Learning Convex Optimization Control Policies

Akshay Agrawal* Shane Barratt* Stephen Boyd* Bartolomeo Stellato $^{\dagger 1}$

*Stanford University [†]MIT/Princeton University

¹Alphabetical order.

Convex optimization control policies

Dynamics

Known dynamical system

$$x_{t+1} = f(x_t, u_t, w_t), \quad t = 0, 1, \ldots$$

- \blacktriangleright $t = 0, 1, \dots$ is time period
- \triangleright $x_t \in \mathbf{R}^n$ is state
- ▶ $u_t \in \mathbf{R}^m$ is input or action
- ▶ $w_t \in W$ is the (random) disturbance
- $f: \mathbf{R}^n \times \mathbf{R}^m \times \mathcal{W} \to \mathbf{R}^n$ is state transition function

Convex optimization control policy

Convex optimization control policy (COCP):

$$\begin{array}{lll} \phi(x) &=& \displaystyle \mathop{\rm argmin}\limits_{u} & f_0(x,u;\theta) \\ & {\rm subject \ to} & f_i(x,u;\theta) \leq 0, \quad i=1,\ldots,k \\ & g_i(x,u;\theta) = 0, \quad i=1,\ldots,\ell \end{array}$$

- f_i are convex in u and g_i are affine in u
- ▶ $\theta \in \Theta \subseteq \mathbf{R}^{p}$ are parameters
- ▶ *e.g.*: LQR, ADP, MPC

Judging a COCP

Consider length-T trajectories

$$\begin{array}{lll} X & = & (x_0, x_1, \dots, x_T) \in \mathbf{R}^{(T+1)n} \\ U & = & (u_0, u_1, \dots, u_{T-1}) \in \mathbf{R}^{Tm} \\ W & = & (w_0, w_1, \dots, w_{T-1}) \in \mathcal{W}^T \end{array}$$

▶ Judge control policy by average of cost $\psi : \mathbf{R}^{(T+1)n} \times \mathbf{R}^{Tm} \times \mathcal{W}^T \to \mathbf{R}$:

$$J(\theta) = \mathbf{E}\,\psi(X, U, W)$$

Examples of COCPs

Dynamic programming policy

► Time-separable cost:

$$\psi(X, U, W) = \sum_{t=0}^{T-1} g(x_t, u_t, w_t)$$

• Optimal policy as
$$T \to \infty$$
 is

$$\phi(x) = \operatorname{argmin}_{u} \mathsf{E} \left(g(x, u, w) + V(f(x, u, w)) \right)$$

•
$$V : \mathbf{R}^n \to \mathbf{R}$$
 is cost-to-go function

COCP when f is affine in x and u and g is convex in x and u

Approximate dynamic programming policy

- ▶ Replace cost-to-go V with approximate cost-to-go \hat{V}
- ADP policy has the form

$$\phi(x) = \operatorname{argmin}_{u} \mathbf{E}\left(g(x, u, w) + \hat{V}(f(x, u, w))\right)$$

▶ This is a COCP when g is convex in u, f is affine in u, and \hat{V} is convex

Learning method

Controller tuning problem

 $\begin{array}{ll} \text{minimize} & J(\theta) \\ \text{subject to} & \theta \in \Theta \end{array}$

- Nonconvex and difficult to solve exactly
- Possible to use derivative-free methods, but slow

A gradient-based method

- COCP often differentiable in x and θ [ABB⁺19; Amo19]
- ▶ If cost and dynamics differentiable, can compute $\nabla_{\theta} J(\theta)$
- Use projected gradient method

$$\theta^{k+1} = \Pi_{\Theta}(\theta^k - \alpha^k g^k), \quad k = 0, \dots, n_{\text{iter}}$$

- g^k is stochastic gradient of J(θ), computed through Monte Carlo
 α^k is step size
- ▶ When COCP non-differentiable, often still get descent direction

Implementation

CVXPY layers package² to define COCPs [AAB⁺19]

PyTorch for the chain rule

 $^{^2} www.github.com/cvxgrp/cvxpylayers$

Numerical examples

Box-constrained LQR

• Dynamics $x_{t+1} = Ax_t + Bu_t + w_t$ w_t is Gaussian

Cost

$$\psi(X, U, W) = \begin{cases} \sum_{t=1}^{T-1} x_t^T Q x_t + u_t^T R u_t + x_T^T Q x_T & \|u_t\|_{\infty} \le u_{\max} \\ +\infty & \text{otherwise} \end{cases}$$

$$egin{array}{rcl} \phi(x) &=& rgmin & u^{T}Ru + \| heta(Ax+Bu)\|_{2}^{2} \ & ext{subject to} & \|u\|_{\infty} \leq u_{ ext{max}}. \end{array}$$

Compare to LMI-based upper- and lower-bound [WB09]

Box-constrained LQR

- single-good supply chain over n nodes
- ▶ $x_t = (h_t, p_t, d_t)$; $h_t \in \mathbb{R}^n$ is quantity held, $p_t \in \mathbb{R}^k$ is supplier price, $d_t \in \mathbb{R}^c$ is consumer demand
- ▶ $u_t = (b_t, s_t, z_t)$; $z_t \in \mathbf{R}^{m-k-c}$ is quantity shipped, $b_t \in \mathbf{R}^k$ is quantity bought, $s_t \in \mathbf{R}^c$ is quantity sold
- ▶ $r \in \mathbf{R}^c$ is consumer price

$$h_{t+1} = h_t + (A^{\rm in} - A^{\rm out})u_t$$

A^{in(out)}_{ij} is 1 if link j enters (exist) node i and 0 otherwise
 p_{t+1} and d_{t+1} are IID log-normal
 Cost:

$$\psi(X, U, W) = \frac{1}{T} \sum_{t=0}^{T-1} p_t^T b_t - r^T s_t + \tau^T z_t + \alpha^T h_t + \beta^T h_t^2 + I(x_t, u_t)$$

From left to right: payment to suppliers, sale revenues, shipment cost, storage cost, constraints

Constraints are

$$0 \leq u_t \leq u_{\max}, \quad 0 \leq h_t \leq h^{\max}, \quad A^{out}u_t \leq h_t, \quad s \leq d_t$$

 $\begin{array}{lll} \bullet \text{ COCP} \\ \phi(h_t, p_t, d_t) &= \underset{b, s, z}{\operatorname{argmin}} & p_t^T b - r^T s + \tau^T z + \|Sh^+\|_2^2 + q^T h^+ \\ & \text{subject to} & h^+ = h_t + (A^{\operatorname{in}} - A^{\operatorname{out}})(b, s, z) \\ & 0 \leq h^+ \leq h_{\max}, \quad 0 \leq (b, s, z) \leq u_{\max}, \\ & A^{\operatorname{out}}(b, s, z) \leq h_t, \quad s \leq d_t \end{array}$

Parameters S and q

Simulated example with 4 nodes, 4 links, 2 supply links, 2 consumer links

Figure: Normalized shipments (0-1). Left: untrained. Right: trained.

Summary

- ► Can learn COCPs efficiently w/ gradient descent
- Easy to enforce constraints; hard with neural networks
- Applications to vehicle control and finance in our paper

Learning Convex Optimization Control Policies

Software:

- https://github.com/cvxgrp/cvxpylayers
- https://github.com/cvxgrp/cocp

References:

[AAB ⁺ 19]	A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances in Neural Information Processing Systems. 2019.
[ABB ⁺ 19]	A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone program. Journal of Applied and Numerical Optimization 1.2 (2019), pp. 107–115.
[Amo19]	B. Amos. Differentiable optimization-based modeling for machine learning. PhD thesis. Carnegie Mellon University, 2019.
[WB09]	Y. Wang and S. Boyd. Performance bounds for linear stochastic control. Systems & Control Letters 58.3 (2009), pp. 178-182.