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Abstract. The problem of estimating underlying trends in time series data arises in a variety of disci-
plines. In this paper we propose a variation on Hodrick–Prescott (H-P) filtering, a widely
used method for trend estimation. The proposed !1 trend filtering method substitutes
a sum of absolute values (i.e., !1 norm) for the sum of squares used in H-P filtering to
penalize variations in the estimated trend. The !1 trend filtering method produces trend
estimates that are piecewise linear, and therefore it is well suited to analyzing time series
with an underlying piecewise linear trend. The kinks, knots, or changes in slope of the
estimated trend can be interpreted as abrupt changes or events in the underlying dynam-
ics of the time series. Using specialized interior-point methods, !1 trend filtering can be
carried out with not much more effort than H-P filtering; in particular, the number of
arithmetic operations required grows linearly with the number of data points. We describe
the method and some of its basic properties and give some illustrative examples. We show
how the method is related to !1 regularization-based methods in sparse signal recovery and
feature selection, and we list some extensions of the basic method.
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1. Introduction.

1.1. Trend Filtering. We are given a scalar time series yt, t = 1, . . . , n, assumed
to consist of an underlying slowly varying trend xt and a more rapidly varying random
component zt. Our goal is to estimate the trend component xt or, equivalently, esti-
mate the random component zt = yt − xt. This can be considered as an optimization
problem with two competing objectives: We want xt to be smooth, and we want zt

(our estimate of the random component, sometimes called the residual) to be small.
In some contexts, estimating xt is called smoothing or filtering.

Trend filtering comes up in several applications and settings including macroeco-
nomics (e.g., [52, 86]), geophysics (e.g., [1, 8, 9]), financial time series analysis (e.g.,
[97]), social sciences (e.g., [66]), revenue management (e.g., [91]), and biological and
medical sciences (e.g., [43, 68]). Many trend filtering methods have been proposed,
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including Hodrick–Prescott (H-P) filtering [52, 64], moving average filtering [75], expo-
nential smoothing [70], bandpass filtering [21, 4], smoothing splines [81], de-trending
via rational square-wave filters [79], a jump process approach [106], median filtering
[101], a linear programming (LP) approach with fixed kink points [72], and wavelet
transform analysis [23]. (All these methods except for the jump process approach, the
LP approach, and median filtering are linear filtering methods; see [4] for a survey
of linear filtering methods in trend estimation.) The most widely used methods are
moving average filtering, exponential smoothing, and H-P filtering, which is especially
popular in economics and related disciplines due to its application to business cycle
theory [52]. The idea behind H-P filtering can be found in several fields and can be
traced back at least to work in 1961 by Leser [64] in statistics.

1.2. !1 Trend Filtering. In this paper we propose !1 trend filtering, a variation
on H-P filtering which substitutes a sum of absolute values (i.e., an !1 norm) for the
sum of squares used in H-P filtering to penalize variations in the estimated trend.
(The term “filtering” is used in analogy with “H-P filtering.” Like H-P filtering, !1
trend filtering is a batch method for estimating the trend component from the whole
history of observations.)

We will see that the proposed !1 trend filter method shares many properties with
the H-P filter and has the same (linear) computational complexity. The principal
difference is that the !1 trend filter produces trend estimates that are smooth in the
sense of being piecewise linear. The !1 trend filter is thus well suited to analyzing
time series with an underlying piecewise linear trend. The kinks, knots, or changes
in slope of the estimated trend can be interpreted as abrupt changes or events in
the underlying dynamics of the time series; the !1 trend filter can be interpreted
as detecting or estimating changes in an underlying linear trend. Using specialized
interior-point methods, !1 trend filtering can be carried out with not much more effort
than H-P filtering; in particular, the number of arithmetic operations required grows
linearly with the number of data points.

1.3. Outline. In the next section we set up our notation and give a brief summary
of H-P filtering, listing some properties for later comparison with our proposed !1
trend filter. The !1 trend filter is described in section 3 and compared to the H-P
filter. We give some illustrative examples in section 4.

In section 5 we give the optimality condition for the underlying optimization
problem that defines the !1 trend filter, and we use it to derive some of the properties
given in section 3. We also derive a Lagrange dual problem that is interesting on its
own and is also used in a primal-dual interior-point method we describe in section 6.
We list a number of extensions of the basic idea in section 7.

2. Hodrick–Prescott Filtering. In H-P filtering, the trend estimate xt is chosen
to minimize the weighted sum objective function

(1) (1/2)
n

∑

t=1

(yt − xt)2 + λ
n−1
∑

t=2

(xt−1 − 2xt + xt+1)2,

where λ ≥ 0 is the regularization parameter used to control the trade-off between
smoothness of xt and the size of the residual yt − xt. The first term in the objective
function measures the size of the residual; the second term measures the smoothness
of the estimated trend. The argument appearing in the second term, xt−1−2xt+xt+1,
is the second difference of the time series at time t; it is zero when and only when the
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three points xt−1, xt, xt+1 are on a line. The second term in the objective is zero if
and only if xt is affine, i.e., has the form xt = α + βt for some constants α and β.
(In other words, the graph of xt is a straight line.) The weighted sum objective (1)
is strictly convex and coercive in x, and so has a unique minimizer, which we denote
xhp.

We can write the objective (1) as

(1/2)‖y − x‖2
2 + λ‖Dx‖2

2,

where x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn, ‖u‖2 = (
∑

i u2
i )1/2 is the

Euclidean or !2 norm, and D ∈ R(n−2)×n is the second-order difference matrix

(2) D =















1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2 1















.

(D is Toeplitz with first row [ 1 −2 1 0 · · · 0 ]; entries not shown above are zero.)
The H-P trend estimate is

(3) xhp = (I + 2λDT D)−1y.

H-P filtering is supported in several standard software packages for statistical data
analysis, e.g., SAS, R, and Stata.

We list some basic properties of H-P filtering, which we refer to later when we
compare it to our proposed trend estimation method.

• Linear computational complexity. The H-P estimated trend xhp in (3) can be
computed in O(n) arithmetic operations, since D is tridiagonal.

• Linearity. From (3) we see that the H-P estimated trend xhp is a linear
function of the time series data y.

• Convergence to original data as λ → 0. The relative fitting error satisfies the
inequality

(4)
‖y − xhp‖2

‖y‖2
≤ 32λ

1 + 32λ
.

This shows that as the regularization parameter λ decreases to zero, xhp

converges to the original time series data y.
• Convergence to best affine fit as λ → ∞. As λ → ∞, the H-P estimated trend

converges to the best affine (straight-line) fit to the time series data,

xba = αba + βbat,

with intercept and slope

αba =
∑n

t=1 t2
∑n

t=1 yt −
∑n

t=1 t
∑n

t=1 tyt

n
∑n

t=1 t2 − (
∑n

t=1 t)2
,

βba =
n

∑n
t=1 tyt −

∑n
t=1 t

∑n
t=1 yt

n
∑n

t=1 t2 − (
∑n

t=1 t)2
.
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• Commutability with affine adjustment. We can change the order of H-P filter-
ing and affine adjustment of the original time series data, without affect: For
any α and β, the H-P trend estimate of the time series data ỹt = yt−α−βt is
x̃hp

t = xhp
t −α− βt. (A special case of linear adjustment is linear detrending,

with α = αba, β = βba, which corresponds to subtracting the best affine fit
from the original data.)

• Regularization path. The H-P trend estimate xhp is a smooth function of the
regularization parameter λ, as it varies over [0,∞). As λ decreases to zero,
xhp converges to the original data y; as λ increases, xhp becomes smoother,
and converges to xba, the best affine fit to the time series data.

We can derive the relative fitting error inequality (4) as follows. From the opti-
mality condition y − xhp = λDT Dxhp we obtain

y − xhp = 2λDT D(I + 2λDT D)−1y.

The spectral norm of D is no more than 4:

‖Dx‖2 = ‖x1:n−2 − 2x2:n−1 + x3:n‖2 ≤ ‖x1:n−2‖2 + 2‖x2:n−1‖2 + ‖x3:n‖2 ≤ 4‖x‖2,

where xi:j = (xi, . . . , xj). The eigenvalues of DT D lie between 0 and 16, so the
eigenvalues of 2λDT D(I + 2λDT D)−1 lie between 0 and 32λ/(1 + 32λ). It follows
that

‖y − xhp‖2 ≤ (32λ/(1 + 32λ))‖y‖2.

3. !1 Trend Filtering. We propose the following variation on H-P filtering, which
we call !1 trend filtering. We choose the trend estimate as the minimizer of the
weighted sum objective function

(5) (1/2)
n

∑

t=1

(yt − xt)2 + λ
n−1
∑

t=2

|xt−1 − 2xt + xt+1|,

which can be written in matrix form as

(1/2)‖y − x‖2
2 + λ‖Dx‖1,

where ‖u‖1 =
∑

i |ui| denotes the !1 norm of the vector u. As in H-P filtering, λ is
a nonnegative parameter used to control the trade-off between smoothness of x and
size of the residual. The weighted sum objective (1) is strictly convex and coercive in
x and so has a unique minimizer, which we denote xlt. (The superscript “lt” stands
for “!1 trend.”)

We list some basic properties of !1 trend filtering, pointing out similarities and
differences with H-P filtering.

• Linear computational complexity. There is no analytic formula or expression
for xlt, analogous to (3). But like xhp, xlt can be computed numerically in
O(n) arithmetic operations. (We describe an efficient method for computing
xlt in section 6. Its worst-case complexity is O(n1.5), but practically its
computational effort is linear in n.)

• Nonlinearity. The !1 trend estimate xlt is not a linear function of the original
data y. (In contrast, xhp is a linear function of y.)
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• Convergence to original data as λ → 0. The maximum fitting error satisfies
the bound

(6) ‖y − xlt‖∞ ≤ 4λ,

where ‖u‖∞ = maxi |ui| denotes the !∞ norm of the vector u. (Cf. the
analogous bound for H-P trend estimation, given in (4).) This implies that
xlt → y as λ → 0.

• Finite convergence to best affine fit as λ → ∞. As in H-P filtering, xlt → xba

as λ → ∞. For !1 trend estimation, however, the convergence occurs for a
finite value of λ,

(7) λmax = ‖(DDT )−1Dy‖∞.

For λ ≥ λmax, we have xlt = xba. (In contrast, xhp → xba only in the
limit as λ → ∞.) This maximum value λmax is readily computed with O(n)
arithmetic steps. (The derivation is given in section 5.1.)

• Commutability with affine adjustment. As in H-P filtering, we can swap the
order of affine adjustment and trend filtering, without affect.

• Piecewise-linear regularization path. The !1 trend estimate xlt is a piecewise-
linear function of the regularization parameter λ, as it varies over [0,∞):
There are values λ1, . . . ,λk, with 0 = λk < · · · < λ1 = λmax, for which

xlt =
λi − λ

λi − λi+1
x(i+1) +

λ− λi+1

λi − λi+1
x(i), λi+1 ≤ λ ≤ λi, i = 1, . . . , k − 1,

where x(i) is xlt with λ = λi. (So x(1) = xba, x(k) = y.)
• Linear extension property. Let x̃lt denote the !1 trend estimate for (y1, . . . , yn+1).

There is an interval [l, u], with l < u, for which

x̃lt = (xlt, 2xlt
n − xlt

n−1),

provided yn+1 ∈ [u, l]. In other words, if the new observation is inside an
interval, the !1 trend estimate linearly extends the last affine segment.

3.1. Piecewise Linearity. The basic reason the !1 trend estimate xlt might be
preferred over the H-P trend estimate xhp is that it is piecewise linear in t: There are
(integer) times 1 = t1 < t2 < · · · < tp−1 < tp = n for which

(8) xlt
t = αk + βkt, tk ≤ t ≤ tk+1, k = 1, . . . , p − 1.

In other words, over each (integer) interval [ti, ti+1], xlt is an affine function of t. We
can interpret αk and βk as the local intercept and slope in the kth interval. These
local trend parameters are not independent: they must give consistent values for xlt

at the join or kink points, i.e.,

αk + βktk+1 = αk+1 + βk+1tk+1, k = 1, . . . , p − 1.

The points t2, . . . , tp−1 are called kink points. We say that xlt is piecewise linear with
p− 2 kink points. (The kink point tk can be eliminated if αk = αk−1, so we generally
assume that αk (= αk−1.)

In one extreme case, we have p = 2, which corresponds to no kink points. In this
case t1 = 1, t2 = n, and xlt = xba is affine. In the other extreme case, there is a kink
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at every time point: we have ti = i, i = 1, . . . , p = n. In this case the piecewise linear
form (8) is vacuous; it imposes no constraints on xlt. This corresponds to λ = 0, and
xlt = y.

The kink points correspond to changes in slope of the estimated trend and can
be interpreted as abrupt changes or events in the underlying dynamics of the time
series. The number of kinks in xlt typically decreases as the regularization parameter
increases, but counterexamples show this need not happen.

Piecewise linearity of the trend estimate is not surprising: It is well known when
an !1 norm term is added to an objective to be minimized, or constrained, the so-
lution typically has the argument of the !1 norm term sparse (i.e., with many zero
elements). In this context, we would predict that Dx (the second-order difference of
the estimated trend) will have many zero elements, which means that the estimated
trend is piecewise linear.

The general idea of !1 regularization for the purposes of sparse signal recov-
ery or feature selection has been used in geophysics since the early 1970s; see, e.g.,
[22, 67, 92]. In signal processing, the idea of !1 regularization comes up in several
contexts, including basis pursuit (denoising) [19, 20], image decomposition [31, 88],
signal recovery from incomplete measurements [17, 16, 26, 27, 96], sensor selection
[55], fault identification [108], and wavelet thresholding [28]. In statistics, the idea
of !1 regularization is used in the well-known Lasso algorithm [93] for !1-regularized
linear regression, its extensions such as the fused Lasso [94], the elastic net [107], the
group Lasso [105], and the monotone Lasso [51], and !1-regularized logistic regression
[61, 62, 77]. The idea of !1 regularization has been used in other contexts, including
portfolio optimization [69], control design [48], computer-aided design of integrated
circuits [13], decoding of linear codes [15], and machine learning (sparse principal
component analysis [25] and graphical model selection [2, 24, 99]).

We note that !1 trend filtering is related to segmented regression, a statistical
regression method in which the variables are segmented into groups and regression
analysis is performed on each segment. Segmented regression arises in a variety of
contexts, including abrupt change detection and time series segmentation (especially
as a preprocessing step for mining time series databases); the reader is referred to a
survey [57] and the references therein. There are two types of time series segmentation.
One does not require the fits for two consecutive segments to have consistent values
at their join point; see, e.g., [71, 63, 87, 80, 102]. The other requires the fits for two
consecutive segments to be consistent at their join point, which is often called join-
point regression; see, e.g., [32, 35, 36, 58, 89, 104]. We can think of !1 trend filtering
as producing a segmented linear regression, with an affine fit on each segment, and
with consistent values at the join points. In !1 trend filtering, the segmentation and
the affine fit on each segment are found by solving one optimization problem.

In time series segmentation, we can use the principle of dynamic programming
(DP) to find the best fit that minimizes the fitting error among all functions that
consist of k affine segments, with or without the requirement of consistency at the join
points. In an early paper [5, 6], Bellman showed how DP can be used for segmented
linear regression without the requirement of consistency at the join points. The DP
argument can find the best fit in O(n2k) arithmetic operations [44]. The DP algorithm
with the consistency requirement at the join points is, however, far more involved than
in the case when it is absent. As a heuristic, !1 trend filtering produces a segmented
linear regression in O(n) arithmetic operations. Another heuristic based on grid search
is described in [58], and an implementation, called the Joinpoint Regression Program,
is available from http://srab.cancer.gov/joinpoint/.
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3.2. !1 Trend Filtering and Sparse Approximation. To see the connection be-
tween !1 trend filtering and !1 regularization-based sparse approximation more clearly,
we note that the !1 trend filtering problem is equivalent to the !1-regularized least
squares problem:

(9) minimize (1/2)‖Aθ − y‖2
2 + λ

n
∑

i=3

|θi|,

where θ = (θ1, . . . , θn) ∈ Rn is the variable and A is the lower triangular matrix

A =





















1
1 1
1 2 1

1 3 2
. . .

...
...

...
. . . 1

1 n − 1 n − 2 · · · 2 1





















∈ Rn×n.

The solution θlt to this problem and the !1 trend estimate are related by

(10) xlt = Aθlt.

We can give a simple interpretation of the coefficients: θlt
1 is the offset (θlt

1 = xlt
1 ),

θlt
2 is the (right) first-order difference at xlt

1 (θlt
2 = xlt

2 − xlt
1 ), and for t ≥ 3, θlt

t is
the second-order difference of x at t − 1 (θlt

t = (Dxlt)t−2). This interpretation shows
again the equivalence between the !1 trend filtering problem and the !1-regularized
least squares problem (9). (This interpretation also shows that !1 trend filtering is
a special type of basis pursuit denoising [20] and is related to multivariate adaptive
regression splines (MARS) [37, 49, 50] that use truncated linear functions as basis
functions.)

From a standard result in !1-regularized least squares [30, 83], the solution θlt

to (9) is a piecewise-linear function of the regularization parameter λ, as it varies
over [0,∞). From (10), we can see that the regularization path of !1 trend filtering is
piecewise linear.

4. Illustrative Examples. Our first example uses synthetic data, generated as

yt = xt + zt, t = 1, . . . , n, xt+1 = xt + vt, t = 1, . . . , n − 1,(11)

with initial condition x1 = 0. Here xt is the “true” underlying trend, zt is the irregular
component or noise, and vt is the trend slope. The noises zt are IID N (0,σ2). The
trend slopes vt are chosen from a simple Markov process (independent of z). With
probability p, we have vt+1 = vt, i.e., no slope change in the underlying trend. (Thus,
the mean time between slope changes is 1/(1−p).) With probability 1−p, we choose
vt+1 from a uniform distribution on [−b, b]. We choose the initial slope v1 from a
uniform distribution on [−b, b]. The change in xt between two successive changes in
slope is given by the product of two independent random variables: the time between
changes (which is geometrically distributed with mean 1/(1−p)) and the slope (which
is uniform over [−b, b]). It has zero mean and variance (1 + p)(1 − p)−2b2/3. The
standard deviation of the change in xt between successive changes in slope is thus
√

(1 + p)/3(b/(1 − p)).
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For our example, we use the parameter values

n = 1000, p = 0.99, σ = 20, b = 0.5.

Thus, the mean time between slope changes is 100, and the standard deviation of the
change in xt between slope changes is 40.7. The particular sample we generated had
8 changes in slope.

The !1 trend estimates were computed using two solvers: cvx [42], a MATLAB-
based modeling system for convex optimization (which calls SDPT3 [95] or SeDuMi
[90], a MATLAB-based solver for convex problems), and a C implementation of the
specialized primal-dual interior-point method described in section 6. The run times
on a 3GHz Pentium IV were around a few seconds and 0.01 seconds, respectively.

The results are shown in Figure 1. The top left plot shows the true trend xt, and
the top right plot shows the noise corrupted time series yt. In the middle left plot,
we show xlt for λ = 35000, which results in 4 kink points in the estimated trend.
The middle right plot shows the H-P trend estimate with λ adjusted to give the same
fitting error as xlt, i.e., ‖y− xlt‖2 = ‖y− xhp‖2. Even though xlt is not a particularly
good estimate of xt, it has identified some of the slope change points fairly well. The
bottom left plot shows xlt for λ = 5000, which yields 7 kink points in xlt. The bottom
right plot shows xhp, with the same fitting error. In this case the estimate of the
underlying trend is quite good. Note that the trend estimation error for xlt is better
than xhp, especially around the kink points.

Our next example uses real data, 2000 consecutive daily closing values of the
S&P 500 Index, from March 25, 1999, to March 9, 2007, after logarithmic transform.
The data are shown in the top plot of Figure 2. In the middle plot, we show xlt for
λ = 100, which results in 8 kink points in the estimated trend. The bottom plot
shows the H-P trend estimate with the same fitting error.

In this example (in contrast to the previous one) we cannot say that the !1 trend
estimate is better than the H-P trend estimate. Each of the two trend estimates is a
smoothed version of the original data; by construction, they have the same !2 fitting
error. If for some reason you believe that the (log of the) S&P 500 Index is driven by
an underlying trend that is piecewise linear, you might prefer the !1 trend estimate
over the H-P trend estimate.

5. Optimality Condition and Dual Problem.

5.1. Optimality Condition. The objective function (5) of the !1 trend filtering
problem is convex but not differentiable, so we use a first-order optimality condition
based on subdifferential calculus. We obtain the following necessary and sufficient
condition for x to minimize (5): there exists ν ∈ Rn such that

(12) y − x = DT ν, νt ∈







{+λ}, (Dx)t > 0,
{−λ}, (Dx)t < 0,
[−λ,λ], (Dx)t = 0,

t = 1, . . . , n − 2.

(Here, we use the chain rule for subdifferentials: If f is convex, then the subdifferential
of h(x) = f(Ax + b) is given by ∂h(x) = AT∂f(Ax + b). See, e.g., [7, Prop. B.24]
or [10, Chap. 2] for more on subdifferential calculus.) Since DDT is invertible, the
optimality condition (12) can be written as

(

(DDT )−1D(y − x)
)

t
∈







{+λ}, (Dx)t > 0,
{−λ}, (Dx)t < 0,
[−λ, λ], (Dx)t = 0,

t = 1, . . . , n − 2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

!1 TREND FILTERING 347
x

0 200 400 600 800 1000

−120

−80

−40

0

40

0 200 400 600 800 1000

−120

−80

−40

0

40

y

0 200 400 600 800 1000

−120

−80

−40

0

40

x
lt

0 200 400 600 800 1000

−120

−80

−40

0

40

x
h
p

0 200 400 600 800 1000

−120

−80

−40

0

40

x
lt

t 0 200 400 600 800 1000

−120

−80

−40

0

40

x
h
p

t

Fig. 1 Trend estimation on synthetic data. Top left: The true trend xt. Top right: Observed time
series data yt. Middle left: !1 trend estimate xlt with four total kinks (λ = 35000). Middle
right: H-P trend estimate xhp with same fitting error. Bottom left: xlt with seven total kinks
(λ = 5000). Bottom right: H-P trend estimate xhp with same fitting error.

The maximum fitting error bound in (6) follows from the optimality condition
above. For any ν ∈ Rn−2 with νt ∈ [−λ,λ],

−4λ ≤ (DT ν)t ≤ 4λ, t = 1, . . . , n.

It follows from (12) that the minimizer x of (5) satisfies

−4λ ≤ xt − yt ≤ 4λ, t = 1, . . . , n.
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Fig. 2 Trend estimation results for the S&P 500 Index for the period of March 25, 1999, to March
9, 2007. Top: Original data. Middle: !1 trend estimate xlt for λ = 100. Bottom: H-P trend
estimate xhp with same fitting error.

We can now derive the formula (7) for λmax. Since xba is affine, Dxba = 0,
so the condition that xba is optimal is that

(

(DDT )−1D(y − xba)
)

t
∈ [−λ,λ] for

t = 1, . . . , n − 2, i.e.,

‖(DDT )−1D(y − xba)‖∞ = ‖(DDT )−1Dy‖∞ ≤ λ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

!1 TREND FILTERING 349

We can use the optimality condition (12) to see whether the linear extension
property holds for a new observation yn+1. From the optimality condition (12), we
can see that if yn+1 satisfies

∥

∥

∥

∥

(DDT )−1D

([

y
yn+1

]

−
[

xlt

2xlt
n − xlt

n−1

])
∥

∥

∥

∥

∞
≤ λ,

where D ∈ R(n−1)×(n+1) is the second-order difference matrix on Rn+1, then the
!1 trend estimate for (y, yn+1) is given by (xlt, 2xlt

n − xlt
n−1) ∈ Rn+1. From this

inequality, we can easily find the bounds l and u such that if l ≤ yn+1 ≤ u, then the
linear extension property holds.

5.2. Dual Problem. To derive a Lagrange dual of the primal problem of min-
imizing (5), we first introduce a new variable z ∈ Rn−2, as well as a new equality
constraint z = Dx, to obtain the equivalent formulation

minimize (1/2)‖y − x‖2
2 + λ‖z‖1

subject to z = Dx.

Associating a dual variable ν ∈ Rn−2 with the equality constraint, the Lagrangian is

L(x, z, ν) = (1/2)‖y − x‖2
2 + λ‖z‖1 + νT (Dx − z).

The dual function is

inf
x,z

L(x, z, ν) =
{

−(1/2)νT DDT ν + yT DT ν, −λ1 ≤ ν ≤ λ1,
−∞ otherwise.

The dual problem is

(13) minimize g(ν) = (1/2)νT DDT ν − yT DT ν
subject to −λ1 ≤ ν ≤ λ1.

(Here a ≤ b means ai ≤ bi for all i.) The dual problem (13) is a (convex) quadratic
program (QP) with variable ν ∈ Rn−2. We say that ν ∈ Rn−2 is strictly dual feasible
if it satisfies −λ1 < ν < λ1.

From the solution νlt of the dual (13), we can recover the !1 trend estimate via

(14) xlt = y − DT νlt.

6. A Primal-Dual Interior-Point Method. The QP (13) can be solved by stan-
dard convex optimization methods, including general interior-point methods [12, 73,
74, 103] and more specialized methods such as path following [76, 30]. These methods
can exploit the special structure of the problem, i.e., the bandedness of the quadratic
form in the objective, to solve the problem very efficiently. To see how this can be
done, we describe a simple primal-dual method in this section. For more detail on
these (and related) methods, see, e.g., [12, section 11.7] or [103].

The worst-case number of iterations in primal-dual interior-point methods for the
QP (13) is O(n1/2) [73]. In practice, primal-dual interior-point methods solve QPs in
a number of iterations that is just a few tens, almost independent of the problem size
or data. Each iteration is dominated by the cost of computing the search direction,
which, if done correctly for the particular QP (13), is O(n). It follows that the overall
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complexity is O(n), the same as for solving the H-P filtering problem (but with a
larger constant hidden in the O(n) notation).

The search direction is the Newton step for the system of nonlinear equations

(15) rt(ν, µ1, µ2) = 0,

where t > 0 is a parameter and

rt(ν, µ1, µ2) =
[

rdual

rcent

]

=
[

∇g(ν) + D(ν − λ1)T µ1 − D(ν + λ1)T µ2

−µ1(ν − λ1) + µ2(ν + λ1) − (1/t)1

]

(16)

is the residual. (The first component is the dual feasibility residual, and the second
is the centering residual.) Here µ1, µ2 ∈ Rn−2 are (positive) dual variables for the
inequality constraints in (13), and ν is strictly dual feasible. As t → ∞, rt(ν, µ1, µ2) =
0 reduces to the Karush–Kuhn–Tucker (KKT) condition for the QP (13). The basic
idea is to take Newton steps for solving the set of nonlinear equations rt(ν, µ1, µ2) = 0
for a sequence of increasing values of t.

The Newton step is characterized by

rt(ν +∆ν, µ1 +∆µ1, µ1 +∆µ1) ≈ rt(ν, µ1, µ2) + Drt(ν, µ1, µ2)(∆ν,∆µ1,∆µ2) = 0,

where Drt is the derivative (Jacobian) of rt. This can be written as




DDT I −I
I J1 0
−I 0 J2









∆ν
∆µ1

∆µ2



 = −





DDT z − Dy + µ1 − µ2

f1 + (1/t) diag(µ1)−11
f2 + (1/t) diag(µ2)−11



 ,(17)

where

f1 = ν − λ1 ∈ Rn−2,

f2 = −ν − λ1 ∈ Rn−2,

Ji = diag(µi)−1 diag(fi) ∈ R(n−2)×(n−2).

(Here diag(w) is the diagonal matrix with diagonal entries w.) By eliminating
(∆µ1,∆µ2), we obtain the reduced system
(

DDT − J−1
1 J−1

2

)

∆ν = −
(

DDT ν − Dy − (1/t) diag(f1)−11 + (1/t) diag(f2)−11
)

.

The matrix DDT −J−1
1 J−1

2 is banded (with bandwidth 5) so we can solve this reduced
system in O(n) arithmetic operations. The other two components of the search step,
∆µ1 and ∆µ2, can be computed as

∆µ1 = −
(

µ1 + (1/t) diag(f1)−11 + J−1
1 dν

)

,

∆µ2 = −
(

µ2 + (1/t) diag(f2)−11− J−1
2 dν

)

in O(n) arithmetic operations (since the matrices J1 and J2 are diagonal).
A C implementation of a primal-dual interior-point method for !1 trend filtering

is available online from www.stanford.edu/˜boyd/l1 tf. For a typical problem with
n = 10000 data points, it computes xlt in around one second on a 3GHz Pentium IV.
Problems with one million data points require around 100 seconds, consistent with
linear computational complexity in n.

file://localhost/var/folders/QT/QT5hBOzzG6W6KekLEnSsqk+++TI/-Tmp-/WebKitPDFs-OVYqZu/www.stanford.edu/~boyd/l1_tf
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7. Extensions and Variations. The basic !1 trend estimation method described
above can be extended in many ways, some of which we describe here. In each case,
the computation reduces to solving one or a few convex optimization problems, and
so is quite tractable; the interior-point method described above is readily extended to
handle these problems.

7.1. Polishing. One standard trick is to use the basic !1 filtering problem as a
method to identify the kink points in the estimated trend. Once the kinks points
{t1, . . . , tp} are identified, we use a standard least-squares method to fit the data over
all piecewise-linear functions with the given kinks points:

minimize
p−1
∑

k=1

∑

tk≤t≤tk+1

‖y − αk − βkt‖2
2

subject to αk + βktk+1 = αk+1 + βk+1tk+1, k = 1, . . . , p − 2,

where the variables are the local trend parameters αk and βk. This technique is
described (in another context) in, e.g., [12, sect. 6.5].

7.2. Iterative Weighted !1 Heuristic. The basic !1 trend filtering method is
equivalent to

(18) minimize ‖Dx‖1

subject to ‖y − x‖2 ≤ s,

with an appropriate choice of parameter s. In this formulation, we minimize ‖Dx‖1

(our measure of smoothness of the estimated trend) subject to a budget on residual
norm. This problem can be considered a heuristic for the problem of finding the
piecewise-linear trend with the smallest number of kinks, subject to a budget on
residual norm:

minimize card(Dx)
subject to ‖y − x‖2 ≤ s,

where card(z) is the number of nonzero elements in a vector z. Solving this problem
exactly is intractable; all known methods require an exhaustive combinatorial search
over all—or at least very many—possible combinations of kink points.

The standard heuristic for solving this problem is to replace card(Dx) with ‖Dx‖1,
which gives us our basic !1 trend filter, i.e., the solution to (18). This basic method
can be improved by an iterative method that varies the individual weights on the
second-order differences in xt. We start by solving (18). We then define a weight
vector as

wt := 1/(ε+ |(Dx)t|), t = 1, . . . , n − 2,

where ε is a small positive constant. This assigns the largest weight, 1/ε, when
(Dx)t = 0; it assigns large weight when |(Dx)t| is small; and it assigns relatively
small weight when |(Dx)t| is larger. We then recompute xt as the solution of problem

minimize ‖ diag(w)Dx‖1

subject to ‖y − x‖2 ≤ s.

We then update the weights as above and repeat.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

352 SEUNG-JEAN KIM, KWANGMOO KOH, STEPHEN BOYD, AND DIMITRY GORINEVSKY

This iteration typically converges in 10 or fewer steps. It often gives a modest
decrease in the number of kink points card(Dx), for the same residual, compared to
the basic !1 trend estimation method. The idea behind this heuristic has been used
in portfolio optimization with transaction costs [69], where an interpretation of the
heuristic for cardinality minimization is given. The reader is referred to [18] for a
more extensive discussion on the iterative heuristic.

7.3. Convex Constraints and Penalty Functions. We can add convex constraints
on the estimated trend, or use a more general convex penalty function to measure the
residual. In both cases, the resulting trend estimation problem is convex, and there-
fore tractable. We list a few examples here.

Perhaps the simplest constraints are lower and upper bounds on xt, or the first
or second differences of xt, as in

|xt| ≤ M, t = 1, . . . , n, |xt+1 − xt| ≤ S, t = 1, . . . , n − 1.

Here we impose a magnitude limit M , and a maximum slew rate (or slope) S, on the
estimated trend. Another interesting convex constraint that can be imposed on xt is
monotonicity, i.e.,

x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn.

Minimizing (5) subject to this monotonicity constraint is an extension of isotonic
regression, which has been extensively studied in statistics [3, 82]. (Related work on
!1-regularized isotonic regression, in an engineering context, includes [40, 41].)

We can also replace the square function used to penalize the residual term yt−xt

with a more general convex function ψ. Thus, we compute our trend estimate xt as
the minimizer of (the convex function)

n
∑

t=1

ψ(yt − xt) + λ‖Dx‖1.

For example, using ψ(u) = |u|, we assign a smaller penalty (compared to ψ(u) =
(1/2)u2) to large residuals, but a larger penalty to small residuals. This results in
a trend estimation method that is more robust to outliers than the basic !1 trend
method since it allows large occasional errors in the residual. Another example is the
Huber penalty function used in robust least squares, given by

ψhub(u) =
{

u2, |u| ≤ M,
M(2|u|− M), |u| > M,

where M ≥ 0 is a constant [53]. The use of an asymmetric linear penalty function of
the form

ψτ (u) =
{

τu, u > 0,
−(1 − τ)u otherwise,

where τ indicates the quantile of interest, is related to quantile smoothing splines.
(The reader is referred to [59] for more on the use of this penalty function in quantile
regression and [60] for more on quantile smoothing splines.)

In all of these extensions, the resulting convex problem can be solved with a
computational effort that is O(n), since the system of equations that must be solved
at each step of an interior-point method is banded.
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7.4. Multiple Components. We can easily extend basic !1 trend filtering to ana-
lyze time series data that involve other components, e.g., occasional spikes (outliers),
level shifts, seasonal components, cyclic (sinusoidal) components, or other regression
components. The problem of decomposing given time series data into multiple com-
ponents has been a topic of extensive research; see, e.g., [11, 29, 45, 46] and the
references therein. Compared with standard decomposition methods, the extensions
described here are well suited to the case when the underlying trend, once the other
components have been subtracted out, is piecewise linear.

Spikes. Suppose the time series data y has occasional spikes or outliers u in ad-
dition to trend and irregular components. Our prior information on the component
u is that it is sparse. We can extract the underlying trend and the spike signal, by
adding one more regularization term to (5), and minimizing the modified objective

(1/2)‖y − x − u‖2
2 + λ‖Dx‖1 + ρ‖u‖1,

where the variables are x (the trend component) and u (the spike component). Here
the parameter λ ≥ 0 is used to control the smoothness (or number of slope changes)
of the estimated trend, and ρ ≥ 0 is used to control the number of spikes.

Level Shifts. Suppose the time series data y has occasional abrupt level shifts.
Level shifts can be modeled as a piecewise constant component w. To extract the
level shift component w as well as the trend x, we add the scaled total variation of
w, ρ

∑n
t=2 |wt − wt−1|, to the weighted sum (5) and minimize the modified objective

(1/2)‖y − x − w‖2
2 + λ‖Dx‖1 + ρ

n
∑

t=2

|wt − wt−1|,

over x ∈ Rn and w ∈ Rn. Here the parameter λ ≥ 0 is used to control the smoothness
of the estimated trend x, and ρ ≥ 0 is used to control the frequency of level shifts in
w.

Periodic Components. Suppose the time series data y has an additive deterministic
periodic component s with known period p:

st+p = st, t = 1, . . . , n − p.

The periodic component s is called “seasonal” when it models seasonal fluctuations;
removing effects of the seasonal component from y in order to better estimate the trend
component is called seasonal adjustment. (The corresponding decomposition problem
has been studied extensively in the literature; see, e.g., [14, 29, 49, 56, 65, 85].)

Seasonal adjustment is readily incorporated in !1 trend filtering: We simply solve
the (convex) problem

minimize (1/2)‖y − x − s‖2
2 + λ‖Dx‖1

subject to st+p = st, t = 1, . . . , n − p,
p

∑

k=1

sk = 0,

where the variables are x (the estimated trend) and s (the estimated seasonal com-
ponent). The last equality constraint means that the periodic component sums to
zero over the period; without this constraint, the decomposition is not unique [34,
sect. 6.2.8]. To smooth the periodic component, we can add a penalty term to the
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objective, or impose a constraint on the variation of s. As a generalization of this
formulation, the problem of jointly estimating multiple periodic components (with
different periods) as well as a trend can be cast as a convex problem.

When the periodic component is sinusoidal, i.e., st = a sinωt + b cosωt, where ω
is the known frequency, the decomposition problem simplifies to

minimize (1/2)
n

∑

t=1

‖yt − xt − a sinωt − b cosωt‖2
2 + λ‖Dx‖1,

where the variables are x ∈ Rn and a, b ∈ R. (H-P filtering has also been extended
to estimate trend and cyclic components; see, e.g., [39, 47].)

Regression Components. Suppose that the time series data y has autoregressive (AR)
components in addition to the trend x and the irregular component z:

yt = xt + a1yt−1 + · · · + aryt−r + zt,

where ai are model coefficients. (This model is a special type of multiple structural
change time series model [100].) We can estimate the trend component and the AR
model coefficients by solving the !1-regularized least squares problem

minimize (1/2)
n

∑

i=1

(yt − xt − a1yt−1 − · · ·− aryt−r)2 + λ‖Dx‖1,

where the variables are xt ∈ Rn and a = (a1, . . . , ar) ∈ Rr. (We assume that
y1−r, . . . , y0 are given.)

7.5. Vector Time Series. The basic !1 trend estimation method can be gener-
alized to handle vector time series data. Suppose that yt ∈ Rk for t = 1, . . . , n. We
can find our trend estimate xt ∈ Rk, t = 1, . . . , k, as the minimizer of (the convex
function)

n
∑

t=1

‖yt − xt‖2
2 + λ

n−1
∑

t=2

‖xt−1 − 2xt + xt+1‖2,

where λ ≥ 0 is the usual parameter. Here we use the sum of the !2 norms of the second
differences as our measure of smoothness. (If we use the sum of !1 norms, then the
individual components of xt can be estimated separately.) Compared to estimating
trends separately in each time series, this formulation couples together changes in the
slopes of individual entries at the same time index, so the trend component found tends
to show simultaneous trend changes, in all components of xt, at common kink points.
(The idea behind this penalty is used in the group Lasso [105] and in compressed
sensing involving complex quantities and related to total variation in two- or higher-
dimensional data [17, 84].) The common kink points can be interpreted as common
abrupt changes or events in the underlying dynamics of the vector time series.

7.6. Spatial Trend Estimation. Suppose we are given two-dimensional data yi,j ,
on a uniform grid (i, j) ∈ {1, . . . , m} × {1, . . . , n}, assumed to consist of a relatively
slowly varying spatial trend component xi,j and a more rapidly varying component
vi,j . The values of the trend component at node (i, j) and its 4 horizontally or
vertically adjacent nodes are on a linear surface if both the horizontal and vertical
second-order differences, xi−1,j − 2xij + xi+1j and xi,j−1 − 2xi,j + xi,j+1, are zero.
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As in the vector time series case, we minimize a weighted sum of the fitting error
∑m

i=1

∑n
j=1 ‖yi,j − xi,j‖2 and the penalty

m−1
∑

i=2

n−1
∑

j=2

[(xi−1,j − 2xi,j + xi+1,j)2 + (xi,j−1 − 2xi,j + xi,j−1)2]1/2

on slope changes in the horizontal and vertical directions. It is possible to use more
sophisticated measures of the smoothness, for example, determined by a 9-point ap-
proximation that includes 4 diagonally adjacent nodes.

The resulting trend estimates tend to be piecewise linear; i.e., there are regions
over which xt is affine. The boundaries between regions can be interpreted as curves
along which the underlying gradient changes rapidly.

7.7. Continuous-Time Trend Filtering. Suppose that we have noisy measure-
ments (ti, yi), i = 1, . . . , n, of a slowly varying continuous function at irregularly
spaced ti (in increasing order). In this section we consider the problem of estimating
the underlying continuous trend from the finite number of data points. This prob-
lem involves an infinite-dimensional set of functions, unlike the trend filtering prob-
lems considered above. (Related segmented regression problems have been studied in
[38, 54, 63].)

We first consider a penalized least squares problem of the form

(19) minimize (1/2)
n

∑

i=1

(yi − x(ti))2 + λ

∫ tn

t1

(ẍ(t))2 dt

over the space of all functions on the interval [t1, tn] with square integrable second
derivative. Here, λ is a parameter used to control the smoothness of the solution.
The solution is a cubic spline with knots at ti, i.e., a piecewise polynomial of degree 3
on R with continuous first and second derivatives; see, e.g., [33, 50, 98]. H-P filtering
can be viewed as an approximate discretization of this continuous function estimation
problem, when ti are regularly spaced: ti = t1 +(i−1)h for some h > 0. If the second
derivative of x at ti is approximated as

ẍ(ti) ≈
x(ti−1) − 2x(ti) + x(ti+1)

h
, i = 2, . . . , n − 1,

then the objective of the continuous-time problem (19) reduces to the weighted sum
objective (1) of H-P filtering with regularization parameter λ/h.

We next turn to the continuous time !1 trend filtering problem

(20) minimize (1/2)
n

∑

i=1

(yi − x(ti))2 + λ

∫ tn

t1

|ẍ(t)| dt

over

X =
{

x : [t1, tn] → R
∣

∣

∣

∣

x(t) = θ0 + θ1t +
∫ tn

t1

max(t − s, 0) dµ(s), θ0, θ1 ∈ R, V (µ) < ∞
}

,

where V (µ) is the total variation of the measure µ on [t1, tn]. (This function space
includes piecewise linear continuous functions with a finite number of knots; see [78].)
The difference from (19) is that in the integral term the second derivative is penalized
using the absolute value function.
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A standard result in interpolation theory [78] is that the solution of the interpo-
lation problem

minimize
∫ tn

t1

|ẍ(t)| dt

subject to x(ti) = yi, i = 1, . . . , n,

over X is continuous piecewise linear with knots at the points ti. From this, we can
see that the solution to the continuous time !1 trend filtering problem (20) is also
piecewise continuous linear with knots at the points ti; i.e., it is a linear spline. The
second derivative of a piecewise linear function x with knots at the points ti is given
by

ẍ(t) =
n−1
∑

i=2

(

x(ti+1) − x(ti)
ti+1 − ti

− x(ti) − x(ti−1)
ti − ti−1

)

δ(t − ti),

where δ is the Dirac delta function. (The coefficients are slope changes at the kink
points.) The integral of the absolute value of the second derivative is

∫ tn

t1

|ẍ(t)| dt =
n−1
∑

i=2

∣

∣

∣

∣

x(ti+1) − x(ti)
ti+1 − ti

− x(ti) − x(ti−1)
ti − ti−1

∣

∣

∣

∣

.

Thus the continuous !1 filtering problem (20) is equivalent to the (finite-dimensional)
convex problem

(21) minimize (1/2)
n

∑

i=1

(yi − xi)2 + λ
n−1
∑

i=2

∣

∣

∣

∣

xi+1 − xi

ti+1 − ti
− xi − xi−1

ti − ti−1

∣

∣

∣

∣

with variables (x1, . . . , xn) ∈ Rn. From the optimal points (ti, x"
i ), we can easily

recover the solution to the original continuous trend filtering problem: the piecewise-
linear function that connects (ti, x"

i ),

x"(t) =
t − ti

ti+1 − ti
x"

i+1 +
ti+1 − t

ti+1 − ti
x"

i , t ∈ (ti, ti+1),

is the optimal continuous trend that minimizes (20). When ti are regularly spaced,
this problem reduces to the basic !1 trend filtering problem considered in section 3.
For the same reason, we can solve (21) (and hence (20)) in O(n) arithmetic operations.

7.8. Segmented Polynomial Regression. Thus far our focus has been on fitting
a piecewise-linear function to the given data. We can extend the idea to fitting a
piecewise polynomial of degree k−1 to the data. Using a weighted !1 norm of the
kth-order difference of x as a penalty term, the extension can be formulated as

(22) minimize (1/2)
n

∑

i=1

(yi − xi)2 + λ‖D(k,n)x‖1.

Here D(k,n) ∈ R(n−k)×n is the kth-order difference matrix on Rn, defined recursively
as

D(k,n) = D(1,n−k+1)D(k−1,n), k = 2, 3, . . . ,
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where D(1,p) ∈ R(p−1)×p is the first-order difference matrix on Rp,

D(1,p) =















1 −1
1 −1

. . . . . .
1 −1

1 −1















.

(Entries not shown above are zero.) This problem can be efficiently solved with
a computational effort that is O(k2n), since the system of equations that must be
solved at each step of an interior-point method is banded with bandwidth linear in k.

The resulting trend estimate xt tends to be piecewise polynomial of order k −1,
i.e., there are regions over which xt is polynomial of order k −1. The case of k =
1 corresponds to piecewise constant fitting and the case of k = 2 corresponds to
piecewise-linear fitting.
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