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Abstract—We present a method for finding current
waveforms for induction motors that minimize resistive
loss while achieving a desired average torque output.
Our method is not based on reference-frame theory for
electric machines, and therefore directly handles induction
motors with asymmetric winding patterns, nonsinusoidally
distributed windings, and a general winding connection.
We do not explicitly handle torque ripple or voltage
constraints. Our method is based on converting the torque
control problem to a nonconvex linear-quadratic control
problem, which can be solved by using a (tight) semidefinite
programming relaxation.

I. INTRODUCTION

Alternating-current electric motors are traditionally

driven by applying symmetric, multiphase sinusoidal

voltage waveforms to their terminals. However, due

to the wide availability of switching power converters

and microcontrollers for controlling them, it is possible

to drive motors using specialized, nonsinusoidal wave-

forms, allowing us to design the drive voltage waveform

along with the motor.

In this paper, we give a general method for computing

steady-state voltage and current waveforms that produce

a specified average torque from an induction motor while

minimizing resistive loss. (Equivalently, we maximize

the average torque for a specified resistive loss; this

is known as maximum-torque-per-current control.) Our

method is general, and is applicable to induction mo-

tors with nonsinusoidally distributed windings in both

the stator and rotor, such as those arising from con-

centrated stator windings; asymmetric winding layouts,

such as those arising from winding fault conditions or

unconventionally designed motors; a general connection

topology, such as star- or mesh-connected motors; and

reluctance torque caused by changing self-inductance of

the windings with rotor position.

Our method does not apply to motors with a nonlinear

relationship between the winding currents and the mag-

netic flux through these windings; voltage limits imposed

by the converter, such as those arising in high-speed

operation; and rotor shaft speed that changes (signifi-

cantly) over time (this amounts to an assumption of a

“high impedance” mechanical load, i.e., the mechanical

load can absorb the torque ripple without the rotor speed

changing excessively). We also note that our formulation

maximizes the average torque produced and does not

explicitly penalize torque ripple.

The optimal waveform design problem is solved by

converting it to a nonconvex linear-quadratic control

problem, i.e., an optimal control problem with linear dy-

namics, quadratic cost function, and an arbitrary number

of integral-quadratic constraints. Despite nonconvexity

of such problems, we can solve a tight semidefinite

programming relaxation, and we give a simple method

to recover optimal waveforms from a solution to the

relaxed problem. Our numerical solution method scales

gracefully, and can compute optimal waveforms for

motors with dozens of windings (arising, for example, by

considering the individual bars in a squirrel-cage rotor)

in a matter of minutes.

A. Previous work

Maximum torque-per-current control: For multi-

phase induction motors with symmetric, sinusoidally

distributed windings, the maximum-torque-per-current

waveforms are sinusoidal and generate no torque rip-

ple. These waveforms can be found using the Clarke

transformation, which reduces the optimization problem

to a problem with only a few variables (for example,

see [KG83]). Many attempts to generalize these results

to induction motors with asymmetric or nonsinusoidally

distributed windings are based on extensions of this idea,

and typically consider adding only a few higher-order

harmonics, while keeping fundamental frequency fixed.

For some examples of this approach, see the survey paper

[LBP+07].

In the case of permanent-magnet motors, maximum-

torque-per-current waveforms are much simpler to com-

pute, and simple analytical solutions exist when the

terminal voltages are not limited (i.e., for low-speed
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operation), even if this waveform is nonsinusoidal. For

example, if the phases are independently driven, the

optimal current waveforms are proportional to the phase

back-emf waveforms [YWWL04]. In fact, even for the

more complicated case that terminal input voltages are

limited, the maximum torque-per-current waveforms can

be found by convex optimization [MB15].

Nonconvex linear-quadratic control: We reduce the

maximum torque-per-current problem to a nonconvex

linear-quadratic control problem, i.e., a problem of min-

imizing a quadratic cost function over the state and

input of a linear dynamical system, subject to nonconvex

integral-quadratic constraints on the state and input,

Because strong duality holds for such problems, they

can be solved exactly by solving a tight semidefinite

programming relaxation. A quick introduction to these

nonconvex linear-quadratic control can be found in

[BGFB94, §10.6], while a more technical introduction

can be found in [MY00]. Formulations similar to the

one given in the current paper can be found in [Gat06],

[Gat10].

B. Contributions

We give a general method for determining current

and voltage waveforms that maximize the average torque

produced by an induction motor, while minimizing

the resistive losses. Our model assumes magnetic lin-

earity and ignores potential input voltage constraints,

but includes general, nonsinusoidal, asymmetric wind-

ing patterns and general connection topology. To our

knowledge, this is the first time this problem has been

addressed at this level of generality. To the best of our

knowledge, our specific formulation of the nonconvex

linear-quadratic control problem, and the corresponding

solution method, are novel.

C. Outline

In section II, we describe our motor model. In sec-

tion III, we define the maximum torque-per-current op-

timal control problem, and show how it can be con-

verted to a nonconvex linear-quadratic control problem.

In section IV, we give a practical method for solving

the nonconvex linear-quadratic control problem using

semidefinite programming. In section V, we give a

numerical example.

II. INDUCTION MOTOR MODEL

We consider an abstract electromechanical device

with n electrical ports and one mechanical shaft (i.e.,

one rotational mechanical port). The device contains n
magnetically coupled resistive-inductive (RL) circuits,

called windings, with currents i(t) ∈ Rn and voltages

v(t) ∈ Rn. The magnetic flux through the coils is

λ(t) ∈ Rn. The mechanical shaft has angular position

θ(t), angular speed ω(t), and torque τ(t), all of which

are real numbers. Although we focus on devices with

one mechanical coordinate, our model applies to more

general devices (e.g., planar motors) with minor modifi-

cations.

Where convenient, we will use a single dot to denote a

time derivative, and a single prime to denote a derivative

of a function of a single variable. We will often omit

dependence on time for notational convenience.

Torque output: We assume the stored magnetic

energy is path independent and has the form

E(λ, θ) =
1

2
λTL(θ)−1λ

The inductance matrix L(θ) ∈ S++ is assumed to be

periodic, so that L(θ + 2π/Npp) = L(θ). The positive

integer Npp is the pole-pair number, which is the number

of “electrical cycles” per rotation of the mechanical

shaft.

Taking partial derivatives with respect to λ, we recover

the (multivariate) inductor characteristic:

L(θ)i = λ. (1)

Taking a partial derivative of the energy with respect to

θ, and using the inductor characteristic, we obtain the

electromagnetic torque

τ = −
1

2
iTL′(θ)i.

The average torque, starting at t = 0, is

τ̄(i) = lim
T→∞

1

T

∫ T

0

−
1

2
iTL′(θ)i dt. (2)

Circuit dynamics: The voltage drop across the

resistors is Ri, where R ∈ Sn
++ is the winding resistance

matrix. By Faraday’s law, the voltage drop across the

coupled inductors is dλ
dt . Combining this with Kirchoff’s

voltage law, we have

v = Ri+
dλ

dt
.

By evaluating the derivative, and using the inductor char-

acteristic (1), we obtain the circuit dynamics equation

v = Ri+ L(θ)
di

dt
+ ωL′(θ)i. (3)

Average power loss: The average resistive loss in

the windings, starting at t = 0, is

Ploss(i) = lim
τ→∞

1

T

∫ T

0

iTRi dt. (4)
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Winding pattern: In many cases, the winding volt-

ages are controlled only indirectly by manipulating a

vector of input voltages u(t) ∈ Rm, which affect v(t)
according to the connection topology of the device. In

addition, the winding currents may also be constrained

by the circuit topology. We assume that we have

Ci = 0, v = CTe+Du, (5)

where C ∈ Rp×n is the connection topology matrix, and

D ∈ Rm×n is the voltage input matrix, and e(t) ∈ Rp

are floating node voltages. Note that the first equation in

(5) is Kirchoff’s current law for the circuit (see [DK69]

for details).

III. AVERAGE TORQUE PROBLEM

We consider the problem of choosing the winding

voltages to achieve a desired average torque while mini-

mizing the resistive power loss, for a constant rotor shaft

speed.

minimize Ploss(i)
subject to τ̄(i) = τdes,

circuit dynamics (3),

winding pattern (5).

(6)

The problem parameters are the resistance matrix R ∈
Sn
++, the inductance matrix L : R → Sn

++ as a function

of position, the constant rotor speed ω ∈ R, and the

desired torque τdes ∈ R. The variables are the current

waveform i : R+ → Rn, and the voltage waveforms

u : R+ → Rm, v : R+ → Rn, and e : R+ → Rp. Note

that with the rotor shaft speed constant, the shaft position

θ in (2) and (3) can be replaced by ωt, a function of time,

making the dynamics and torque function time varying

and periodic with period 2π/Npp,

In the motor control community, problem (6) is known

as the maximum torque-per-current control problem. We

note that this problem does not address torque ripple.

Conversion to nonconvex linear-quadratic control

problem: Because of the quadratic torque constraint

τ̄(i) = τdes, problem (6) is not convex. However,

because the objective and first constraint of (6) are

integral-quadratic, and the remaining constraints describe

a periodic, linear dynamical system, it is possible to solve

it by transforming it into a nonconvex linear-quadratic

control problem.

To do this, we write i = Fx for some x, where the

columns of F form a basis for the nullspace of C. Then

the dynamics are

ẋ(t) = A(θ)x(t) +B(θ)u(t), (7)

where A(θ) = (FTL(θ)F )−1FT(R + ωL′(θ))F ,

B(θ) = (FTL(θ)F )−1FTD, and the integrands of (2)

and (4) are xTFTL′(θ)Fx and xFTRFx, respectively.

For a constant rotor speed ω, we have θ = ωt, and

system (7) is a periodic, continuous-time linear dy-

namical system. We then discretize this system. The

resulting periodic, discrete-time dynamical system can

be converted into a linear, time-invariant, discrete-time

system. The details of the full problem transformation

are complicated, but standard (for example, see [Hes09]).

We note that the last step, involving conversion from a

periodic linear system into a time-invariant linear system

is not strictly necessary, as an equivalent formulation

of the nonconvex linear-quadratic control problem can

can be given directly for periodic, discrete-time systems.

However, because the time-invariant case is pedagogi-

cally simpler, and we restrict our attention to this case.

IV. NONCONVEX LINEAR-QUADRATIC CONTROL

After discretization, the maximum-torque-per-current

problem (6) can be converted to the following abstract

form:

minimize g0(x, u)
subject to g1(x, u) = γ1

xt+1 = Axt +But, t = 0, 1, . . .
(8)

The variables are x and u, which are (bounded) se-

quences of state and input vectors, so that x =
(x0, x1, . . .) and u = (u0, u1, . . .), where xt ∈ Rn and

ut ∈ Rm. The functions gi are given by

gi(x, u) = lim
T→∞

1

T

T
∑

t=0

[

xt

ut

]T [

Q(i) S(i)

S(i)T R(i)

] [

xt

ut

]

.

The matrix that appears in the sum is not required to

be positive semidefinite, so problem (8) is not convex in

general. For simplicity, we restrict our search to points

for which the limit

lim
T→∞

1

T

T
∑

t=0

[

xt

ut

] [

xt

ut

]T

exists. This guarantees that the limits in the definition of

g0 and g1 exist.

Note that here, the objective corresponds to Ploss,

the first constraint corresponds to the torque constraint

τ̄(i) = τdes, and the final (dynamics) constraint cor-

responds to the circuit dynamics (3) and the winding

constraints (5). Depending on the method used to dis-

cretize the continuous-time dynamics, S(i) and R(i) may

be zero.

We note that much more general versions of (8)

can be formulated and solved using methods similar to

3
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those described below. (For example, we can include

an arbitrary number of integral-quadratic equality or

inequality constraints involving both the state and input;

see [MY00], [Gat06], [Gat10].)

A. Relaxed problem

We consider the following relaxation of (8):

minimize g̃0(X,U, Y )
subject to g̃1(X,U, Y ) = γ1

X =
[

A B
]

[

X Y
Y T U

]

[

A B
]T

[

X Y
Y T U

]

� 0.

(9)

with variables X ∈ Sn, U ∈ Sm, and Y ∈ Rn×m. The

functions g̃i are given by

g̃i(X,U, Y ) = Tr

[

X Y
Y T U

] [

Q(i) S(i)

S(i)T R(i)

]

.

To see that problem (9) is indeed a relaxation of (8),

take a feasible point (x, u) for (8). Then define a point

for (9) as the average second moment of the state-input

vector:
[

X Y
Y T U

]

= lim
T→∞

1

T

T
∑

t=0

[

xt

ut

] [

xt

ut

]T

. (10)

It is straightforward to verify that this new point satisfies

all constraints of (9) and obtains the same objective value

as the original point.

Solution in expectation: Given a solution to (9) with

objective value γ0, it is possible to construct a stationary

random process that solves (8) “in expectation”; that

is, all realizations of the random process satisfy the

dynamics constraint

xt+1 = Axt +But (11)

for all t, and additionally we have

E gi(xt, ut) = γi. (12)

for all i.
The random variables xt and ut are defined induc-

tively: we first take x0 to be a normally distributed zero-

mean random variable with covariance matrix X . Then

for any t, after defining xt, ut is chosen so that (xt, ut)
as normally distributed with zero mean and covariance

matrix

E

[

xt

ut

] [

xt

ut

]T

=

[

X Y
Y T U

]

. (13)

To do this, the conditional distribution of ut given xt is

normal with mean Y TX†xt and covariance U−Y TX†Y .

(Here X† denotes the pseudoinverse of X .) Then xt+1 is

given by the dynamics constraint (11); feasibility of X ,

Y , and U for (9) implies that xt+1 has second moment

matrix X . Because (13) holds, we have

E

[

xt

ut

]T [

Q(i) S(i)

S(i)T R(i)

] [

xt

ut

]

= γi,

for all t, and consequently E gi(x, u) = γi.
The inductive definition of xt and ut can be inter-

preted as forward simulation of the dynamical system

(11) with random initial condition and linear control law

ut = Kxt + wt, (14)

where K = Y TX† and wt is zero-mean, normally dis-

tributed noise with covariance matrix W = U−Y TX†Y
(which is also uncorrelated across time).

Equivalence of the relaxed problem: It can be

shown that the two problems are in fact equivalent, i.e.,

given a feasible point X , Y , and U to (9), we can

construct a feasible point to (8) with the same objective

value. Intuitively, this can be done by taking generating a

sequence of so-called solutions in expectation described

above, and linking them together to get a single trajec-

tory that satisfies the constraints of (8). Due to space

limitations, we omit a full proof.

A more practical solution for (8): The proof for

equivalence of (8) and (9) is indeed constructive, but the

constructed solution is cumbersome for most practical

problems. Here we give a simpler procedure that works

if A + BK is diagonalizable and has no repeated

eigenvalues on the unit disk, and W = U−Y TX†Y = 0.

(The diagonalizability and W = 0 assumptions are not

necessary, but simplify the exposition and hold at the

solution of most practical problem instances, including

all examples in section V.)

Under these assumptions, a optimal trajectory (x, u)
for (8) can be constructed by simulating the system

forward with deterministic control law ut = Kxt, where

K = Y TX†. The initial condition is

x0 = V
(

diag
(

V −1XV −∗
)1/2

)

, (15)

where V ΛV ∗ = A + BK is an eigendecomposition of

A + BK. Such a trajectory will evidently satisfy the

dynamics constraint (11); in the remainder of this section

we show it also satisfies the quadratic constraints (12).

First we now show that V −1 diagonalizes X . We can

rewrite the equality constraint of (9) (with W = 0) as

X = (A+BK)X(A+BK)T, (16)

4
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or equivalently,

V −1XV −∗ = Λ(V −1XV −∗)Λ∗. (17)

We define P = V −1XV −∗, so (17) becomes P =
ΛPΛ∗. The i, j element of (17) is

Pij = λiλ
∗
jPij .

This holds only if either Pij = 0 or λiλ
∗
j = 1. In

particular, Pii = 0 if |λi| 6= 1. Because P is positive

semidefinite, we also have Pij = 0 if either |λi| 6= 1
or |λj | 6= 1. For i 6= j, if |λi| = 1 and |λj | = 1, then

λiλ
∗
j = 1 implies λi = λj . Because this contradicts our

assumption of no repeated eigenvalues on the unit disk,

we also must have Pij = 0. This means P is diagonal

and Pii is nonzero only if |λi| = 1.

This has the following dynamical system interpre-

tation: any steady-state distribution of the autonomous

linear system xt+1 = (A+BK)xt has nonzero variance

only in directions corresponding to modes with unity-

magnitude eigenvalues; furthermore, if A+BK has no

repeated eigenvalues on the unit disk, the correlation

between these modes is zero.

Now we define P̃ as a rank-one matrix whose diagonal

elements are those of P (so that P̃ij =
√

PiiPjj); we

can write P̃ as the outer product

P̃ =
(

diag (P )
1/2
)(

diag (P )
1/2
)T

.

From (15), we have x0x
T

0 = V P̃V ∗.

The average second moment of the state vector is then

lim
T→∞

1

T

T
∑

t=0

xtx
T

t

= lim
T→∞

1

T

T
∑

t=0

(A+BK)tx0x
T

0 (A+BK)tT

= lim
T→∞

1

T

T
∑

t=0

V ΛtV −1(V P̃V ∗)V −∗Λ∗tV ∗

= V

(

lim
T→∞

1

T

T
∑

t=0

ΛtP̃Λ∗t

)

V ∗.

The i, j element of the matrix in parentheses is

lim
T→∞

1

T

T
∑

t=0

(λiλ
∗
j )

t
√

PiiPjj ,

which is zero if λi 6= λj or |λi| 6= 1 (in this latter case,

this is because Pii = 0, as shown above). Therefore all

elements are zero except the diagonal elements, which

are equal to those of P . Then we have

lim
T→∞

1

T

T
∑

t=0

xtx
T

t = V PV ∗ = X.

The quadratic constraints and objective satisfy

gi(x, u)

=
1

T
lim

T→∞

T
∑

t=0

[

xt

ut

]T [

Q(i) S(i)

S(i)T R(i)

] [

xt

ut

]

.

= Tr

[

Q(i) S(i)

S(i)T R(i)

]

(

lim
T→∞

1

T

T
∑

t=0

[

xt

Kxt

] [

xt

Kxt

]T
)

= Tr

[

Q(i) S(i)

S(i)T R(i)

] [

X XKT

KX KXKT

]

= Tr

[

Q(i) S(i)

S(i)T R(i)

] [

X Y T

Y U

]

= γi

Note that in substituting Y for KX = (Y TX†)X , we

use the fact that N (Y ) ⊂ N (X).

Because the new trajectory (x, u) satisfies the dy-

namics constraint (11) and obtains the correct value for

the quadratic constraints and objective (12), it is indeed

optimal for (8).

V. EXAMPLE

In this section, we give an example of a five-phase

induction motor, under both normal conditions and after

an open-winding stator fault.

We use the detailed induction motor model in

[TLW91], which we do not reproduce here. The model

includes an inductive-resistive winding for each of the

five stator windings and 26 rotor bars. The stator wind-

ing and rotor bar resistances are 2.6 Ω and 0.41 Ω,

respectively, and the leakage inductances for the stator

windings and rotor bars (i.e., the additive inductance

terms that does not couple across phases or change with

rotor position) are 15 mH and 3.6 mH, respectively.

The full inductance matrix L is derived from the (ideal)

motor geometry; we deviate from [TLW91] only in that

we use a sinusoidally stator winding, for simplicity, and

to compare our solution with analytical results, where

available. We scale the inductance matrix so that each

(position-independent) stator winding self-inductance is

165 mH, and the rotor bar self-inductance is 43 mH.

For simplicity, we take the rotor end cap resistance and

inductance to be zero.
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Fig. 1: Optimal input voltage, stator winding currents,

rotor winding (bar) currents, and output torque.

A. Normal operation

We consider first normal operation at rotor speed

ω = 50 rad/s and desired torque τdes = 5 N · m.

The resulting stator and rotor winding currents, input

voltage, and output torque waveforms are shown in fig-

ure 1. The resulting optimal waveforms correspond to the

theory for multiphase, symmetric, sinusoidally wound

induction motors: the optimal stator current waveforms

are sinusoidal and symmetric (i.e., each waveform is

identical to the others, when displaced by 2πk/5, for

some integer k); furthermore, negligible torque ripple is

developed, even though torque ripple is not explicitly

penalized in the problem statement. The optimal value

of problem (6) is 56 W, which means that for these

operating conditions, the resistive power loss is 11 watts

per newton-meter of torque produced.

The optimal input voltage frequency can be calculated

from the matrix A + BK in (16), by examining the

angle of the pair of complex eigenvalues that lie on the

unit circle. For the current example, the input voltage

frequency is 51.7 rad/s; this matches the analytical

calculation of the optimal slip speed given in [KG83].

B. Operation under stator winding fault

We now consider operation when one of the stator

windings is in open-phase fault. We model this by adding

a row to the matrix A of equation (5) that enforces

one stator winding current to be zero. We use the same

operating parameters (ω = 50 rad/s and τdes = 5 N ·m)

as the previous example.

The resulting stator and rotor winding currents, in-

put voltage, and output torque waveforms are shown

in figure 1. Perhaps surprisingly, the resulting optimal

stator waveforms are still sinusoidal, but are not simply
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Fig. 2: Optimal input voltage, stator winding currents,

rotor winding (bar) currents, and output torque, for the

case of a stator open-phase fault.

displaced versions of each other. In this case, the optimal

value of problem (6) is 72 W, which means that for these

operating conditions, the resistive power loss around 14
watts per newton-meter of torque produced, compared

to 11 W without a stator open-phase fault.
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