Hausdorff Measures on the Line

Stephen Boyd

Harvard University
In 1918 Hausdorff [1] defined a set of measures in metric spaces which included the Lebesgue n-dimensional measures, counting measures, as well as various non-integral-dimensional measures. These measures are the basis for various theories of generalized dimension, including Besicovitch's theory of fractionally dimensioned sets (now called fractals). I will restrict my study to these measures on the line, and a few foundational questions.

If \(h \) is defined for \(t \geq 0 \), \(h(t) \geq 0 \), increasing and continuous on the right, it is called a Hausdorff function. Let us reserve the symbols \(h \) and \(g \) for Hausdorff functions, i.e., \(h \) and \(g \) will always denote Hausdorff functions. Given \(h \) and \(E \subseteq \mathbb{R} \) (not necessarily measurable), we form the Hausdorff outer \(h \)-measure \(\mathcal{H}^h(E) \) as follows:

\[
\mathcal{H}^h(E) = \lim_{d \to 0} \inf \left\{ \sum_{i=1}^{\infty} h(b_i-a_i) \left| \bigcup_{i=1}^{\infty} (a_i, b_i) \right|, b_i - a_i < d \right\}
\]

Note that as \(d \to 0 \) the class of sums over which we take the infimum decreases, hence \(\mathcal{H}^h(E) \) increases and therefore does indeed converge (possibly to infinity). It is easy to see that \(\mathcal{H}^h \) is a metric outer measure, that is, additive on sets separated by positive distance. Hence the field of \(\mathcal{H}^h \) measurable sets includes the Borel sets, in particular the closed sets I construct are measurable. We shall also
denote the measure m^h, and shall assume that all sets mentioned are measurable.

Since h is continuous on the right, it is clear that m^h can be calculated using closed intervals, in fact using any sets S, if we replace $h_{1-\epsilon}$ by $\max(0, h)$. It is for this reason that h is required to be continuous on the right. The definition I have given follows Rogers [2] and is the most general definition used. Often h is required to be continuous, or satisfy $h(0)=0$. For example Hausdorff himself considered only concave, continuous h with $h(0)=0$. I shall show that, for measures in \mathcal{M}, we may as well assume h to be continuous and subadditive, that is, satisfy $h(xy) \leq h(x) + h(y)$.

A few questions arise immediately. It is clear that for $h(t)=t$, m^h is ordinary Lebesgue measure and that for $h(t)=1$, m^h is counting measure. Are there any other non-trivial Hausdorff measures? In his original paper, Hausdorff showed that if h is continuous, concave, and satisfies $h(0)=0$, then there is a set S such that $m^h(S)=1$ and proved as a specific example that $m^h(C)\leq 1$, where C is the Cantor middle third set and $h(t)=\frac{1}{3}t$. The necessary and sufficient condition on h that there exist a set with finite positive measure was a long-standing problem, solved by A. Dvoretzky [3] in 1948. The condition is only $\lim_{t \to 0} h(t) > 0$.

A more vague question: what is the relationship between h and the measure it generates? For example, when $d_0
different functions generate the same measure? This is a
difficult question which I shall answer in the case the
functions are concave.

(2)

It is clear that \(a^1 \) is determined by its behavior near
0. I start with:

Prop. 2.1: If \(\limsup_{t \to 0} \frac{a(t)}{h(t)} = b \), then for all \(E \),
\(a^0(E) \leq ah(E) \).

Proof: If \(b = \infty \), the inequality is trivial. Suppose \(b \) is
finite, \(E \in \mathcal{B} \). Given \(e > 0 \) choose \(d_0 \) such that

\[
\frac{a(t)}{h(t)} \leq b + e \quad \text{for } t < \frac{d_0}{2}.
\]

If \(d < d_0 \) and \(\bigcup_{i=1}^{\infty} (a_i, b_i) \supset E \), \(b_i - a_i < d \), then

\[
a_d^0(E) \leq \sum_{i=1}^{\infty} g(b_i - a_i) \leq (b + e) \sum_{i=1}^{\infty} h(b_i - a_i)
\]

Since this holds for all \(d \)-coverings of \(E \) where \(d < d_0 \),

\[
a_d^0(E) \leq (b + e)h_d^0(E) \quad (d < d_0)
\]

\[
\therefore a^0(E) \leq (b + e)a^0(E)
\]
As ε was arbitrary, $m^h(E) \leq m^\varepsilon(E) \leq m^h(E)$

Corollary 2.1: If $\liminf_{t \to 0} \frac{h(t)}{h(0)} = a$, and $\limsup_{t \to 0} \frac{h(t)}{h(0)} = b$, then for all E

$$a m^h(E) \leq m^\varepsilon(E) \leq b m^h(E)$$

I will show later that these bounds are the best possible, when h and ε are concave.

Corollary 2.2: If $\lim_{t \to 0} \frac{h(t)}{h(t)} = a$, then for all E

$$m^\varepsilon(E) = a m^h(E)$$

In particular, if $\lim_{t \to 0} \frac{h(t)}{h(t)} = 1$, ε and h generate the same measure. The converses of the above are quite difficult and their consideration will be postponed. I turn now to show that h may be assumed to be continuous and subadditive.

[1]

Lemma 3.1: If $h(0) = 0$, h generates the same measure as

$$\pi(t) = \inf \left\{ \sum_{i=1}^{\infty} \frac{h(c_i)}{c_i} \mid \sum_{i=1}^{\infty} c_i = 1, 0 \leq c_i \leq 1 \right\}$$

Proof: Let $t \leq R$, $h(0) = 0$. $\pi(t) \leq h(t)$ (just let $c_i = 1$, $\varepsilon = 0$, for $j \leq 1$). Hence $\limsup_{t \to 0} \frac{\pi(t)}{h(t)} \leq 1$, so by Prop.
2.1, \(n^i(E) \leq n^i(\mathbb{E}) \). I'll now establish the opposite inequality. If \(n^i(\mathbb{E}) = \infty \), the inequality is trivial, so assume now \(n^i(\mathbb{E}) \) is finite. Given \(\epsilon, \delta > 0 \), choose a cover \(\bigcup_{i=1}^{\infty} (a_i, b_i) \supseteq \mathbb{E}, b_i - a_i < \delta \), such that

\[
\sum_{i=1}^{\infty} \pi_i(a_i - s_i) = \pi_d^i(\mathbb{E}) < \frac{\epsilon}{2}
\]

We can do this by the definition of \(\pi_d^i(\mathbb{E}) \). Choose \(c_{ik}, i,k=1,2,... \) such that \(0 \leq c_{ik} \leq 1, \sum_{k=1}^{\infty} c_{ik} = 1, \) and

\[
\sum_{k=1}^{\infty} h(c_{ik}(b_i - a_i)) - \pi_i(b_i - a_i) < \epsilon 2^{-i-1}
\]

We can do this by the definition of \(h \). Consider the closed intervals \([a_{ik}, b_{ik}], i,k=1,2,... \) given by

\[
a_{ik} = s_i + (\sum_{j=1}^{i} c_{ij})(b_i - a_i)
\]

\[
b_{ik} = s_i + (\sum_{j=1}^{i} c_{ij})(b_i - a_i)
\]

These are just a subdivision of \([a_i, b_i] \). Thus

\[
\bigcup_{i,k=1}^{\infty} [a_{ik}, b_{ik}] \supseteq \bigcup_{i=1}^{\infty} [a_i, b_i] \supseteq \mathbb{E} \quad \text{and}
\]

\[
b_{ik} - a_{ik} = c_{ik}(b_i - a_i) \leq b_i - a_i < \delta
\]
Hence

\[w^h_d(\varepsilon) \leq \sum_{i,k=1}^{\infty} h(b_{ik} - a_{ik}) \leq \sum_{i=1}^{\infty} \{ n(b_{ik} - a_{ik}) + e 2^{-i-1} \} = \]

\[= \sum_{i=1}^{\infty} n(b_{ik} - a_{ik}) + \frac{e}{2} \leq n^h_d(\varepsilon) + \varepsilon \]

As \(\varepsilon \) was arbitrary, we conclude \(n^h_d(\varepsilon) \leq n^h(\varepsilon) \). Consequently \(n^h(\varepsilon) \leq n^h_0(\varepsilon) \), therefore \(n^h(\varepsilon) = n^h_0(\varepsilon) \).

Lemma 3.2: If \(\sum_{i=1}^{\infty} e_i = 1 \), \(0 \leq e_i \leq 1 \), then

\[\sum_{i=1}^{\infty} n(e_i) t \geq n(t) \] (\(n^a \) as in lemma 3.1).

Proof: Since \(n(e_i t) \) is finite, given \(\varepsilon > 0 \), choose \(e_{ik}, \ 0 \leq e_{ik} \leq 1 \), such that

\[\sum_{k=1}^{\infty} e_{ik} = 1 \quad \text{and} \quad \sum_{k=1}^{\infty} n(e_{ik} c_i t) - n(c_i t) < e 2^{-i} \]

Then we note \(\sum_{i=1}^{\infty} e_{ik} c_i = \sum_{i=1}^{\infty} c_i \sum_{k=1}^{\infty} e_{ik} = 1 \), and \(0 \leq e_{ik} c_i \leq 1 \), so by the definition of \(n(t) \),

\[n(t) \leq \sum_{i=1}^{\infty} n(e_{ik} c_i t) \leq \sum_{i=1}^{\infty} (n(e_{ik} t) + e 2^{-i}) = \sum_{i=1}^{\infty} n(c_i t) + \varepsilon \]

As \(\varepsilon \) was arbitrary, lemma 3.2 is established.

Lemma 3.3: \(n \) is increasing (\(n^a \) as in lemma 3.1).
Proof: Suppose \(x < y \), but \(\mathcal{H}(y) < \mathcal{H}(x) \). Choose \(c_i \) such that
\[
0 \leq c_i \leq 1, \quad \sum_{i=1}^{\infty} c_i = 1, \quad \text{and} \quad \sum_{i=1}^{\infty} h(c_i, y) < \mathcal{H}(x).
\]
By monotonicity of \(h \) and \(x < y \),
\[
\sum_{i=1}^{\infty} h(c_i, x) \leq \sum_{i=1}^{\infty} h(c_i, y) < \mathcal{H}(x)
\]
contradicting the definition of \(\mathcal{H} \). Therefore \(\mathcal{H} \) is increasing.

Lemma 3.4: \(\mathcal{H} \) is continuous (as in Lemma 3.1). Proof:

If \(x < y \), \(h(x) \leq \mathcal{H}(y) \leq \mathcal{H}(x) + \mathcal{H}(y-x) \), hence

\[
|\mathcal{H}(y) - \mathcal{H}(x)| \leq \mathcal{H}(y-x)
\]

which goes to 0 as \(x \) goes to \(y \), establishing the continuity of \(\mathcal{H} \).

Theorem 3.1: Every Hausdorff measure in \(\mathbb{R} \) is generated by a continuous, subadditive \(h \).

Proof: Given \(\mathcal{H} \), if \(h(0) > 0 \) then \(\mathcal{H} = h(0) \), and \(h(0) \) is certainly continuous and subadditive. If \(h(0) = 0 \), by Lemmas 3.1 through 3.4, \(\mathcal{H} = \mathcal{H} \) and \(\mathcal{H} \) is continuous and subadditive.

Subadditive is weaker than concave, for if \(h \) is concave, \(\frac{h}{h(t)} \) is increasing, hence

\[
h(x+y) \leq \frac{h(x)}{y} (x+y) = h(y) + \frac{x}{y} h(y)
\]
By symmetry we may assume xy, hence

$$h(y) \leq h(x)^{\frac{y}{x}} \quad h(x+y) \leq h(x) + h(y)$$

Thus h is subadditive. I am not sure whether every Hausdorff measure in \mathbb{R} is generated by a concave continuous function, but I suspect that this is not the case.

[4]

The converse of Corollary 2.1:

Theorem 4.1: If h is concave, continuous, $\lim_{t \to 0} \frac{h(t)}{t} = a$, and $a > 0$, then there is a set $S \subseteq \mathbb{R}$ such that

$$0 < a^h(S) < \infty$$

$$a^{h^n}(S) \leq a(S) \leq (1+c)a^{h^n}(S)$$

Theorem 4.1 does not appear in the literature, though it may be known. The proof is a combination of A. Dvoretsky [3] and a generalization of Hausdorff [1], though more involved than either. I have chosen the notation to agree with these sources, so that their contributions are clear.

Proof of Theorem 4.1: We assume first that a is finite, and h and g satisfy the hypotheses. If $h(0) > 0$, then a^h is counting measure, so we let S be any finite set. It is easy
to check that the conclusion of theorem 4.1 is then satisfied. If \(\lim_{t \to 0} h(t) = \infty \), then \(a \) is Lebesgue measure and a simple argument shows, so is \(a' \); in this case we can take \(S = (0, 1] \). So assume now that \(\lim_{t \to 0} h(t) = \infty \), and \(h(0) = 0 \).

I first choose two sequences which are close to each other and have nice properties with respect to \(h \) and \(h' \); from one of these sequences I construct the desired set \(S \).

Claim 1: We can choose two sequences \((x_j), (x_j')\) such that:

(i) \(x_0 = x_0' = 1 \)

(ii) \(x_{j+1} \leq x_{j+1}' \leq x_j \)

(iii) \(\frac{x_{j+1}'}{h(x_{j+1}')} = \frac{x_j}{h(x_j)} \)

(iv) \(\frac{r(x_j)}{h(x_j')} > \frac{a^j}{\ln(1+\varepsilon)} + 1 \)

(v) \(\frac{a}{h(x_{j+1}')} < \frac{1}{j+1} \)

(vi) \(x(x_{j+1}') = \frac{h(x_j)}{x_{j+1}'} \)

Where \(K_{j+1} = \left[\frac{h(x_j)}{h(x_{j+1}')} \right] + 1 \) (denotes integer part)

Proof by induction. Suppose we've picked \(x_j, x_j' \) for \(j = 0, 1, \ldots, n > 0 \) satisfying (i)-(vi). I will show we may choose \(x_{n+1}, x_{n+1}' \) satisfying (i)-(vi). Since \(h(t) \to 0 \) as \(t \to 0 \), for sufficiently small \(x_{n+1} \), (iv) will be satisfied. Since \(h(t) \to 0 \) as \(t \to 0 \), for sufficiently small \(x_{n+1}' \), (iii) will be satisfied. The second half of (ii) is clearly satisfied for sufficiently small \(x_{n+1}' \). Since (v) is satisfied for
arbitrarily small x^*_n, we may choose x^*_{n+1} satisfying (i)-(vi) simultaneously. Having chosen x^*_{n+1} we choose x^*_{n+1} so that (vi) is satisfied. This we may do because h is continuous. Now

$$h(x^*_{n+1}) > \frac{h(x^*_n)}{n+1} > \frac{h(x^*_j)}{n+1} = h(x^*_{n+1})$$

by the definition of x^*_{n+1}, choice of x^*_{n+1}, and the inductive hypothesis. Since h is monotone, we conclude $x^*_{n+1} < x^*_j$, so (i) through (vi) are satisfied, proving claim 1.

Claim 2:

(i) $k^j_{i+1} \geq 2$

(ii) $\frac{x^*_{j+1}}{x^*_j} < x^*_j$

(iii) $\frac{h(x^*_j)}{h(x^*_{j+1})} \leq (1+a)(\frac{1}{j+1})$

Proof of Claim 2:

(i) is immediate from (iv) of claim 1. Since $\frac{k}{h(x^*_j)}$ increases (as h is concave), by claim 1 (ii),(iii),

$$\frac{x^*_{j+1}}{h(x^*_j)} \leq \frac{x^*_{j+1}}{h(x^*_j)} < \frac{x^*_j}{h(x^*_j)}$$

$$\frac{h(x^*_j)}{h(x^*_{j+1})} > (j+1)x^*_{j+1} < x^*_j$$

establishing (ii). Since

\[
\frac{h(x^*_j)}{h(x_{j+1}^*)} \leq \frac{h(x^*_j)}{h(x_{j+1}^*)} + 1
\]

and

\[
x_{j+1}^* = \frac{h(x_j^*)}{h(x_{j+1}^*)}.
\]

\[
\frac{h(x^*_j)}{h(x_{j+1}^*)} (1 - \frac{1}{x_{j+1}^*}) \geq \frac{h(x^*_j)}{h(x_{j+1}^*)} \geq \frac{h(x_1^*)}{h(x_{n+1}^*)}
\]

\[
\frac{h(x_{j+1}^*)}{h(x_j^*)} \leq \left(1 + \frac{1}{x_{j+1}^*} \right)^{\frac{1}{1}} \leq \left(1 + \frac{1}{x_j^*} \right)^{\frac{1}{1}} \leq \ldots
\]

\[
\leq \prod_{i=1}^{j+1} \left(1 + \frac{1}{x_i^*} \right)
\]

But we've arranged \(x_1^* > \frac{2^{j+1}}{ln(1+e) + 1} \). Since \(\frac{1}{x_i^* - 1} < 1 \), it is easy to verify that:

\[
ln(1 + \frac{1}{x_1^* - 1}) \leq \frac{1}{x_1^* - 1} \leq ln(1+e) 2^{-1}
\]

\[
ln \left(\prod_{i=1}^{j+1} \left(1 + \frac{1}{x_i^*} \right) \right) = \sum_{i=1}^{j+1} ln(1 + \frac{1}{x_i^*}) \leq \sum_{i=1}^{j+1} ln(1+e) 2^{-1} \leq ln(1+e)
\]
Thus \(h(x_{j+1}) \leq 1 + e \). Since \(\varepsilon \) is increasing and \(x^{*} \in \mathbb{R} \),

\[
\frac{b(x_{j+1}^{*})}{h(x_{j+1})} \leq \frac{b(x_{j+1}^{*})}{h(x_{j+1})} (1 + \varepsilon) \geq \varepsilon (1 + \frac{1}{j+1})
\]

establishing claim 2.

We now construct \(S \), using the sequence \(\langle x_j \rangle \). Let \(S_0 = [0, 1] \cdot B(0) = (-\infty, 0), B(1) = (1, \infty) \)

Let \(S_1 = [0, x_1] \cup [x_1 + y_1, 2x_1 + y_1] \cup \ldots \cup [1-x_1, 1] \)

consist of the closed intervals \(J_j \), \(j = 1, 2, \ldots, K_1 \) got by deleting the \(K_1 - 1 \) open intervals \(B(j) \), \(j = 1, 2, \ldots, K_1 - 1 \) (ordered left to right) of length \(y_1 \) from \(S_0 \). By claim 2, \(K_1 \geq 2 \) and \(x_1 \leq 1 \), so that none of the \(B \) intervals is empty. Proceeding inductively we let \(S_{n+1} \) be the

\[
\prod_{j=1}^{n+1} J_j
\]

closed intervals \(J_{n+1} \) got by deleting the open intervals \(B(k_1, \ldots, k_{n+1}) \), \(i = 1, 2, \ldots, K_{n+1} - 1 \) (ordered left to right) of length \(y_{n+1} \) from the \(J_n \) to the right of \(B(k_1, \ldots, k_n) \). As above we note that \(K_{n+1} \geq 2 \), and \(x_{n+1} + x_{n+1} < 1 \), so this slicing is really possible.

\[
S = \bigcap_{n=1}^{\infty} S_n
\]

is the desired set.

Claim 3: \(n(S) \leq 1 \)

Proof: Given \(\varepsilon > 0 \) we choose \(n \) to be large enough that \(x_n < \varepsilon \).

Consider the

\[
\prod_{j=1}^{n} J_j
\]

closed intervals \(J_n \) which make up \(S_n \).
They cover S, since $S \subseteq \mathcal{B}_n$, and they are each of length x_n.

Hence
\[m_d(S) \leq \sum_{i=1}^{n} h(x_n) = \sum_{j=1}^{n} K_j h(x_n) = 1 \]

As d was arbitrary, we conclude $m_d(S) \leq 1$.

The converse is true, but the proof is more involved. It is easy to see that the $\mathcal{B}'s$ are disjoint and lexicographically ordered left to right. We let
\[|\mathcal{B}[k_1, \ldots, k_n]| = \sum_{j=1}^{B} k_j h(x_j) \]

and rank $\mathcal{B}[k_1, \ldots, k_n] = n$ (we assume $k > 0$). For technical convenience, we let $|\mathcal{B}(0)| = n$, rank $\mathcal{B}(0) = \text{rank } \mathcal{B}(0) = 0$. Say $\mathcal{B} = (u_2, v_2)$.

Claim 4: If $0 < r < s$, then $h(x_n + (r-1)y_n) \geq rh(x_n)$

Proof by induction on r. The inequality is clear for $r = 1$.

Suppose $h(x_n + (r-1)y_n) \geq rh(x_n)$ and $r+1 < K_n$. Then
\[x_n + (r-1)y_n \leq (r+1)x_n + ry_n \leq x_n + (K-1)y_n \]

So by convexity of h and inductive hypothesis,
\[h((r+1)x_n + ry_n) \geq \frac{rh(x_n) + h((K-r)x_n + (r+1)y_n)}{K} \]

and
\[h(x_n + (K-r)x_n + y_n) \geq \frac{h((K-r)x_n + (r+1)y_n)}{K-r} \]
Claim 5: If \(|B_2| > |B_1|\), \((B_2, B_1)\) lies to the right of \(B_1\), then
\(h(uB_2, vB_1) > |B_2| - |B_1|\)

Proof by induction on the ranks of the \(B_i's\). When the ranks are 0, we must have \(B_1 = 3[0]\) and \(B_2 = 5(1)\), then
\(h(uB_2, vB_1) = 1 = |B_2| - |B_1|\). Now suppose Claim 5 holds for \(B_i's\) of ranks \(\leq n\), and \(B_1, B_2\) have ranks \(\leq n+1\). There are three nontrivial cases:

Case I: rank\(B_1 = n+1\), rank\(B_2 \leq n\)

Say \(B_1 = 5[k_1, \ldots, k_n, r]\)

Let \(L = 3[k_1, \ldots, k_n]\)

and \(R = 5[k_1, \ldots, k_n, r + 1]\)

and \(S(l)\) if \(k_j = k_n\) for \(j = 1, 2, \ldots, n\)

\(L\) and \(R\) are merely the left and right nearest neighbors of \(B_1\) which have rank \(\leq n\).

Then \(|L| < |B_1| < |R| \leq |B_2|\). If \(n-3 \geq S(l)\),

\(h(uB_2, vB_1) = h((5, n+1, r)x + (5, n+1, r-1)y_{n+1})\)

\(= (k_n+1-r)h(x_{n+1}) = |B_2| - |B_1|\)
using claim 4. If $|\gamma| \leq |\beta(1)|$ we note

$$ u \beta_2 - v \gamma \leq u \beta_2 - v \gamma \leq u \beta_2 - v \gamma $$

Therefore by inductive hypothesis and convexity of h,

$$ h(u \beta_2 - v \gamma) \geq \frac{|\beta_2| - |\gamma(1)| (v \beta_2 - v \gamma) + (|\beta_2| - |\gamma(1)| (v \beta_2 - v \gamma))}{v \gamma - v \gamma} $$

Now $|\gamma| > |\beta(1)|$, and $|\gamma| > |\beta(1)| (v \gamma + (\gamma - \gamma)n + 1)$,

$$ v \gamma = v \gamma + r \gamma n + 1 + y n + 1 $$

$$ v \gamma = v \gamma + r \gamma n + 1 + y n + 1 $$

Hence $h(u \beta_2 - v \gamma) \geq$

$$ \geq \frac{rh(x(n+1)) (y(n+1) - y(n))}{y n + 1 + y n + 1} \geq |\beta_2| - |\beta_1| $$

since $y(n) \leq y(n+1)$

Case 2: $\text{rank} \beta_0 = n$, $\text{rank} \beta_0 = n+1$

Again, let 1, π be the the rank $n+1$ left and right nearest neighbors of β_2. Then $|\beta_1| \leq |\beta_2| < |\pi|$. Say $\beta_2 = \beta [k_1, \ldots, k_r]$. If $n = 0$.

$$ h(u \beta_2 - v \beta_1) - h(r \gamma n + 1 + (n-1)y_{n+1}) \geq rh(x(n)) $$
\(-1\leq |B_{1}\| \) using claim 4. If \(0<|L| \), we note
\[
\nu L - \nu B_{1} \leq \nu B_{2} - \nu B_{1} \leq \nu R - \nu B_{1}
\]
Hence by inductive hypothesis and convexity of \(B_{1} \),
\[
h(uB_{2} - \nu B_{1}) \geq \frac{(|L| - |B_{1}|)(\nu R - \nu B_{1}) + (|R| - |B_{1}|)(\nu B_{1} - \nu R)}{\nu L - \nu R}
\]
Again, \(|L| - |B_{1}| \leq |x_{n+1}| \), \(|R| - |B_{1}| = (\nu L - \nu B_{1})h(x_{n+1}) \),
\[
u L = uB_{2} - (K_{n+1} - \nu)(x_{n+1} + \nu L)
\]
\[
u L = uB_{2} - y_{n+1} - (\nu L - y_{n+1})
\]
\[
h(uB_{2} - \nu B_{1}) \geq |B_{2}| - |B_{1}| + \frac{h(x_{n+1})(K_{n+1} - \nu)(y_{n+1} - y_{n+1})}{\nu L - \nu L}
\]
\(\geq |B_{2}| - |B_{1}| \) since \(r \leq K_{n+1} - \nu L \).

Case 3: \(\text{rank } B_{1} = \text{rank } B_{2} = n+1 \).

Let L, R be the rank \(n+1 \) left and right nearest neighbors of \(B_{2} \). Then \(0<|L| < |B_{1}| < |R| < 1 \), and
\[
\nu L - \nu B_{1} \leq \nu B_{2} - \nu B_{1} \leq \nu R - \nu B_{1}
\]
Now using case 1 and convexity,
\[
h(uB_{2} - \nu B_{1}) \geq \frac{(|L| - |B_{1}|)(\nu R - \nu B_{1}) + (|R| - |B_{1}|)(\nu B_{1} - \nu R)}{\nu L - \nu L}
\]
\[h(x_{n+1}) \frac{(K+y_2)}{n+y} \frac{(K-y_2)}{n+y} \geq |B_2| - |B_1| \]

Proving Claim 5.

Claim 6: \(m^h(S) = 1 \).

Proof: Suppose \(S \subseteq \bigcup_{i=1}^{\infty} I_i \), \(I_i \) open intervals. Since \(S \) is compact, \(S \) is covered by a finite number of the \(I_i \) which intersect \(S \), say

\[S \subseteq \bigcup_{i=1}^{N} (a_i, b_i) \]

where \((a_i, b_i)\) are some of the \(I_i \)'s which intersect \(S \) and

\[a_i < 0 < b_1 < a_2 < \ldots < a_j < 1 < b_N \]

I claim \(\sum_{i=1}^{N} h(b_i-a_i) \geq 1 \). \(b_i \neq 6 \), say \(b_i \notin B_1 \). Now \(v \in S \), \(a_2 < v < 2 \), \(a_2 \notin 3 \). Continuing, we get \(S_2, \ldots, S_{N-1} \) with \(a_j+1 < v_b_j < a_j+1 \). Let \(8 = \emptyset \), \(8 = I(1) \). Then \(b_j = a_j \geq v_b_j \). \(v \), therefore by claim 5, \(u(b_i-a_j) \geq |B_i| - |B_i-1| \).

\[\therefore \sum_{i=1}^{N} h(b_i-a_i) \geq 1 \]

But clearly \(\sum_{i=1}^{\infty} h(diameter) \geq \sum_{i=1}^{N} h(b_i-a_i) \geq 1 \). Thus \(m^h(S) \geq 1 \) for \(d > 0 \), hence \(m^h(S) \geq 1 \), so by Claim 3, \(m^h(S) = 1 \), establishing Claim 6.
Claim 7: \(a \leq m^h(S) \leq (1+\varepsilon)a \)

Proof: As in Claim 3, given \(d > 0 \) choose \(n \) large enough that
\(x_{n+1} < \varepsilon \). Consider the
\(\prod_{j=1}^{n+1} \) closed intervals which make up
\(S_{n+1} \). They cover \(S \) and have length \(\varepsilon d \), hence
\[
m^h_a(S) \leq \prod_{j=1}^{n+1} x_j h\left(x_j - \varepsilon \right) = \prod_{j=1}^{n+1} x_j \frac{h\left(x_j \right)}{h\left(x_j + \varepsilon \right)} \leq \prod_{j=1}^{n+1} \frac{x_j}{x_j + \varepsilon} \leq (1+\varepsilon) a.
\]

By Claim 2 and Corollary 2.1, \(m^h(S) \geq m^h_a(S) \) \(\Rightarrow \)
\[
a \leq m^h_a(S) \leq (1+\varepsilon)a.
\]

Thus by Claims 5 and 7,
\[
m^h(S) = 1
\]

establishing Theorem 4.1 in the case \(a < \infty \). If \(a = \infty \), Claim 5 (setting \(g = h \), say) yields a set \(S \) with \(m^h(S) = 1 \). By Corollary 2.1, though, \(m^h(S) = \infty \), establishing Theorem 4.1 when \(a = \infty \).

I don't know whether Theorem 4.1 is true when \(h \) is not concave.
Corollary 4.1: If \(h \) is concave and continuous, there is a set \(S \subset \mathbb{R} \) with \(0 < m^h(S) < \infty \).

This is Hausdorff's result, slightly weaker than Wróblewski's result, which assumes only \(\lim_{t \to 0} h(t) = 0 \).

Corollary 4.2: If \(h \) and \(\zeta \) are concave and \(\lim_{t \to 0} \frac{\zeta(t)}{h(t)} = \infty \), \(\limsup_{t \to 0^+} \frac{\zeta(t)}{h(t)} = 0 \), then there are sets \(S_1, S_2 \subseteq \mathbb{R} \) such that

\[
0 < m^h(S_1) < \infty
\]

\[
am^h(S_1) \leq m^\zeta(S_1) \leq (1 + \epsilon)am^h(S_1)
\]

\[
h(1 - \epsilon)m^h(S_2) \leq m^\zeta(S_2) \leq bn^h(S_2)
\]

This and corollary 3.2 are the relationship between \(\zeta \) and \(m^h \) referred to in section 2.

Corollary 4.3: Concave functions \(h \) and \(\zeta \) generate the same measures in \(\mathbb{R} \) if and only if \(\lim_{t \to 0^+} \frac{\zeta(t)}{h(t)} = 1 \).

Corollary 4.3 answers another query of section 2, and is by no means obvious.

We have shown that the Hausdorff measures in \(\mathbb{R} \) generated by concave functions are in one to one correspondence with the equivalence classes of concave continuous functions whose ratio tends to one as \(t \) goes to \(0 \). I close by remarking that this set \(C \) has a very complicated structure. It is not linearly ordered by any of the natural partial orders, for example \(h \preceq g \iff \lim_{t \to 0} \frac{\zeta(t)}{h(t)} = 1 \) or \(h \preceq g \iff \lim_{t \to 0^+} \frac{\zeta(t)}{h(t)} = 0 \).
do either of these orders have a countable basis in \mathbb{C}.

Halvorsen constructed the "Logarithmic Scale"

$$h[a_1, \ldots, a_k](t) = t^{a_1[1]} \cdot [1]^{a_2[2]} \cdots [1]^{a_k}$$

(first nonzero a_j is $> \mathbb{C}$)

which is a countably based linear chain in \mathbb{C}, but by the preceding remarks is only a (very) small part of \mathbb{C}.

Cambridge, Mass. 1980
Footnotes

Bibliography

Besicovitch, A. S.:

Best, E.:

Dvoretsky, A.:

Hausdorff, F.:

Mandelbrot, B.:
1977, Fractals, Form, Chance, and Dimension, W. H. Freeman and Co.;

Marian, P. A. F.: