
Learning Convex Optimization Control Policies

Akshay Agrawal? Shane Barratt? Stephen Boyd? Bartolomeo Stellato†1

?Stanford University †MIT/Princeton University

1Alphabetical order.



Convex optimization control policies



Dynamics

I Known dynamical system

xt+1 = f (xt , ut ,wt), t = 0, 1, . . .

I t = 0, 1, . . . is time period

I xt ∈ Rn is state

I ut ∈ Rm is input or action

I wt ∈ W is the (random) disturbance

I f : Rn × Rm ×W → Rn is state transition function



Convex optimization control policy

I Convex optimization control policy (COCP):

φ(x) = argmin
u

f0(x , u; θ)

subject to fi(x , u; θ) ≤ 0, i = 1, . . . , k
gi(x , u; θ) = 0, i = 1, . . . , `

I fi are convex in u and gi are affine in u

I θ ∈ Θ ⊆ Rp are parameters

I e.g.: LQR, ADP, MPC



Judging a COCP

I Consider length-T trajectories

X = (x0, x1, . . . , xT ) ∈ R(T+1)n

U = (u0, u1, . . . , uT−1) ∈ RTm

W = (w0,w1, . . . ,wT−1) ∈ WT

I Judge control policy by average of cost ψ : R(T+1)n × RTm ×WT → R:

J(θ) = Eψ(X ,U ,W )



Examples of COCPs



Dynamic programming policy

I Time-separable cost:

ψ(X ,U ,W ) =
T−1∑
t=0

g(xt , ut ,wt)

I Optimal policy as T →∞ is

φ(x) = argminu E (g(x , u,w) + V (f (x , u,w)))

I V : Rn → R is cost-to-go function

I COCP when f is affine in x and u and g is convex in x and u



Approximate dynamic programming policy

I Replace cost-to-go V with approximate cost-to-go V̂

I ADP policy has the form

φ(x) = argminu E
(
g(x , u,w) + V̂ (f (x , u,w))

)
I This is a COCP when g is convex in u, f is affine in u, and V̂ is convex



Learning method



Controller tuning problem

I Controller tuning problem

minimize J(θ)
subject to θ ∈ Θ

I Nonconvex and difficult to solve exactly

I Possible to use derivative-free methods, but slow



A gradient-based method

I COCP often differentiable in x and θ [ABB+19; Amo19]

I If cost and dynamics differentiable, can compute ∇θJ(θ)

I Use projected gradient method

θk+1 = ΠΘ(θk − αkg k), k = 0, . . . , niter

I g k is stochastic gradient of J(θ), computed through Monte Carlo

I αk is step size

I When COCP non-differentiable, often still get descent direction



Implementation

I CVXPY layers package2 to define COCPs [AAB+19]

I PyTorch for the chain rule

2www.github.com/cvxgrp/cvxpylayers



Numerical examples



Box-constrained LQR
I Dynamics

xt+1 = Axt + But + wt

wt is Gaussian

I Cost

ψ(X ,U ,W ) =

{∑T−1
t=1 xTt Qxt + uT

t Rut + xTT QxT ‖ut‖∞ ≤ umax

+∞ otherwise

I ADP policy

φ(x) = argmin
u

uTRu + ‖θ(Ax + Bu)‖2
2

subject to ‖u‖∞ ≤ umax.

I Compare to LMI-based upper- and lower-bound [WB09]



Box-constrained LQR

0 20 40 60 80 100
iteration

101

11

12

13

14

15
16
17
18

co
st

COCP

upper bound

lower bound



Supply chain

I single-good supply chain over n nodes

I xt = (ht , pt , dt); ht ∈ Rn is quantity held, pt ∈ Rk is supplier price, dt ∈ Rc

is consumer demand

I ut = (bt , st , zt); zt ∈ Rm−k−c is quantity shipped, bt ∈ Rk is quantity
bought, st ∈ Rc is quantity sold

I r ∈ Rc is consumer price



Supply chain
I Dynamics

ht+1 = ht + (Ain − Aout)ut

I A
in(out)
ij is 1 if link j enters (exist) node i and 0 otherwise

I pt+1 and dt+1 are IID log-normal

I Cost:

ψ(X ,U ,W ) =
1

T

T−1∑
t=0

pTt bt − rT st + τT zt + αTht + βTh2
t + I (xt , ut)

From left to right: payment to suppliers, sale revenues, shipment cost,
storage cost, constraints

I Constraints are

0 ≤ ut ≤ umax, 0 ≤ ht ≤ hmax, Aoutut ≤ ht , s ≤ dt



Supply chain

I COCP

φ(ht , pt , dt) = argmin
b,s,z

pTt b − rT s + τT z + ‖Sh+‖2
2 + qTh+

subject to h+ = ht + (Ain − Aout)(b, s, z)
0 ≤ h+ ≤ hmax, 0 ≤ (b, s, z) ≤ umax,
Aout(b, s, z) ≤ ht , s ≤ dt

Parameters S and q



Supply chain

Simulated example with 4 nodes, 4 links, 2 supply links, 2 consumer links

1

2

3

4

1

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

Figure: Normalized shipments (0-1). Left: untrained. Right: trained.



Summary

I Can learn COCPs efficiently w/ gradient descent

I Easy to enforce constraints; hard with neural networks

I Applications to vehicle control and finance in our paper



Learning Convex Optimization Control Policies

Software:

I https://github.com/cvxgrp/cvxpylayers

I https://github.com/cvxgrp/cocp

References:
[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances

in Neural Information Processing Systems. 2019.

[ABB+19] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone program. Journal of Applied and
Numerical Optimization 1.2 (2019), pp. 107–115.

[Amo19] B. Amos. Differentiable optimization-based modeling for machine learning. PhD thesis. Carnegie Mellon University, 2019.

[WB09] Y. Wang and S. Boyd. Performance bounds for linear stochastic control. Systems & Control Letters 58.3 (2009), pp. 178–182.

https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cocp

	References

