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Abstract
We consider the problem of choosing an optimal portfolio, assuming the asset returns
have aGaussianmixture distribution, with the objective ofmaximizing expected expo-
nential utility. In this paper we show that this problem is convex, and readily solved
exactly using domain-specific languages for convex optimization, without the need for
sampling or scenarios. We then show how the closely related problem of minimizing
entropic value at risk can also be formulated as a convex optimization problem.

Keywords Convex optimization · portfolio construction · Gaussian mixture

1 Introduction

1.1 Asset return distributions

There is a long history of researchers observing that the tails of asset returns are not
well modeled by a Gaussian distribution, going back to the thesis of Fama (1965), who
observed that while somewhat symmetric, the tails of the return distributionweremuch
heavier than those of a Gaussian distribution. Additionally, asset returns are skewed,
violating normality (Neuberger 2012). There is also long history of researchers propos-
ing alternative distributions to model asset returns, including elliptical distributions
(Bingham and Kiesel 2001), and Gaussian mixtures (GMs) (Ball and Torous 1983;
Akgiray and Booth 1987), the focus of this paper.

GMs can in principle approximate any continuous distribution; for asset returns, it
has been observed that good approximations can be obtained with just a handful of
mixture components (Kon 1984).We can interpret the components of a GM return dis-
tribution asmarket regimes, with a latent variable that represents the active regime, and
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a return distribution that is Gaussian, given the regime. Many authors have observed
that the correlations among asset returns can change during different market regimes,
for example, increased correlations during bear markets (Campbell et al. 2002; Ang
and Bekaert 2004, 2015). A GM can model such regime-dependent correlation struc-
tures. Another desirable attribute of a GM is that it can model skewness in return
distributions, for which many authors have argued real investors exhibit preferences
(Arditti 1967; Scott and Horvath 1980).

GM return models arise in a hidden Markov Gaussian model (Rydén et al. 1998;
Nystrup et al. 2019) of returns, which models the regimes as Markovian, and the
returns as Gaussian, given the regime. In such a model the means and covariances of
the Gaussian components corresponding to the regimes are fixed, but the component
weights change in each period (Gupta and Dhingra 2012); but in each period, the asset
return distribution, conditioned on the past returns, is GM, so the methods in this paper
can be applied.

1.2 Mean-variance versus expected utility

Mean-variance portfolio construction In mean-variance portfolio construction, pio-
neered by Markowitz (1952), portfolio construction is viewed as an optimization
problem with two main objectives: the mean or expected return of the portfolio, and
the risk, taken to be the variance of the portfolio return. These objectives are com-
bined into a risk-adjusted return using a positive weight parameter, interpreted as
setting the level of risk aversion. Mean-variance portfolio construction can be carried
out analytically, when there are very simple constraints, or numerically, with realistic
constraints, by solving a convex optimization problem such as a quadratic program
(Grinold and Kahn 1999; Boyd Vandenberghe 2004; Boyd et al. 2017; Stellato et al.
2020). With current convex optimization methods, mean-variance construction can
be done reliably and quickly for up to thousands of assets, and many more when a
factor risk model is used. These optimization problems can be solved in well under
one second, allowing back-tests (what-if simulations, based on real or simulated data)
to be carried out quickly (Boyd et al. 2017; Schaller et al. 2022; MathWorks). In addi-
tion, the mean-variance framework is easily adapted to active portfolio management,
where exceptional return forecasts are incorporated with the goal of outperforming a
benchmark. It is less natural to specify the active portfolio management problem in
terms of expected utility.

One obvious criticismofmean-variance portfolio construction is that the (quadratic)
objective function penalizes returns that are well above the mean (a desirable event)
just asmuch as returns that arewell below themean (an undesirable event) (Hanoch and
Levy 1970). Another is that it only uses the first twomoments of the return distribution,
and so cannot take into account skewed or fat-tailed distributions. Nevertheless it is
very widely used in practice. There is work in analyzing portfolios under higher order
Taylor approximations of utilities (Jondeau and Rockinger 2006), but these are not
used in practice due to both semantic and computational complexity.
Expected utility portfolio construction In work that predates mean-variance portfolio
construction, von Neumann et al. (1944) introduced the notion of utility to model
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decisionmaking with uncertain outcomes. A utility function specifies a value indexing
an agent’s preference for each specific outcome; their theory posits that the agentmakes
a choice so as to maximize her expected utility.

Portfolio construction by expected utility maximization also frames the problem
as an optimization problem. The trader specifies a utility function that is concave
and increasing, and the objective (to be maximized) is the expected utility under the
return distribution. This formulation avoids the awkward situation in mean-variance
portfolio constructionwhere high portfolio returns are considered bad. Expected utility
maximization better captures the asymmetry in downside versus upside risks than
mean-variance optimization. Since the return distribution is arbitrary, expected utility
can directly handle return distributions with skew or fat tails.

Expected utility maximization, like mean-variance optimization, leads to a convex
optimization problem, more specifically, a stochastic optimization problem (Shapiro
et al. 2021). Almost all expected utility methods for constructing portfolios work with
samples of the asset returns. This can be considered an advantage, since it means
that such methods can work with any return distribution from which we can sample
returns. The disadvantage is that sample-based optimization, while tractable, can be
slow compared to mean-variance methods, and scales poorly with problem size.

There are several related portfolio construction methods that rely on return sam-
ples and stochastic convex optimization. One is based on conditional value at risk
(CVaR) (Rockafellar andUryasev 2000, 2002).Amore recently proposedmethod uses
entropic value at risk (EVaR) (Ahmadi-Javid 2012; Cajas 2021), which we address in
Sect. 4. Both of these are coherent measures of risk (Artzner et al. 1999; Rockafellar
2007), and result in convex stochastic optimization problems.

Sample based stochastic optimization methods are used in practice (Grinold 1999),
but far less often than methods based on mean-variance optimization, which do
not involve samples. This is partly because solving sample based stochastic con-
vex optimization problems is tractable, but far more involved than solving the convex
optimization problems that do not involve return samples, e.g., mean-variance opti-
mization or the methods proposed in this paper.
Comparison These two main approaches, mean-variance optimization and expected
utility maximization, are not as different as they might seem. Levy and Markowitz
(1979) show that maximizing a second order Taylor approximation of a utility function
is equivalent tomean-variance optimization. So very roughly speaking, mean-variance
optimization is the second order approximation of expected utility optimization.

When the returns are Gaussian, and we use an exponential utility, mean-variance
and expected utility optimization are not merely close, but exactly the same. It appears
that Merton was the first to note this connection (Merton 1969), but his observation
does not seem to be mentioned often after that (see also Sect. 3.3).

We remark that the exponential utility has the property of constant absolute risk
aversion (CARA). Under constant absolute risk aversion, allocations to risky assets
are independent of starting wealth level. As a result, financial economists tend to view
the exponential utility as less realistic than utilities with constant relative risk aversion.
However, the Nobel Prize winning work of Kahneman and Tversky (1979) shows that
utility maximization in general is incompatible with human behavior. So we should
not be too concerned with the properties of any one utility function, and choose the
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exponential utility because of its desirable mathematical properties when applied to
Gaussian returns.

1.3 This paper

In this paper we consider a GM model for asset returns, and maximize expected
utility with a generic utility function, the exponential utility (Saha 1993). We refer
to this type of portfolio construction as EGM, for exponential utility with Gaussian
mixture returns. We show that the EGM portfolio construction problem can be solved
exactly as a convex optimization problem, without the need for any samples from
the distribution or other approximations. The EGM portfolio construction problem is
not only convex, but is easily specified in just a few lines of code in domain-specific
languages (DSLs) for convexoptimization such asCVXPY(DiamondandBoyd2016),
CVX (Grant and Boyd 2014), or CVXR (Fu et al. 2020). Thus EGM combines the
efficiency, reliability, and scalability of mean-variance optimization with the ability of
expected utility maximization to handle non-Gaussian returns and the asymmetry in
our preferences.When the GMhas only one component, our return model is Gaussian,
and EGM reduces to mean-variance optimization. Thus we can think of EGM as an
extension of mean-variance optimization, or as a special case of expected utility where
the problem can be solved exactly, without any return samples.

Wealso show thatEGMis closely related to portfolio constructionmethods basedon
the entropic value at risk (EVaR).With GM returnmodel, we show that EVaR portfolio
construction problem leads to a convex optimization problem that, like EGM, does
not involve sample based stochastic optimization.

1.4 Previous and related work

Portfolio constructionwithGaussianmixture returns In Buckley et al. (2008), consider
a two-component Gaussian mixture of tranquil and distressed regimes, and analyze
several objectives, including Markowitz, Sharpe ratio, exponential utility, and lower
partial moments. In Sect. 3.3.6 of their paper they derive the closed form expression
for expected exponential utility under Gaussian mixture returns, but do not observe
that maximizing exponential utility leads to a convex problem. Studying single period
portfolios consisting of a risk free asset and a risky asset, Prigent and Kaffel analyze
optimal portfolios under arbitrary utility functions, and show on historical data that
GM return models lead to significantly different portfolios than those arising from a
Gaussian return model (Hentati-Kaffel and Prigent 2014).
EVaR portfolio construction In recent work Cajas (2021), Cajas develops a disciplined
convex (DCP) formulation of EVaR, with return samples, which allows it to be used as
either the objective or as a constraint in portfolio optimization problems specified using
DSLs for convex optimization such as CVXPY. Since a return distribution that takes
on a finite set of values (e.g., the empirical distribution of samples) is a special case
of GM, we can consider EGM (with EVaR) as a generalization of Cajas’ formulation.
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1.5 Outline

We describe the GM return model is Sect. 2, and in Sect. 3 we show that portfolio
optimization with exponential utility is a convex optimization problem. In Sect. 4 we
show that the closely related function EVaR is also convex, so minimizing it, or adding
a limit on it as a constraint, results in a convex optimization problem.

2 Gaussianmixture returnmodel

2.1 Asset return distribution

We let r ∈ Rn denote the return of n assets over some specific period. We model r as
having a GM distribution with k components,

r ∼ GM({μi , �i , πi }ki=1),

where πi ∈ R are the (positive) component probabilities, μi ∈ Rn are the component
means, and �i ∈ Rn×n are the (symmetric positive definite) component covariance
matrices.

The GM return distribution includes two interesting special cases. When there is
only one component, it reduces to Gaussian, with r ∼ N (μ1, �1). Another special
case arises when �1 = · · · = �k = 0. Here r takes on only the values μ1, . . . , μk ,
with probabilities π1, . . . , πk . We refer to this as a finite values return distribution.

2.2 Portfolio return distribution

Let w ∈ Rn denote the weights in an investment portfolio, with 1Tw = 1, where 1
is the vector with all entries one. For wi ≥ 0, wi is the fraction of the total portfolio
value invested in asset i ; for wi < 0, −wi is the fraction of total portfolio value that is
held in a short position in asset i . The portfolio return is R = wT r . This scalar random
variable is also GM with component probabilities πi , and means and variances

νi = wTμi , σ 2
i = wT�iw, i = 1, . . . , k.

We observe that various quantities associated with the portfolio return R can be
evaluated analytically, without the need for Monte Carlo or other sampling methods.
For example its cumulative distribution function (CDF) is given by

�R(w, a) =
k∑

i=1

πi�

(
a − νi

σi

)
=

k∑

i=1

πi�

(
a − wTμi

(wT�iw)1/2

)
, (1)

where � is the CDF of a standard Gaussian.
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2.3 Moment and cumulant generating functions

Two other quantities we will encounter later are the moment generating function

M(w, t) = E exp(t R) =
k∑

i=1

πi exp

(
tνi + t2

2
σ 2
i

)
=

k∑

i=1

πi exp

(
tμT

i w + t2

2
wT�iw

)
,

(2)

where we use E exp Z = exp(μ + σ 2/2) for Z ∼ N (μ, σ 2), and the cumulant
generating function

K (w, t) = logE exp(t R)

= log

(
k∑

i=1

πi exp

(
tνi + t2

2
σ 2
i

))

= log

(
k∑

i=1

πi exp

(
tμT

i w + t2

2
wT�iw

))
. (3)

We observe for future use the identity

K (w, t) = K (tw, 1), (4)

i.e., the parameter t simply multiplies the argument w.

3 Portfolio optimization with exponential utility

3.1 Expected exponential utility

Our objective is to choose w to maximize the expected exponential utility EUγ (R),
where

Uγ (a) = 1 − exp(−γ a),

with γ > 0 the risk aversion parameter. Using (2), we can express this as

EUγ (R) = 1 − E exp(−γwT r) = 1 − M(w,−γ ).

It follows that we can maximize EUγ (R) by minimizing the moment generating
function M(w,−γ ), or equivalently the cumulant generating function

K (w,−γ ) = log

(
k∑

i=1

exp

(
logπi − γμT

i w + γ 2

2
wT�iw

))
. (5)
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Convexity The function K (w,−γ ) is a convex function of w. To see this, we note

that for each i , logπi − γμT
i w + γ 2

2 wT�iw is a convex quadratic function of w, and
therefore convex. The function K (w,−γ ) is the log-sum-exp function (also called the
soft-max function),

S(u) = log

(
k∑

i=1

exp ui

)
, (6)

of these arguments. The log-sum-exp function is convex and increasing in all argu-
ments, so the composition fγ is convex (Boyd Vandenberghe 2004, §3.1.5).

3.2 EGM portfolio construction

Our portfolio construction optimization problem has the form

minimize K (w,−γ )

subject to 1Tw = 1, w ∈ �,
(7)

whereW is a convex set of portfolio constraints. This is evidently a convex optimiza-
tion problem. One implication is that we can efficiently solve this problem globally
using a variety of methods.
DSL specification The EGM problem (7) is not just convex. It is readily specified
in domain-specific languages (DSLs) for convex optimization, since all such systems
include the log-sum-exp function, and all such systems can handle the convex function
composition rules that we used to establish convexity of K (w,−γ ) in w. No special
methods (or gradient or other derivatives) are needed; the function K (w,−γ ) can
be specified in a DSL by just typing it in as is. As a simple example, CVXPY code
for specifying the EGM construction problem (7) and solving it, with a long only
portfolio (i.e., w ≥ 0), is given below. (This code snippet is also available at the
repository https://github.com/cvxgrp/exp_util_gm_portfolio_opt.)

1 import cvxpy as cvx
2
3 def K(w):
4 u = cvx.vstack([cvx.log(pi[i])
5 - gamma * mus[i] @ w
6 + (gamma**2/2) * cvx.quad_form(w, Sigmas[i])
7 for i in range(len(pi))])
8 return cvx.log_sum_exp(u)
9

10 w = cvx.Variable(n)
11 objective = cvx.Minimize(K(w))
12 constraints = [ w >= 0, cvx.sum(w) == 1 ]
13 egm_prob = cvx.Problem(objective, constraints)
14 egm_prob.solve()
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15 w.value

Here it is assumed that SPSVERBc1, SPSVERBc2, and SPSVERBc3 are con-
stants corresponding to n, π and γ , and SPSVERBc4 and SPSVERBc5 are lists of
the μi and �i , respectively. In lines 3–7 the objective K (w,−γ ) is formed, and in
lines 9–12 the EGM optimization problem is formed. The problem is solved in line
13, which populates SPSVERBc6 with optimal weights. In this simple example our
portfolio constraint set W is simple. One of the advantages of using a DSL is that
more complex constraints can be added by just appending them to the list of con-
straints defined in line 11, without requiring modification of the solving algorithm.
DSL’s allow practitioners to write code which can be developed quickly and is highly
extensible. Additionally, the problem being convex means a high precision solution
can be obtained quickly and with high reliability.
Soft-max interpretationWe can give an interpretation of the objective K (w,−γ ) in (5)
in terms of the soft-max function, which can be thought of as a smooth approximation
to the max, since it satisfies

max
i

ui ≤ S(u) ≤ max
i

ui + log k. (8)

The objective (5) can be expressed as

K (w,−γ ) = S(u), ui = logπi + γ
(
−μT

i w + γ

2
wT�iw

)
, i = 1, . . . , k.

We recognize −μT
i w + γ

2 wT�iw as the negative risk-adjusted return of the portfolio
under the i th Gaussian component. Thus K (w,−γ ) is the soft-max of these negative
risk-adjusted returns, offset by the terms logπi , and scaled by γ . Roughly speaking,
our objective is an approximation of themaximumof the negative risk-adjusted returns
under the component distributions.

From (8) we have

K (w,−γ ) ≥ max
i=1,...,k

(
logπi − γμT

i w + γ 2

2
wT�iw

)
, (9)

K (w,−γ ) ≤ log k + max
i=1,...,k

(
logπi − γμT

i w + γ 2

2
wT�iw

)
. (10)

3.3 Special cases

Gaussian returns When k = 1 our GM return distribution reduces to Gaussian, and
the problem (7) reduces to the standard Markowitz problemMarkowitz (1952, 1959)

maximize μT
1 w − γ

2 wT�1w

subject to 1Tw = 1, w ∈ �.

Finite values returns We can model a finitely supported return distribution by setting
�i = 0, in which case r takes on only the values μ1, . . . , μk with probabilities
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π1, . . . , πk . This is because eachGaussian in themixture is degenerate and is supported
on its mean. Taking πi = 1

k captures the sample based approach. Then, the problem
(7) can be expressed as

minimize log
(∑k

i=1 πi exp(−γμT
i w)

)

subject to 1Tw = 1, w ∈ �.
(11)

3.4 Simple example

To illustrate the difference betweenEGMandmean-variance portfolios, we construct a
very simple example for which the two portfolios can be analytically found. We take a
finite values distributionwith n = 2 assets and k = 2 components, with�1 = �2 = 0,

μ1 =
[−1

0

]
, μ2 =

[
1
0

]
.

Thus r = (−1, 0) with probability π1 and r = (1, 0) with probability π2. The first
asset is risky, and the second is riskless, with zero return. We take � = R2, so the
only constraint on the portfolio weight is w1 + w2 = 1.
Markowitz portfolio The mean and covariance of r are

μ =
[
1 − 2π1

0

]
, � =

[
4π1(1 − π1) 0

0 0

]
.

The Markowitz optimal portfolio is

wM
1 = 1 − 2π1

4γπ1(1 − π1)
,

with wM
2 = 1 − wM

1 .
EGM portfolio The EGM portfolio minimizes

π1 exp(γw1) + (1 − π1) exp(−γw1),

so the EGM portfolio is

wE
1 = log(1/π1 − 1)

2γ
,

with wE
2 = 1 − wE

1 .
Comparison The two portfolios are the same for π1 = 1/2, with wM = wE = (0, 1).
They are not too far from each other for other values of π1 and γ , but can differ
substantially for others. For example with π1 = 0.05 and γ = 1, the Markowitz and
EGM portfolios are

wM = (4.74,−3.74), wE = (1.47,−.47).
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The value at risk 5% is 4.74 for theMarkowitz porfolio compared to 1.47 for the EGM
portfolio.

3.5 High and low risk aversion limits

High risk aversion limit Here we consider the case where γ → ∞. Dividing (9) and
(10) by γ , we find that

K (w,−γ )

γ
= max

i=1,...,k

(
−μT

i w + γ

2
wT�iw

)
+ O(1/γ ).

So for large risk aversion parameter γ , the EGM portfolio construction problem (7)
is approximately

minimize maxi=1,...,k
(−μT

i w + γ
2 wT�iw

)

subject to 1Tw = 1, w ∈ �.

Thus in the limit of high risk aversion, the EGM portfolio minimizes the maximum of
the risk adjusted returns under each of the components, regardless of the πi . This is
similar to solving a minimax Markowitz problem, where we use as a risk model the
maximum risk over a set of covariance matrices (see Boyd et al. 2017, §4.2, p. 30).
Low risk aversion limit Here we consider the case where γ → 0. We start with the
well known expansion

1

γ
log

(
k∑

i=1

πi exp γ zi

)
=

k∑

i=1

πi zi + γ

2

⎛

⎝
k∑

i=1

πi z
2
i −

(
k∑

i=1

πi zi

)2⎞

⎠ + O(γ 2),

for any zi . (We recognize the first term on the righthand side as the mean of z, and
the second as γ /2 times the variance of z, when z is a random variable taking values
z1, . . . , zk with probabilities π1, . . . , πk .) Substituting zi = −μT

i w + γ
2 wT�iw we

obtain

K (w,−γ )

γ
= −μTw + γ

2
wT�w + O(γ 2),

where μ and � are the mean and covariance of r ,

μ = E r =
k∑

i=1

πiμi , � = E rrT − (E r)(E r)T

=
k∑

i=1

πi

(
�i + (μi − μ)(μi − μ)T

)
.

This has a very nice interpretation: in the limit of small risk aversion, EGM reduces
to Markowitz, using the mean and covariance of the return.
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4 Portfolio optimization with entropic value at risk

4.1 Entropic value at risk

The traditional measure of downside risk is the value at risk (VaR) with probability α,
which is the (1 − α) quantile of the negative return −R,

VaRα(R) = − inf{x ∈ R | Prob(R ≤ x) > α}.

(We are typically interested in values such as α = 0.05 or α = 0.01.) For example if
the value at risk of a portfolio with probability 5% is 15%, the probability of a loss
exceeding 15% (i.e., R ≤ −0.15) is 5%. Value at risk is interpretable and widely used,
but it is not a coherent risk measure (Rockafellar and Uryasev 2000). For example,
VaR is not sub-additive, so the sum of two portfolios can have a higher VaR than
the sum of the component VaRs. Several coherent risk measures have been proposed,
including the conditional value at risk CVaRα (Rockafellar and Uryasev 2000) and
entropic value at risk EVaRα (Ahmadi-Javid 2012).

The entropic value at risk EVaRα is the tightest Chernoff upper bound on VaRα ,
which can be expressed in terms of the cumulant generating function as

EVaRα(R) = inf
λ>0

K (w,−λ) − logα

λ
≥ VaRα(R)

(It is also an upper bound on CVaRα). Cajas (2021) and Shen et al. (2022) describe
convex optimization problems involving EVaR with the expectation replaced with its
sample approximation.
Minimum EVaR portfolio Tominimize EVaRα(R), we solve the optimization problem

minimize K (w,−λ)−logα
λ

subject to 1Tw = 1, w ∈ �, λ > 0,
(12)

with variables w ∈ Rn and λ ∈ R.
There is a close connection between this problem and the exponential utility max-

imization problem (7). Suppose that w� and λ� are optimal for (12). Then w� is also
optimal for the exponential utility problem (7), with risk aversion parameter λ�. Thus
we can think of minimizing EVaRα(R) as simply choosing a value of the risk aversion
parameter in EGM so as to minimize the tightest Chernoff upper bound on CVaRα . We
will refer to portfolio construction using (12) also as EGM, since any such portfolio
is optimal for EGM with some value of risk aversion, and also, conveniently, entropic
and exponential both start with E.

4.2 Convex formulation

The problem (12) is not a convex optimization problem since the objective is not
jointly convex in w and λ. But a change of variable can give us an equivalent convex
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problem. Instead of using the variable λ, we use the new variable δ = 1/λ, and the
problem (12) becomes

minimize δK (w/δ,−1) − δ logα

subject to 1Tw = 1, w ∈ �, δ > 0,
(13)

with variables w ∈ Rn and δ ∈ R. (We use the identity (4) above.) This objective
is jointly convex in the variables w and δ, since it is the perspective function of
K (w,−1), which is convex in w (Boyd Vandenberghe 2004, §3.2.6), so (13) is a
convex optimization problem,which is readily solved. (The constraint δ > 0 is actually
not needed, since the perspective function is defined to be +∞ if δ ≤ 0.)

Unfortunately, current DSLs for convex optimization do not automate the creation
of the perspective of a function, so the problem (13) cannot simply be typed in; we
must form the the perspective function by hand, as outlined below in “Appendix A”.

There are also simple methods that can be used to solve it, with a modest loss
in efficiency, that are immediately compatible with DSLs. One method is alternating
optimization, where we alternate between fixing δ and optimizing over w (easy with
current DSLs), and fixing w and optimizing over δ (minimization of a scalar convex
function, which can be done by many simple methods). To start we can replace K with
the lower bound (9) (or the upper bound (10)), to obtain the approximate problem

minimize maxi
(
δ log(πi/α) − μT

i w + wT �iw
2δ

)

subject to 1Tw = 1, w ∈ �, δ > 0.
(14)

This problem is convex, and also immediately representable in DSLs using the
quadratic-over-linear function for the last term in the objective. (Here too the con-
straint δ > 0 is redundant, since the quadratic-over-linear function is defined as +∞
if the denominator is not positive.)

4.3 Special cases

Gaussian returnsWhen k = 1, our GM return distribution is Gaussian and we have

δK (w/δ,−1) − δ logα = −δ logα − μT
1 w + wT�1w

2δ
, (15)

with variables w and γ . This objective is readily minimized using DSLs, using the
quadratic-over-linear function for the last term.

The value of δ that minimizes this, with fixed w, is

δ =
(

wT�1w

−2 logα

)1/2

.
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Thus we see that for Gaussian returns, the portfolio that minimizes EVaRα is in fact
Markowitz, with the specific choice of risk aversion parameter

γ =
(−2 logα

wT�1w

)1/2

.

(This depends on w, so to find it we must solve the convex problem with objective
(15).) We see that as α decreases, the associated risk aversion increases, which makes
sense.

Substituting the optimal value of δ into the objective (15), we find that the objective
is

−μT
1 w + (−2 logα)1/2

(
wT�1w

)1/2
,

plus a constant. Thus we maximize a risk adjusted return, using the standard deviation
instead of the traditional variance as risk, and the very specific risk aversion constant
(−2 logα)1/2.
Finite values returns When �i = 0, so r takes on only the values μ1, . . . , μk , the
problem (13) can be expressed as

minimize δ log
(∑k

i=1(πi/α) exp(−μT
i w/δ)

)

subject to 1Tw = 1, w ∈ �.
(16)

5 Conclusions

In this paper we have shown that two specific portfolio construction problems, max-
imizing expected exponential utility and minimizing entropic value at risk, with a
Gaussian mixture return model, can be formulated as convex optimization problems,
and exactly solved with no need for return samples or Monte Carlo approximations.
The resulting problems are not much harder to solve than a mean-variance problem,
but have the advantage of directly handling return distributions with substantial skews
or large tails.

Our focus in this paper is on the formulation of these portfolio construction problems
as tractable convex optimization problems that do not need return samples. In a future
paper we will report on practical portfolio construction using these methods.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed in
the current study.
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A Graph form representation of EVaR

A.1 Graph form representation

In this section we show how to express the objective of (13) in graph form (Grant
and Boyd 2008), which is the basic representation of a function in DSLs for convex
optimization, that rely on disciplined convex programming (DCP) (Grant et al. 2006).
In a recent paper Cajas gave a graph form description of EVaR, for the special case
when�i = 0, i.e., for a finite values returnmodel (Cajas 2021). Thus we are extending
his formulation from a finite values return model to a GM return model.

The graph form of a function f : Rn → R expresses the epigraph of f as the
inverse image of a cone under an affine mapping. (For practical use, the cone must be
a Cartesian products of cones supported by the solver.) The graph form of f is

epi f = {(x, t) | f (x) ≤ t} = {(x, t) | ∃z Fx + Gz + td + e ∈ C}, (17)

where F ∈ Rp×n ,G ∈ Rp×m , d ∈ Rp, and e ∈ Rp are the coefficients, andC ⊆ Rp is
a cone, typically aCartesian product of simple, standard cones, such as the nonnegative
cone, second-order cone, and exponential cone. Such a representation allows f to be
used in any DSL based on DCP, in the objective or constraint functions.

Specifically we work out a graph form for the perspective

P(w, δ) = δK (w/δ),

where K = S(g1, . . . , gk), with

gi (w) = log(πi ) − μT
i w + 1

2
wT�iw, i = 1, . . . , k,

and S is the soft-max or log-sum-exp function (6).

A.2 Graph form calculus

We view P as a composition of four operations: an affine pre-composition, then an
affine post-composition, then composition, and finally, the perspective. We show here
generic methods for carrying out these operations using graph form representations.
The first three operations, affine pre-composition, affine post-composition, and com-
position, are known (and indeed, used in all DSLs for convex optimization); we give
them here for completeness. The last one, the perspective transform, is not well known,
but is mentioned in Moehle and Boyd (2015).
Affine pre-composition Suppose f has graph form

epi f = {(x, t) | ∃z Fx + Gz + td + e ∈ C},
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and g is the affine pre-composition g(x) = f (Ax + b). Then g has graph form

epi g = {(x, t) | ∃z FAx + Gz + td + (Fb + e) ∈ C}. (18)

Affine post-composition Suppose f has graph form

epi f = {(x, t) | ∃z Fx + Gz + td + e ∈ C},

and h(x) = a f (x) + b, where a ∈ R+ and b ∈ R. Then h has graph form

epi h = {(x, t) | ∃z Fx + Gz + t(d/a) + (e − (b/a)d)}. (19)

Composition Suppose that gi are convex functions with graph forms

epi gi = {(w, ti ) | ∃zi Fiw + Gi zi + ti di + ei ∈ Ci }, i = 1, . . . , k,

and S is a convex function with graph form

epi S = {(u, t) | ∃z0 F0u + G0z0 + td0 + e0 ∈ C0}.

We assume that S is increasing in each of its arguments, so the composition K =
S(g1, . . . , gk) is convex. Then K has graph form

epi K =
{
(w, t)

∣∣∣∣
∃z0, ti , zi F0(t1, . . . , tk) + G0z0 + td0 + e0 ∈ C0,

Fiw + Gzi + ti di + ei ∈ Ci , i = 1, . . . , k

}
. (20)

(We can stack the affine functions of (w, t), and use the product cone C0 × · · · × Ck

as the cone in the representation of K .)
Perspective Here we show how to construct a graph form of the perspective of a
function given in graph form. The perspective of f : Rn → R ∪ {∞} is the function
p : Rn+1 → R ∪ {∞} defined by

p(x, s) =
⎧
⎨

⎩

s f (x/s) s > 0
0 s = 0, x = 0
∞ otherwise.

(See BoydVandenberghe 2004, §3.2.6 or Urruty and Lemaréchal 1993, §IV.2.2.) Then
p has graph form given by

epi p = {(x, s, t) | s f (x/s) ≤ t} = {(x, s, t) | f (x/s) ≤ t/s}.

Substituting this expression into the graph form of f given in (17), we have

epi p = {(x, s, t) | ∃z F(x/s) + Gz + d(t/s) + e ∈ C}.
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Since s > 0 and C is a cone, we have

F(x/s) + Gz + d(t/s) + e ∈ C ⇐⇒ Fx + G(sz) + dt + se ∈ C .

Thus, introducing a new affine description

F̃ = [
F e

]
, ẽ = 0,

and with z̃ a new auxilliary variable, p has graph form

epi p = {(x, s, t) | ∃z̃ F̃(x, s) + Gz̃ + td + ẽ ∈ C}. (21)

Graph form of log-sum-exp

S(x) ≤ t ⇐⇒ log

(
k∑

i=1

exp(xi )

)
≤ t

⇐⇒ log

(
k∑

i=1

exp(xi − t)

)
≤ 0

⇐⇒
k∑

i=1

exp(xi − t) ≤ 1

⇐⇒
k∑

i=1

ui ≤ 1, (xi − t, 1, ui ) ∈ Cexp, i = 1, . . . , k,

where

Cexp = {(a, b, c) | ea/b ≤ c/b, b > 0} ∪ {(a, 0, c) | a ≤ 0, c ≥ 0}

is the exponential cone Glineur (2000); Chandrasekaran and Shah (2017), which is
supported by several solvers. So S has graph form given by

epi S = {(x, t) | ∃u FLSEx + GLSEu + tdLSE + eLSE ∈ CLSE}, (22)

with

FLSE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

eT1
0
0
...

eTk
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, GLSE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1T

0
0
eT1
...

0
0
eTk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dLSE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
0
0
...

−1
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, eLSE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
0
...

0
1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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FLSE ∈ R(3k+1)×k, GLSE ∈ R(3k+1)×k, dLSE ∈ R3k+1, eLSE ∈ R3k+1,

and

CLSE = R− × Cexp × · · · × Cexp.

The horizontal dividers denote separate blocks. After the first row, blocks of size 3 are
repeated k times.
Graph form of quadratic To derive a graph form for the function f (x) = xT x with
x ∈ Rn , we first observe that

xT x ≤ t ⇐⇒
∥∥∥∥

[
x
t−1
2

]∥∥∥∥
2

≤ t + 1

2
.

Therefore,

epi f = {(x, t) | Fquadx + tdquad + equad ∈ CSOCP}, (23)

with Fquad ∈ R(n+2)×n, dquad ∈ Rn+2, equad ∈ Rn+2 defined by

Fquad =
⎡

⎣
I
0
0

⎤

⎦ , dquad =
⎡

⎣
0
1/2
1/2

⎤

⎦ , equad =
⎡

⎣
0

−1/2
1/2

⎤

⎦ ,

and whereCSOCP = {(x, t) | ‖x‖2 ≤ t} is the second order cone (Boyd Vandenberghe
2004, §4.4.2; Nesterov and Nemirovskii 1994).

A.3 Graph form of EVaR

Using the calculus outlined above, we can now develop a graph form of P , where
P(w, δ) = δK (w/δ). First, we use affine pre-composition to write

gi (w) = log(πi ) − μT
i w + 1

2
wT�iw ≤ t

as

f (Aiw + bi ) − 1

2
μT
i �−1

i μi + log(πi ) ≤ t,

where

f (w) = wTw, Ai = 1√
2
�

1/2
i , bi = −

√
2

2
�

−1/2
i μi .
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Thus, using our affine pre-composition expression (18) together with our graph form
of the quadratic (23) and affine post-composition (19), we have

epi gi =
{
(w, ti )

∣∣∣∣ ∃zi (FquadAi )w + ti d
quad + equadi ∈ CSOCP

}
,

with

equadi = Fquadbi + equad +
(
1

2
μT
i �−1

i μi − log(πi )

)
dquad.

Then, using the graph form of log-sum-exp given in (22) and the composition rule
give in (20), we can write the composition in graph form as

epi K =
{
(w, t)

∣∣∣∣ ∃z0, t1, . . . , tk FLSE(t1, . . . , tk) + GLSEz0 + tdLSE + eLSE ∈ CLSE,

FquadAiw + ti dquad + equadi ∈ CSOCP, i = 1, . . . , k

}

= {(w, t) | ∃z FKw + GK z + tdK + eK ∈ CK },

with
FK ∈ R(3k+1+k(k+2))×k, GK ∈ R(3k+1+k(n+2))×2k, dK ∈ R3k+1+k(n+2), eK ∈

R3k+1+k(n+2) defined by

FK =

⎡

⎢⎢⎢⎣

0
FquadA1

...

FquadAk

⎤

⎥⎥⎥⎦ , GK =

⎡

⎢⎢⎢⎣

GLSE FLSE

0 dquadeT1
...

...

0 dquadeTk

⎤

⎥⎥⎥⎦ ,

dK =

⎡

⎢⎢⎢⎣

dLSE

0
...

0

⎤

⎥⎥⎥⎦ , eK =

⎡

⎢⎢⎢⎣

eLSE

equad1
...

equadk

⎤

⎥⎥⎥⎦ ,

and

CK = CLSE × CSOCP × · · · × CSOCP.

Finally, using the perspective rule given in (21), the perspective of K has graph form
given by

{(w, δ, t) | δK (w/δ) ≤ t} = {(w, δ, t) | ∃z F̃ K (w, δ) + GK z + tdK ∈ CK },

with F̃ K = [
FK eK

]
.

CVXPY specification CVXPY code for EVaR portfolio optimization using the graph
form of δK (w/δ) is available at the repository https://github.com/cvxgrp/exp_util_
gm_portfolio_opt.
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