
i
Aj) can be expanded as

Summing all terms, we can obtain the following expression for f(w),

where d is a constant and

The constant term can be ignored when we want to minimize f(w). It is easy to show 
that B ≻ 0.
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