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Abstract

Many control policies used in various applications determine the input or action
by solving a convex optimization problem that depends on the current state and some
parameters. Common examples of such convex optimization control policies (COCPs)
include the linear quadratic regulator (LQR), convex model predictive control (MPC),
and convex control-Lyapunov or approximate dynamic programming (ADP) policies.
These types of control policies are tuned by varying the parameters in the optimization
problem, such as the LQR weights, to obtain good performance, judged by application-
specific metrics. Tuning is often done by hand, or by simple methods such as a crude
grid search. In this paper we propose a method to automate this process, by adjusting
the parameters using an approximate gradient of the performance metric with respect
to the parameters. Our method relies on recently developed methods that can efficiently
evaluate the derivative of the solution of a convex optimization problem with respect
to its parameters. We illustrate our method on several examples.

1 Introduction

1.1 Convex optimization control policies

We consider the control of a stochastic dynamical system with known dynamics, using a
control policy that determines the input or action by solving a convex optimization prob-
lem. We call such policies convex optimization control policies (COCPs). Many practical
policies have this form, including the first modern control policy, the linear quadratic reg-
ulator (LQR) [47]. In LQR, the convex optimization problem has quadratic objective and
linear equality constraints, and so can be solved explicitly, yielding the familiar linear con-
trol policy. More modern examples, which rely on more complicated optimization problems
such as quadratic programs (QPs), include convex model predictive control (MPC) [27] and
convex approximate dynamic programming (ADP) [21]. These policies are used in many
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applications, including robotics [51], vehicle control [74], rocket landing [25], supply chain
optimization [64], and finance [53, 37, 29].

Control policies in general, and COCPs in particular, are judged by application-specific
metrics; these metrics are evaluated using simulation with historical or simulated values of
the unknown quantities. In some but not all cases, the metrics have the traditional form
of the average value of a given stage cost. We consider here more general metrics that can
be functions of the whole state and input trajectories. An example of such a metric is the
expected drawdown of a portfolio over some time period, i.e., the expected value of the
minimum future value of a portfolio.

In a few cases, the optimal policy for a traditional stochastic control problem has COCP
form. A well-known example is LQR [47]. Another generic example is when the dynamics
are affine and the stage cost is convex, in which case the Bellman value function is convex,
and evaluating the optimal policy reduces to solving a convex optimization problem [48,
§3.3.1]. While it is nice to know that in this case that the optimal policy has COCP form,
we generally cannot express the value function in a form that allows us to evaluate the policy,
so this observation is not useful in practice. In a far wider set of cases, a COCP policy is
not optimal, but only a good, practical heuristic.

COCPs have some attractive properties compared to other parametrized control policies.
When the convex problem to be solved is well chosen, the policy is reasonable for any choice
of the parameter values over the allowed set. As a specific example, consider a linear control
policy parametrized by the gain matrix, which indeed would seem to be the most natural
parametrization of a linear policy. The set of gain matrices that lead to a stable closed-loop
system (a very minimal performance requirement) can be very complex, even disconnected.
In contrast, consider an LQR control policy parametrized by a positive-definite control cost
matrix. In this case any choice of policy yields a stable closed-loop system. It is far easier
and safer to tune parameters when any feasible choice leads to at least a reasonable policy.

All control policies are tuned by choosing various parameters that appear in them. In the
case of COCPs, the parameters are in the optimization problem that is solved to evaluate the
policy. The tuning is usually done based on simulation with historical disturbances (called
back-testing) or synthetic disturbances. It is often done by hand, or by a crude grid search. A
familiar example of this is tuning the weights in an LQR controller to obtain good practical
performance [8].

In this paper we present an automated method for tuning parameters in COCPs to achieve
good values of a performance metric. Our method simulates the closed-loop system, i.e.,
the system with the policy in the loop, and computes a stochastic gradient of the expected
performance with respect to the parameters. It uses this gradient to update the parameters
via a projected stochastic gradient method. Central to our method is the fact that the
solution map for convex optimization problems is often differentiable, and its derivative can
be efficiently computed [2, 5]. This is combined with relatively new implementations of
automatic differentiation, widely used in training neural networks [1, 62].

Our method is not guaranteed to find the best parameter values, since the performance
metric is not a convex function of the COCP parameter values, and we use a local search
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method. This is not a problem in practice, since in a typical use case, the COCP is initialized
with reasonable parameters, and our method is used to tune these parameters to improve
the performance (sometimes considerably).

1.2 Related work

Dynamic programming. The Markov decision process (MDP) is a general stochastic
control problem that can be solved in principle using dynamic programming (DP) [16, 17, 21].
The optimal policy is evaluated by solving an optimization problem, one that includes a
current stage cost and the expected value of cost-to-go or value function at the next state.
This optimization problem corresponds to a COCP when the system dynamics are linear or
affine and the stage cost is convex [21]. Unfortunately, the value function can be found in
a tractable form in only a few cases. A notable tractable case is when the cost is a convex
extended quadratic and the dynamics are affine [14].

Approximate dynamic programming. ADP [24, 63] refers to heuristic solution meth-
ods for stochastic control problems that replace the value function in DP with an approxi-
mation, or search over a parametric family of policies [22, §2.1].

In many ADP methods, an offline optimization problem is solved to approximate the value
function. When there is a finite number of states and inputs, the approximation problem can
be written as a linear program (LP) by relaxing the Bellman equation to an inequality [38].
When the dynamics are linear, the cost is quadratic, and the input is constrained to lie
in a convex set, an approximate convex quadratic value function can be found by solving
a particular semidefinite program (SDP) [78]. The quality of the approximation can also
be improved by iterating the Bellman inequality [81, 73]. Because the approximate value
function is convex quadratic and the dynamics are linear, the resulting policy is a COCP.

Other methods approximate the cost-to-go by iteratively adjusting the approximate value
function to satisfy the Bellman equation. Examples of these methods include projected value
iteration or fitted Q-iteration [43], temporal difference learning [75, 23], and approximate
policy iteration [57]. Notable applications of COCPs here include the use of quadratic
approximate cost-to-go functions for input-affine systems with convex cost, which can be
approximately fit using projected value iteration [49], and modeling the state-action cost-
to-go function as an input-convex neural network [7, §6.4]. Other approximation schemes
fit nonconvex value functions, so the resulting policies are not necessarily COCPs. Notably,
when the parametrization involves a featurization computed by a deep neural network, the
ADP method is an instance of deep reinforcement learning.

Other ADP methods parametrize the policy and tune the parameters directly to improve
performance; this is often referred to as policy search or policy approximation [22, §5.7]. The
most common method is gradient or stochastic gradient search [63, §7.2], which is the method
we employ in this paper, with a parametrized COCP as the policy. Historically, the most
widely used of these policy approximation methods is the Proportional-Integral-Derivative
(PID) controller [55], which indeed can be tuned using gradient methods [10].
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Reinforcement learning. Reinforcement learning (RL) [76] and adaptive control [11] are
essentially equivalent to ADP [22, §1.4], but with different notation and different emphasis.
RL pays special attention to problems in which one does not possess a mathematical model of
the dynamics or the expected cost, but has access to a computational simulator for both. Our
method cannot be used directly in this setting, since we assume that we have mathematical
descriptions of the dynamics and cost. However, our method might be used after learning
a suitable model of the dynamics and cost. Alternatively, COCPs could be used as part of
the policy in modern policy gradient or actor-critic algorithms [83, 52, 70].

Learning optimization-based policies. Other work has considered tuning optimization-
based control policies. For example, there is prior work on learning for MPC, including
nonconvex MPC controllers [6], cost function shaping [77], differentiable path integral control
[60], and system identification of terminal constraint sets and costs [67]. As far as we are
aware, our work is the first to consider the specific class of parametrized convex programs.

Real-time optimization. COCPs might be considered computationally expensive control
policies compared to conventional analytical control policies such as the linear control policy
prescribed by LQR. However, this is not the case in practice, thanks to fast embedded
solvers [40, 72, 79] and code generation tools that emit solvers specialized to parametric
problems [54, 33, 12]. For example, the aerospace and space transportation company SpaceX
uses the QP code generation tool CVXGEN [54] to land its rockets [25]. COCPs based on
MPC, which have many more variables and constraints than those based on ADP, can also
be evaluated very efficiently [18, 80], even at MHz rates [46].

1.3 Outline

In §2, we introduce the controller tuning problem that we wish to solve. In §3, we describe
some common forms of COCPs. In §4, we propose a heuristic for the controller tuning prob-
lem. In §5, we apply our heuristic for tuning COCPs to examples in portfolio optimization,
vehicle control, and supply-chain management. We conclude in §6 by discussing extensions
and variations.

2 Controller tuning problem

System dynamics. We consider a dynamical system with dynamics given by

xt+1 = f(xt, ut, wt), t = 0, 1, . . . . (1)

At time period t, xt ∈ Rn is the state, ut ∈ Rm is the input or action, wt ∈ W is the
disturbance, and f : Rn×Rm×W → Rn is the state transition function. The initial state x0

and the disturbances wt are random variables. In the traditional stochastic control problem,
it is assumed that x0, w0, w1, . . . are independent, with w0, w1, . . . identically distributed. We
do not make this assumption.

4



The inputs are given by a state feedback control policy,

ut = φ(xt), t = 0, 1, . . . . (2)

where φ : Rn → Rm is the policy. In particular, we assume the state xt at time period t is
fully observable when the input ut is chosen. It will be clear later that this assumption is
not really needed, since our method can be applied to an estimated state feedback policy,
either with a fixed state estimator, or with a state estimator that is itself a parametrized
convex problem (see §6).

With the dynamics (1) and policy (2), the state and input trajectories x0, x1, . . . and
u0, u1, . . . form a stochastic process.

Convex optimization control policies. We specifically consider COCPs, which have
the form

φ(x) = argmin
u

f0(x, u; θ)

subject to fi(x, u; θ) ≤ 0, i = 1, . . . , k,
gi(x, u; θ) = 0, i = 1, . . . , `,

(3)

where fi are convex in u and gi are affine in u. To evaluate a COCP we must solve a convex
optimization problem, which we assume has a unique solution. The convex optimization
problem (3) is given by a parametrized problem description [30, §4.1.4], in which the vector
θ ∈ Θ ⊆ Rp is the parameter (Θ is the set of allowable parameter values). The value of the
parameter θ (and x) specifies a particular problem instance, and it can be adjusted to tune
the control policy. The problem we address in this paper is the choice of the parameter θ.

Performance metric. We judge the performance of a control policy, or choice of control
policy parameter θ, by the average value of a cost over trajectories of length T . Here the
horizon T is chosen large enough so that the average over T time steps is close enough to
the long term average. We denote the trajectories over t = 0, . . . , T as

X = (x0, x1, . . . , xT ) ∈ RN ,
U = (u0, u1, . . . , uT ) ∈ RM ,
W = (w0, w1, . . . , wT ) ∈ WT+1,

where N = (T + 1)n and M = (T + 1)m. These state, input, and disturbance trajectories
are random variables, with distributions that depend on the parameter θ.

The cost is provided by a function ψ : RN ×RM ×WT+1 → R ∪ {+∞}. Infinite values
of ψ can be interpreted as encoding constraints on the trajectories. A policy is judged by
the expected value of this cost,

J(θ) = Eψ(X,U,W ).

We emphasize that J depends on the control policy parameter θ, since x1, . . . , xT and
u0, . . . , uT depend on θ.
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We mention that the traditional cost function is separable, with the form

ψ(X,U,W ) =
1

T + 1

T∑
t=0

g(xt, ut, wt), (4)

where g : Rn ×Rm ×W → R∪ {∞} is a stage cost function. However, we do not require a
cost function that is separable across time.

Evaluating J(θ). We generally cannot evaluate J(θ) exactly. Instead, assuming that we
can sample the initial state and the disturbances, we can compute a Monte Carlo approxi-
mation of it. In the simplest version, we generate K independent trajectories

(X1, U1,W 1), . . . , (XK , UK ,WK),

and form the approximation

Ĵ(θ) =
1

K

K∑
i=1

ψ(X i, U i,W i).

This computation requires carrying out K simulations over T time steps, which involves
solving K(T + 1) convex optimization problems.

Evidently, Ĵ(θ) is an unbiased approximation of J(θ), meaning

E Ĵ(θ) = J(θ).

The quality of this approximation increases as K increases, since

var Ĵ(θ) =
varψ(X,U,W )

K
,

where var denotes the variance; i.e., the variance goes to 0 as K gets large. Of course
more sophisticated methods can be used to approximately evaluate J(θ), e.g., importance
sampling (see [34]).

Controller tuning problem. The controller tuning problem has the form

minimize J(θ)
subject to θ ∈ Θ,

(5)

with variable θ. This is the problem we seek to solve in this paper.

3 Examples of COCPs

In this section we describe some common COCPs.
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Optimal (dynamic programming) policy. In the traditional stochastic control setting,
the cost function is the average of stage costs computed by a function g, as in (4), and
x0, w0, w1, . . . are independent. Under some technical conditions, the optimal policy for
T → ∞, i.e., the policy that minimizes J over all possible state feedback policies, and not
just those of COCP form, has the form

φ(x) = argmin
u

E (g(x, u, w) + V (f(x, u, w))) , (6)

where V : Rn → R is the optimal cost-to-go or Bellman value function. This form of the
optimal policy is sometimes called the dynamic programming (DP) form. When f is affine
in x and u and g is convex in x and u, it can be shown that the value function V is convex
[48, §3.3.1], so the expression to be minimized above is convex in u, and the optimal policy
has COCP form (with no parameter θ).

Unfortunately the optimal value function V can be expressed in tractable form in only a
few special cases. A well-known one is LQR [47], which has dynamics and stage cost

f(x, u, w) = Ax+Bu+ w, g(x, u, w) = xTQx+ uTRu, (7)

with A ∈ Rn×n, B ∈ Rn×m, Q ∈ Sn+ (the set of n × n symmetric positive semidefinite
matrices), R ∈ Sm++ (the set of symmetric positive definite matrices), and w ∼ N (0,Σ). In
this special case we can compute the value function, which is a convex quadratic V (x) =
xTPx, and the optimal policy has the form

φ(x) = argmin
u

(
uTRu+ (Ax+Bu)TP (Ax+Bu)

)
= Kx,

with
K = −(R +BTPB)−1BTPA.

Note that we can consider the policy above as a COCP, if we consider P as our parameter
θ (constrained to be positive semidefinite). Another option is to take P = θT θ, where
θ ∈ Rn×n, so the COCP has objective

f0(x, u; θ) = uTRu+ ‖θ(Ax+Bu)‖2
2.

Approximate dynamic programming policy. An ADP [63] or control-Lyapunov [36]
policy has the form

φ(x) = argmin
u

E(g(x, u, w) + V̂ (f(x, u, w))), (8)

where V̂ is an approximation of the value function for which the minimization over u above
is tractable. When g is convex in u, f is affine in u, and V̂ is convex, the minimization above
is a convex optimization problem [30]. With a suitable parametrization of V̂ , this policy has
COCP form [48].
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Model predictive control policy. Suppose the cost function has the form (4), with
stage cost g. In an MPC policy, the input is determined by solving an approximation to
the control problem over a short horizon, where the unknown disturbances are replaced by
predictions [65], and applying only the first input. A terminal cost function gH is often
included in the optimization.

An MPC policy has the form

φ(x) = argmin
u0

∑H−1
t=0 g(xt, ut, ŵt) + gH(xH)

subject to xt+1 = f(xt, ut, ŵt), t = 0, . . . , H − 1,
x0 = x,

where H is the planning horizon and ŵ0, . . . , ŵH−1 are the predicted disturbances. This
optimization problem has variables u0, . . . , uH−1 and x0, . . . , xH ; however, the argmin is over
u0 since in MPC we only apply the first input.

When f is affine in (x, u), g is convex in (x, u), and the terminal cost function gH is convex,
the minimization above is a convex optimization problem. With a suitable parametrization
of the terminal cost function gH , the MPC policy has COCP form. When f is not affine or g
is not convex, they can be replaced with parametrized convex approximations. The function
that predicts the disturbances can also be parametrized (see §6).

4 Solution method

Solving the controller tuning problem (5) exactly is in general hard, especially when the
number of parameters p is large, so we will solve it approximately. Historically, many prac-
titioners have used derivative-free methods to tune the parameters in control policies. Some
of these methods include CMA-ES [45] and other evolutionary strategies [69], Bayesian opti-
mization [56], grid search, and random search [9, 71, 20]. Many more methods are catalogued
in [35]. These methods can certainly yield improvements over an initialization; however, they
often converge very slowly.

A gradient-based method. It is well-known that first-order optimization methods, which
make use of derivatives, can outperform derivative-free methods. In this paper, we apply the
projected stochastic (sub)gradient method [66] to approximately solve (5). That is, starting
with initial parameters θ0, at iteration k, we simulate the system and compute Ĵ(θk). We
then compute an unbiased stochastic gradient of J , gk = ∇Ĵ(θk), by the chain rule or
backpropagation through time (BPTT) [68, 82], and update the parameters according to
the rule θk+1 = ΠΘ(θk − αkgk), where ΠΘ(θ) denotes the Euclidean projection of θ onto Θ
and αk > 0 is a step size. Of course more sophisticated methods can be used to update the
parameters, for example, those that employ momentum, variance reduction, or second-order
information (see [28] and the references therein for some of these methods).
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Computing gk. The computation of gk requires differentiating through the dynamics f ,
the cost ψ, and, notably, the solution map φ of a convex optimization problem. Methods
for differentiating through special subclasses of convex optimization have existed for many
decades; for example, literature on differentiating through QPs dates back to at least the
1960s [26]. Similarly, it is well known that if the objective function and constraint functions
of a convex optimization problem are all smooth, and some regularity conditions are satisfied,
then its derivative can be computed by differentiating through the KKT optimality conditions
[50, 13]. Until very recently, however, it was not generically possible to differentiate through a
convex optimization problem with nondifferentiable objective or constraints; recent work [31,
3, 2, 5] has shown how to efficiently and easily compute this derivative.

Non-differentiability. Until this point, we have assumed the differentiability of all of
the functions involved (f , ψ, and φ). In real applications, these functions very well may
not be differentiable everywhere. So long as the functions are differentiable almost every-
where, however, it is reasonable to speak of applying a projected stochastic gradient method
to (5). At non-differentiable points, we compute a heuristic quantity. For example, at some
non-differentiable points of φ, a certain matrix fails to be invertible, and we compute a
least-squares approximation of the derivative instead, as in [3]. In this sense, we overload
the notation ∇f(x) to denote a gradient when f is differentiable at x, or some heuristic
quantity (a “gradient”) when f is not differentiable at x. In practice, as our examples in §5
demonstrate, we find that this method works well. Indeed, most neural networks that are
trained today are not differentiable (e.g., the rectified linear unit or positive part is a non-
differentiable activation function that is widely used) or even subdifferentiable (since neural
networks are usually nonconvex), but it is nonetheless possible to train them, successfully,
using stochastic “gradient” descent [42].

5 Examples

In this section, we present examples that illustrate our method. Our control policies were
implemented using CVXPY [39, 4], and we used cvxpylayers [2] and PyTorch [62] to differ-
entiate through them; cvxpylayers uses the open-source package SCS [58, 59] to solve convex
optimization problems. For each example, we give the dynamics, the cost, the COCP under
consideration, and the result of applying our method to a numerical instance. Evaluating
each COCP takes about 3 ms, which could be made smaller using a more specialized solver.

In the numerical instances, we pick the number of simulations K so that the variance of
Ĵ(θ) is sufficiently small, and we tune the step-size schedule αk for each problem. BPTT
is susceptible to exploding and vanishing gradients [19], which can make learning difficult.
This issue can be mitigated by gradient clipping and regularization [61], which we do in some
of our experiments.
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Figure 1: Tuning an LQR policy.

5.1 LQR

We first apply our method to the classical LQR problem, with dynamics and cost

f(x, u, w) = Ax+Bu+ w, ψ(X,U,W ) =
1

T + 1

T∑
t=0

xTt Qxt + uTt Rut,

where A ∈ Rn×n, B ∈ Rn×m, Q ∈ Sn+, R ∈ Sm++, and w ∼ N (0,Σ).

Policy. We use the COCP

φ(x) = argmin
u

uTRu+ ‖θ(Ax+Bu)‖2
2, (9)

with parameter θ ∈ Rn×n. This policy is linear, of the form φ(x) = Gx, with

G = −(R +BT θT θB)−1BT θT θA.

This COCP is clearly over-parametrized; for example, for any orthogonal matrix U , Uθ gives
the identical policy as θ. If the matrix θT θ satisfies a particular algebraic Riccati equation
involving A, B, Q, and R, then (9) is optimal (over all control policies) when T →∞ [21].

Numerical example. We consider a numerical example with n = 4 states, m = 2 inputs,
and T = 100. The entries of A and B were sampled from the standard normal distribution,
and we scaled A such that its spectral radius is one. The cost matrices are Q = I and R = I,
and the noise covariance is W = (0.25)I. We initialize θ with the identity. We trained our
policy (9) for 50 iterations, using K = 6 simulations per step, starting with a step size of 0.5
that was decreased to 0.1 after 25 iterations. Figure 1 plots the average cost of the COCP
during learning versus the average cost of the optimal LQR policy (in the case T → ∞).
Our method appears to converge to near the optimal cost in just 10 iterations.
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Figure 2: Tuning a box-constrained LQR policy.

5.2 Box-constrained LQR

A box-constrained LQR problem has the same dynamics and cost as LQR, with an additional
constraint ‖ut‖∞ ≤ umax:

ψ(X,U,W ) =
1

T + 1

T∑
t=0

g(xt, ut, wt), g(xt, ut, wt) =

{
xTt Qxt + uTt Rut, ‖ut‖∞ ≤ umax,

+∞ otherwise.

Unlike the LQR problem, in general, there is no known exact solution to the box-constrained
problem, analytical or otherwise. Sophisticated methods can be used, however, to compute
a lower bound on the true optimal cost [78].

Policy. Our COCP is an ADP policy (8) with a quadratic value function,

φ(x) = argmin
u

uTRu+ ‖θ(Ax+Bu)‖2
2

subject to ‖u‖∞ ≤ umax,
(10)

with parameter θ ∈ Rn×n. The lower bound found in [78] yields a policy that has this same
form, for a particular value of θ.

Numerical example. We use n = 8 states, m = 2 inputs, T = 100, umax = 0.1, and data
generated as in the LQR example above. The lower bounding technique from [78] yields a
lower bound on optimal cost of around 11. It also suggests a particular value of θ, which
gives average cost around 13, an upper bound on the optimal cost that we suspect is the
true optimal average cost. We initialize our COCP with θ = P 1/2, where P comes from the
cost-to-go function for the unconstrained (LQR) problem. Figure 2 plots the expected cost
of our COCP, and the expected cost of the upper and lower bounds suggested by [78]. Our
method converges to roughly the same cost as the upper bound.
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5.3 Tuning a Markowitz policy to maximize utility

In 1952, Markowitz introduced an optimization-based method for the allocation of financial
portfolios [53], which trades off risk (measured as return variance), and (expected) return.
While the original formulation involved only a quadratic objective and linear equality con-
straints (very much like LQR), with the addition of other constraints and terms, Markowitz’s
method becomes a sophisticated COCP [44, 29]. The parameters are the data that appear
in the convex problem solved to determine the trades to execute in each time period.

In this example, we learn the parameters in a Markowitz policy to maximize a utility on
the realized returns. We will use notation from [29], representing the state by wt, the control
by zt, and the disturbance by rt.

The portfolio under consideration has n assets. The dollar value of the portfolio in period
t is denoted by vt, which we assume to be positive. Our holdings in period t, normalized by
the portfolio value, are denoted by wt ∈ Rn; the normalization ensures that 1Twt = 1. The
number vt(wt)i is the dollar value of our position in asset i ((wt)i < 0 corresponds to a short
position). In each period, we re-allocate our holdings by executing trades zt ∈ Rn, which are
also normalized by vt. Selling or shorting asset i corresponds to (zt)i < 0, and purchasing it
corresponds to (zt)i > 0. Trades incur transaction costs κT |zt|, where κ ∈ Rn

++ (the set of
positive n-vectors) is the vector of transaction cost rates and the absolute value is applied
elementwise. Shorting also incurs a cost, which we express by νT (wt + zt)−, where ν ∈ Rn

++

is the vector of stock loan rates and (·)− is the negative part. We impose the condition that
trades are self-financing, i.e., we must withdraw enough cash to pay the transaction and
shorting costs incurred by our trades. This can be expressed as 1T zt+κ

T |zt|+νT (wt+zt)− ≤
0.

The holdings evolve according to the dynamics

wt+1 = rt ◦ (wt + zt)/r
T
t (wt + zt)

where rt ∈ Rn
+ are the total returns (which are IID) and ◦ is the elementwise product. The

denominator in this expression is the return realized by executing the trade zt.
Our goal is to minimize the average negative utility of the realized returns, as measured by

a utility function U : R→ R. Letting W , Z and R denote the state, input, and disturbance
trajectories, the cost function is

ψ(W,Z,R) =
1

T + 1

T∑
t=0

−U(rTt (wt + zt)) + I(zt),

where I : Rn → R ∪ {+∞} enforces the self-financing condition: I(zt) is 0 when 1T zt +
κT |zt|+ νT (wt + zt)− ≤ 0 and +∞ otherwise.

Policy. We consider policies that compute zt as

φ(wt) = argmax
z

µTw+ − γ‖Sw+‖2
2

subject to w+ = wt + z
1T z + κT |z|+ νT (w+)− ≤ 0,

12



0 50 100 150 200 250 300 350 400

iteration

−0.00425

−0.00475

−0.00525

co
st

Figure 3: Tuning a Markowitz policy.

with variables w+ and z and parameters θ = (µ, γ, S), where µ ∈ Rn, γ ∈ R+, and S ∈ Rn×n.
In a Markowitz formulation, µ is set to the empirical mean µmark of the returns, and S is
set to the square root of the return covariance Σmark. With these values for the parameters,
the linear term in the objective represents the expected return of the post-trade portfolio
w+, and the quadratic term represents the risk. A trade-off between the risk and return is
determined by the choice of the risk-aversion parameter γ. We mention that it is conventional
to parametrize a Markowitz policy with a matrix Σ ∈ Sn+, rewriting the quadratic term as

w+TΣw+; as in the LQR example, our policy is over-parametrized.
In addition to the self-financing condition, there are many other constraints one may

want to impose on the trade vector and the post-trade portfolio, including constraints on
the portfolio leverage and turnover, many of which are convex. For various examples of such
constraints, see [29, §4.4, §4.5].

Numerical example. We use n = 12 ETFs as the universe of assets,

AGG, VTI, VNQ, XLF, XLV, XLY, XLP, XLU, XLI, XLE, IBB, and ITA.

For the transaction rates and stock loan rates, we use κ = ν = (0.001)1, or 0.1 percent. We
assume the investor is somewhat risk-averse, with utility function

U(r) = min(2(r − 1), r − 1).

The policy is initialized with µ = µmark, S = (Σmark)1/2, and γ = 15. Each simulation
starts with the portfolio obtained by solving

maximize µTw − γ‖Sw‖2
2 − νT (w)−

subject to 1Tw = 1,

with variable w ∈ Rn. The portfolio evolves according to returns sampled from a log-normal
distribution. This distribution was fit to monthly returns (including dividends) from Dec.
2006 through Dec. 2018, retrieved from the Center for Research in Security Prices [32].
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Figure 4: Simulated holdings (top row) and trades (bottom row) for untuned (left column)
and tuned (right column) policies.

We train the policy using stochastic gradient descent over 400 iterations, with a horizon of
T = 24 months and K = 10 simulations to evaluate Ĵ(θ). (The step size is initialized to 10−3,
halved every 100 iterations.) Figure 3 plots the per-iteration cost on a held-out random seed
while training. The policy’s performance improved by approximately 23 percent, decreasing
from an initial cost of −0.0043 to −0.0053.

Figure 4 plots simulated holdings and trades before and after tuning. Throughout the
simulations, both the untuned and tuned policies regulated or re-balanced their holdings to
track the initial portfolio, making small trades when their portfolios began to drift. The
parameter µ was adjusted from its initial value,

(1.003, 1.006, 1.006, 1.002, 1.009, 1.009, 1.007, 1.006, 1.007, 1.004, 1.011, 1.011),

to
(0.999, 1.006, 1.005, 1.000, 1.001, 1.009, 1.008, 1.007, 1.009, 1.002, 1.014, 1.013).

In particular, the entry corresponding to AGG, a bond ETF, decreased from 1.003 to 0.999,
and the entry for ITA, an aerospace and defense ETF, increased from 1.011 to 1.013; this
observation is consistent with the plotted simulated holdings.

Tuning had essentially no effect on γ, which decreased from 15 to 14.99. The difference
between Σmark and STS, however, was significant: the median absolute percentage deviation
between the entries of these two quantities was 2.6 percent.

5.4 Tuning a vehicle controller to track curved paths

We consider a vehicle moving relative to a smooth path, with state and input

xt = (et,∆ψt, vt, v
des
t , κt), ut = (at, zt).
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Here, at time period t, et is the lateral path deviation (m), ∆ψt is the heading deviation
from the path (rad), vt is the velocity (m/s), vdes

t is the desired velocity (m/s), κt is the
current curvature (i.e., inverse radius) of the path (1/m), at is the acceleration (m/s2), and
zt := tan(δt)− Lκt, where δt is the wheel angle (rad) and L is the vehicle’s wheelbase (m).

Dynamics. We consider kinematic bicycle model dynamics in path coordinates [41], dis-
cretized at h = 0.2 s, with random processes for vdes

t and κt, of the form

et+1 = et + hvt sin(∆ψt) + w1, w1 ∼ N (0, .01),

∆ψt+1 = ∆ψt + hvt

(
κt +

zt
L
− κt

1− etκt
cos(∆ψt)

)
+ w2, w2 ∼ N (0, .0001),

vt+1 = vt + hat + w3, w3 ∼ N (0, .01),

vdes
t+1 = vdes

t w4 + w5(1− w4), w4 ∼ Bernoulli(0.98), w5 ∼ U(3, 6),

κt+1 = κtw6 + w7(1− w6), w6 ∼ Bernoulli(0.95), w7 ∼ N (0, .01).

The disturbances w1, w2, w3 represent uncertainty in our model, and w4, . . . , w7 form the
random process for the desired speed and path.

Cost. Our goal is to travel the desired speed (vt ≈ vdes
t ), while tracking the path (et ≈ 0,

∆ψ ≈ 0) and expending minimal control effort (at ≈ 0, zt ≈ 0). We consider the cost

ψ(X,U,W ) =
1

T + 1

T∑
t=0

(vt − vdes
t )2 + λ1e

2
t + λ2∆ψ2

t + λ3|at|+ λ4z
2
t + I(at, zt, κt),

for positive λ1, . . . , λ4 (with proper units), where

I(a, z, κ) =

{
0 |a| ≤ amax, |z + Lκ| ≤ tan(δmax),

+∞ otherwise,

for given maximum acceleration magnitude amax (m/s2) and maximum wheel angle magni-
tude δmax (rad).

Policy. We consider a COCP that computes (at, zt) as

φ(xt) = argmin
a,z

λ3|a|+ λ4z
2 + ‖Sy‖2

2 + qTy

subject to y =


et + hvt sin(∆ψt)

∆ψt + hvt

(
κt + z

L
− κt

1−etκt cos(∆ψt)
)

vt + ha− (0.98)vdes
t − (0.02)4.5

y1 + hvt sin(y2 − hvt zL) +
h2v2t
L
z,


|a| ≤ amax

|z + Lκt| ≤ tan(δmax),
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with parameters θ = (S, q), where S ∈ R4×4 and q ∈ R4. The additional variable y ∈ R4

represents relevant portions of the next state, since y1 = et+1, y2 = ∆ψt+1, y3 = vt+1−E[vdes
t+1],

and y4 ≈ et+2 (since it assumes at = 0). Therefore, this COCP is an ADP policy and the
term ‖Sy‖2

2 + qTy can be interpreted as the approximate value function.

Numerical example. We consider a numerical example with

L = 2.8 m, λ1 = λ2 = 1, λ3 = λ4 = 10, amax = 2 m/s2, δmax = 0.6 rad, T = 100.

We use the initial state x0 = (.5, .1, 3, 4.5, 0). We run the stochastic gradient method for
100 iterations using K = 6 simulations and a step size of 0.1. We initialize the parameters
with S = I and q = 0. Over the course of learning, the cost decreased from 3.978 to 0.971.
Figure 5 plots per-iteration cost on a held-out random seed while training. Figure 6 plots
untuned and tuned sample paths on a single held-out instance. The resulting parameters
are

STS =


1.12 1.17 −0.75 0.85
1.17 3.82 0.46 3.13
−0.75 0.46 13.07 −0.29
0.85 3.13 −0.29 3.96

 , q = (−0,−0.04,−0.25,−0.04).

5.5 Tuning a supply chain policy to maximize profit

Supply chain management considers how to ship goods across a network of warehouses to
maximize profit. In this example, we consider a single-good supply chain with n nodes
representing interconnected warehouses linked to suppliers and consumers by m directed
links over which goods can flow. There are k links connecting suppliers to warehouses and
c links connecting warehouses to consumers. The remaining m − k − c links are internode
links.
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Figure 6: Left: untuned policy. Right: tuned policy. Black line is the path and the gray
triangles represent the position and orientation of the vehicle. The tuned policy is able to
track the path better and go faster.

We represent the amount of good held at each node as ht ∈ Rn
+ (the set of nonnegative

n-vectors). The prices at which we can buy the good from the suppliers are denoted pt ∈ Rk
+,

the (fixed) prices at which we can sell the goods to consumers are denoted r ∈ Rc
+, and the

customer demand is denoted dt ∈ Rc
+. Our inputs are bt ∈ Rk

+, the quantity of the good
that we buy from the suppliers, st ∈ Rc

+, the quantity that we sell to the consumers, and
zt ∈ Rm−k−c

+ , the quantity that we ship across the internode links. The state and inputs are

xt = (ht, pt, dt), ut = (bt, st, zt).

The system dynamics are
ht+1 = ht + (Ain − Aout)ut,

where Ain ∈ Rn×m and Aout ∈ Rn×m; A
in(out)
ij is 1 if link j enters (exits) node i and 0

otherwise.
The input and state are constrained in several ways. Warehouses have maximum capac-

ities given by hmax ∈ Rn
+, i.e., ht ≤ hmax (where the inequalities are elementwise), and links

have maximum capacities given by umax ∈ Rm
+ , i.e., ut ≤ umax. In addition, the amount

of goods shipped out of a node cannot be more than the amount on hand, or Aoutut ≤ ht.
Finally, we require that we sell no more than the demand, or st ≤ dt.

We model the unknown future supplier prices and demands as random disturbances wt =
(pt+1, dt+1) with joint log-normal distribution, i.e., logwt = (log pt+1, log dt+1) ∼ N (µ,Σ).
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The goal of our supply chain is to maximize profit, which depends on several quanti-
ties. Our payment to the suppliers is pTt bt, we obtain revenues rT st for selling the good to
consumers, and we incur a shipment cost τT zt, where τ ∈ Rm−k−c

+ is the cost of shipping a
unit of good across the internode links. We also incur a cost for holding or storing ht in the
warehouses; this is represented by a quadratic function αTht + βTh2

t , where α, β ∈ Rn
++ and

the square is elementwise. Our cost is our average negative profit, or

ψ(X,U,W ) =
1

T

T−1∑
t=0

pTt bt − rT st + τT zt + αTht + βTh2
t + I(xt, ut).

Here, I(xt, ut) enforces the constraints mentioned above; I(xt, ut) is 0 if xt and ut lie in the
set {

0 ≤ ht ≤ hmax, 0 ≤ ut ≤ umax, Aoutut ≤ ht, st ≤ dt
}
,

and +∞ otherwise.

Policy. The policy seeks to maximize profit by computing (bt, st, zt) as

φ(ht, pt, dt) = argmax
b,s,z

−pTt b+ rT s− τT z − ‖Sh+‖2
2 − qTh+

subject to h+ = ht + (Ain − Aout)(b, s, z)
0 ≤ h+ ≤ hmax, 0 ≤ (b, s, z) ≤ umax,
Aout(b, s, z) ≤ ht, s ≤ dt.

where the parameters are θ = (S, q) with S ∈ Rn×n and q ∈ Rn. This COCP is an ADP
policy and we can interpret the term −‖Sh+‖2

2 − qTh+ as our approximate value function
applied to the next state.

Numerical example. We consider a supply chain over horizon T = 20 with n = 4 nodes,
m = 8 links, k = 2 supply links, and c = 2 consumer links. The initial value of the network
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Figure 8: Supply chain network. Left: untuned policy. Right: tuned policy. Colors indicate
the normalized shipments between 0 and 1.

storage is chosen uniformly between 0 and hmax, i.e., h0 ∼ U(0, hmax). The log supplier
prices and consumer demands have mean and covariance

µ = (0.0, 0.1, 0.0, 0.4), Σ = 0.04I.

Therefore, the supplier prices have mean (1.02, 1.13) and the consumer demands have mean
(1.02, 1.52). The consumer prices are r = (1.4)1. We set the maximum nodes capacity to
hmax = (3)1 and links capacity to umax = (2)1. The storage cost parameters are α = β =
(0.01)1. Node 1 is connected to the supplier with lower average price and node 4 to the
consumer with higher demand.

We initialize the parameters of our policy to S = I and q = −hmax. In this way, the
approximate value function is centered at hmax/2 so that we try to keep the storage of each
node at medium capacity.

We ran our method over 200 iterations, with K = 10 using the stochastic gradient method
with step size 0.05. Figure 7 shows the per-iteration cost on a held-out random seed while
training. Over the course of training the cost decreased by 22.35 percent from −0.279 to
−0.341. The resulting parameters are

STS =


0.64 0.30 0.02 −0.06
0.30 1.44 0.32 0.30
0.02 0.32 1.14 0.06
−0.06 0.30 0.06 1.01

 , q = (−3.05,−2.92,−2.97,−2.99).

The diagonal of STS shows that the learned policy especially penalizes storing goods in nodes
connected to more expensive suppliers, e.g., node 2, or to consumers with lower demand,
e.g., node 3. Figure 8 shows the supply chain structure and displays the average shipment,
normalized between 0 and 1; figure 9 the simulated storage ht for the untuned and tuned
policy on a held-out random seed.
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6 Extensions and variations

Estimation. Our approach is not limited to tuning policies for control. As we alluded
to before, our approach can also be used to learn convex optimization state estimators, for
example Kalman filters or moving horizon estimators. The setup is exactly the same, in
that we learn or tune parameters that appear in the state estimation procedure to maximize
some performance metric. (A similar approach was adopted in [15], where the authors fit
parameters in a Kalman smoother to observed data.) Also, since COCPs are applied to
the estimated state, we can in fact jointly tune parameters in the COCP along with the
parameters in the state estimator.

Prediction. In an MPC policy, one could tune parameters in the function that predicts
the disturbances together with the controller parameters. As a specific example, we mention
that the parameters in a Markowitz policy, such as the expected return, could be computed
using a parametrized prediction function, and this function could be tuned jointly with the
other parameters in the COCP.

Nonconvex optimization control policies (NCOCPs). An NCOCP is an optimization-
based control policy that is evaluated by solving a nonconvex optimization problem. Pa-
rameters in NCOCPs can be tuned in the same way that we tune COCPs in this paper.
Although the solution to a nonconvex optimization problem might be nonunique or hard to
find, one can differentiate a local solution map to a smooth nonconvex optimization problem
by implicitly differentiating the KKT conditions [50]. This is done in [6], where the authors
define an MPC-based NCOCP.
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[23] D. Bertsekas, V. Borkar, and A. Nedić. Improved temporal difference methods with
linear function approximation. Learning and Approximate Dynamic Programming, pages
231–255, 2004.

[24] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic Programming, volume 5. Athena Scien-
tific, 1996.

[25] L. Blackmore. Autonomous precision landing of space rockets. The BRIDGE, 26(4),
2016.

[26] J. Boot. On sensitivity analysis in convex quadratic programming problems. Operations
Research, 11(5):771–786, 1963.

[27] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid
Systems. Cambridge University Press, 2017.

[28] L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[29] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth. Multi-
period trading via convex optimization. Foundations and Trends R© in Optimization,
3(1):1–76, 2017.

[30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

22



[31] E. Busseti, W. Moursi, and S. Boyd. Solution refinement at regular points of conic
problems. Computational Optimization and Applications, 74:627–643, 2019.

[32] Center for Research in Security Prices. Stock and security files, 2019.

[33] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code generation for embedded second-
order cone programming. In European Control Conference, pages 1547–1552. IEEE,
2013.

[34] W. Cochran. Sampling Techniques. John Wiley & Sons, 2007.

[35] A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimization,
volume 8. SIAM, 2009.

[36] M. Corless and G. Leitmann. Controller design for uncertain systems via Lyapunov
functions. In American Control Conference, pages 2019–2025. IEEE, 1988.
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