Efficient, Distance Computation Using Best Ellipsoid Fit

Elon Rimon

Robotics Laboratory
Stanford University, Department of Computer Science

Stephen P. Boyd

Information Systems Laboratory
Stanford University, Department of Electrical Engineering

Abstract

Knowledge of the distance between a robot and its surrounding en-
vironment is vital for any robotic system. The robot must obtain
this information rapidly in order to plan and react in real-time. Our
technique first surrounds the robot links and the obstacles by opti-
mal ellipsoids, and then computes the clearance of the links from the
obstacles with a generalized distance function. This approach offers
an attractive alternative to the widely used technique of computing
the distance via polyhedral representation of the robot and the ob-
stacles. In particular, our approach offers a drastic reduction in the
complexity of the data structures: each polyhedron, typically repre-
sented by a list of its features and their adjacency graph; is replaced
by a minimum-volume ellipsoid represented by its center and a sym-
metric matrix whose dimension is either two or three (the workspace
dimension). Moreover, while the computation time of the distance
between polyhedra is often a function of their geometrical complex-
ity, computation time in the ellipsoidal case is essentially constant;
and becomes even more rapid when it is computed repeatedly along
the robot’s trajectory.

Our method consists of the following two algorithms: The first
computes the optimal ellipsoid surrounding a convex polyhedron.
The second is an analytic formula for the free margin about one
ellipsoid with respect to another, that is computed as a standard
eigenvalue problem. An efficient incremental version of the latter
algorithm is then proposed. This system has been implemented and
preliminary simulation results are provided throughout the paper.
1 Introduction

The technique of bounding sets with minimum-volume ellipsoids seems
to be applicable in other areas, such as pattern recognition and ma-
chine vision. The main concern of this paper, however, is to demon-
strate the effectiveness of the ellipsoid representation for geometrical
reasoning in the context of robotics. Specifically, this paper is con-
cerned with the robot collision-detection problem, that consists of
computing a quantity that reflects, as a function of the geometrical
data, the amount of clearance between the robot and its environ-
ment. Knowledge of this distance is of central importance for plan-
ning collision-free paths [8], and its rapid computation is essential in
the low-level control, where the gradient vector-field of the distance
is used to guard the robot from collision [11]. A similar need also
arises in many computer graphics applications, especially in physical
simulations [22)].

Unfortunately, the distance depends on the various geometrical
features of the robot and the obstacles; and this introduces a major
computational bottleneck. In many practical applications, however,
the robot links tend to be elongated objects that can be effectively
surrounded by ellipsoids. Supposing that the obstacles are described
by union of convex polyhedra — there are efficient algorithms to
decompose a polyhedron into union of convex polyhedra — we sur-
round each convex polyhedron by an ellipsoid as well. The problem
of computing the distance between polyhedral links and obstacles
is thus replaced by the problem of computing the distance between
pairs of ellipsoids. We shall see that a function related to the dis-
tance, the free margin about an ellipsoid, can be rapidly computed

360

I

U

in constant time, independent of the geometrical complexity of the
original polyhedra.

More generally, this work is part of a larger program of research,
whose purpose is to develop a geometric modeling system based on a
catalogue of shapes expressed as Boolean combinations of linear and
quadratic inequalities. Such a catalogue would be able to approxi-
mate all possible shapes and, unlike the purely polyhedral representa-
tion, seems to include shapes whose boundary is smooth (continuous
normal). The catalogue must come with a set of operations that ren-
der it useful for robotic applications. To mention some of the most
important ones: automatic construction of the shapes from sensory
data, rapid collision detection, and the computation of a measure of
the distance between pairs of shapes.

In the context of the latter problem, it can be easily verified
that computing the Euclidean distance between two shapes described
by intersection of linear and quadratic polynomials, such that each
quadratic polynomial describes a convex region, is a convex opti-
mization problem (see e.g., [2]). Being such, the Euclidean distance
can be effectively computed up to desired accuracy in time linear

in the number of geometrical features . In robotics, however, effi-
cient iterative methods are not good enough. Most of the reactive
controllers use the gradient vector-field (or subgradient when it is
not differentiable) of the distance to guide the robot. It is therefore
advantageous to obtain a closed-form expression for the gradient.
Moreover, there is a basic need to explicitly parametrize the loca-
tion of the configuration-space “obstacles” — the forbidden regions
in the robot’s configuration space — in terms of the géometrical data
i.e., the inside-outside relation between shapes parametrized by the
shapes’ geometrical data. To the best of our knowledge the free mar-
gin function constitutes, for the first time in the context of robotics,
an analytic formula for ellipsoids. The formula has the form of an
eigenvalue problem, and we also give a closed-form formula for the
gradient vector-field.

1.1 Organization of the Paper

This section continues with a brief account of the related litera-
ture. In Section 2 we describe an efficient algorithm for the minimal-
volume ellipsoid surrounding a convex polyhedron. This also turns
out to be a convex optimization problem, for which efficient e-accurate
algorithms that require time proportional to log(1/¢) and linear in
the number of vertices are known. We shall use the standard ellipsoid
algorithm! | whose features, as well as the class of convex optimization
problems, are briefly described in Appendix A. The ellipsoid algo-
rithm, although simple and efficient, is not the only known algorithm
for solving convex optimization problems. In fact, interior-point al-
gorithms recently developed by Nesterov and Nemirovsky [17] are
much faster and may be a better choice for high-dimensional ver-
sions of this problem.

A closed-form formula for the free margin about one ellipsoid
with respect to another is presented in Section 3. Specifically, let
N be the dimension of the ambient space (N = 2 or 3 in our case),
and let £(z;, X) be the ellipsoid with center z; and shape described
by a positive-definite symmetric matrix X (a condition written as

X >0),

£z X)={eeR":(z—) X(z —z:;) < 1}.
Let the two ellipsoids be £, and £,. First, a formula for the point z*
in £, at which the ellipsoidal level-surfaces surrounding &; touch &,

for the first time is computed. Then the free margin about &; with
respect to £, is computed in terms of z* such that

< 0 iff £; overlaps £
=0 iff £ touches &y
> 0 otherwise.

margin(£1,&€2) (1)

‘Geometrically, margin(£1,£;) is the (signed) distance between &

and £, as determined by the metric associated with the matrix of
£,. When £, is moving along a trajectory it becomes a function
of its current configuration — £;’s position and orientation. Under
this interpretation the condition margin(£,£;) < 0 characterizes the
configuration-space obstacle due to £; i.e., configurations of £; that
involve intersection with &,.

The formula for z* involves the minimal eigenvalue of a 2N x 2N
matrix whose entries are expressed in terms of the geometrical data.
The standard QR method is then used to find the minimal eigenvalue.
In Section 4 we describe how to accelerate the computation along
the robot trajectory by exploiting the previous computation. As
long as the trajectory points are sufficiently close by, the minimal
eigenvalue is computed with the faster inverse iteration method. We
will make precise the notion of “sufficiently close by”, and will show
in the process that the free-margin function is an analytic function
of the geometrical data. This last result makes margin(&y,&2) very
attractive in actual implementations. In fact, we shall present a
closed-form expression for its gradient vector-field, which is readily
computable in terms of the geometrical data.

1.2 Related Literature

The topic of surrounding complicated shapes by simpler ones is con-
sidered in the computational geometry literature. For example, [16]
discusses the problem of surrounding a polyhedron by minimum-
volume box. Although such a box is an attractive alternative for the
minimum-volume ellipsoid, it is currently not clear which approach
is more effective. In fact, both approaches require the same number
of parameters to represent their shape, and they seem to complement
each other as effective geometrical approximation. The selection of
the most effective approximating shape is the topic of research now
in progress.

The appeal of ellipsoids as effective means for shape representa-
tion has been recognized in the machine vision literature for quiet
some time (see e.g., [18]). In the context of computing the ellipsoidal
approximation, Post [19] has proposed an exact algorithm that com-
putes the minimum-volume ellipsoid in time proportional to m? inde-
pendent of the ambient dimension N, where m is the number of ver-
tices. Our algorithm uses standard convex programming techniques
and solves the problem within € accuracy in time mp(N)log(1/¢),
where p(/N) is a polynomial function which is a constant in our case.

The topic of closed-form formulas for the forbidden regions in
configuration-space is relatively unexplored. It seems that general
algebraic decision-methods can compute such formulas for polynomi-
ally bounded shapes (using, for instance, the multivariate resultant
[4]), but we are not aware of any practical implementation of them.
Specific closed-form formulas are known for the following cases: a
polyhedron moving in the presence of polyhedral obstacles {12, Chap
3]; a convex rigid-body moving with fixed orientation amidst convex
obstacles [1]; and specific planar articulated chains [5]. This paper
presents such a formula for the ellipsoidal case, where an ellipsoidal
object is moving in the presence of ellipsoidal obstacles. Character-
ization of the intersection between general quadratic shapes is also
discussed in the computer graphics literature (see e.g., [14]).

!The fact that the topic of this paper is ellipsoids and that convex optimization
problems are solved by an algorithm based on n-ellipsoids is coincidental.

Computation of the distance between polyhedral shapes has long
history in robotics (see e.g., [2, 8, 9, 15]), and the technique presented
here complements these results for ellipsoidal shapes. In particu-
lar, an algorithm recently proposed by Lin and Canny for polyhedra
[15], computes the distance between two moving convex polyhedra
by tracking the closest two features. The computational effort of
their algorithm is essentially constant, except at instances where the
identity of the closest two features changes. At these singular events
the new closest two features are found in time roughly linear in the
number of geometrical features. In contrast, the computational ef-
fort of our ellipsoid approach is always constant and does not require
the substantial bookkeeping required to manage the polyhedral fea-
tures. Further, the free-margin function for ellipsoids is an analytic
function of the geometrical data (refer to Corollary 4.1), while the
polyhedral distance is not even differentiable. Of course, these gains
come on the expense of using approximate shapes and a “distance”
function that is not the Euclidean distance.

In relation to rapid distance computation, some researchers have
suggested to trade computation with memory, by computing the dis-
tance beforehand for all possible configurations on a suitably dis-
cretized configuration space (see e.g., [13]). Note that this compu-
tation must use the aforementioned inside-outside functions to be
effective. Unfortunately, the required memory grows exponentially
with the dimension of the configuration space, and this approach
becomes impractical for more than few degrees of freedom. For low-
dimensional stationary environments, however, it offers very rapid
(discretized) distance computation that can be made to be indepen-
dent of the geometrical complexity of the environment.

2 The Optimal Ellipsoid

It was shown quite some time ago that for any compact set (closed
and bounded) with non-empty interior P there exists a unique ellip-
soid £ of minimal volume containing it [10]. This ellipsoid is called
the Lowner-John ellipsoid of P, or simply the L-J ellipsoid. Of
course, the L-J ellipsoid contains the convex hall of P and for this
reason we shall restrict our attention to convex sets P. The L-J ellip-
soid has a remarkable property that P contains the ellipsoid obtained
from & by shrinking it from its center by a factor equal to the dimen-

361

Figure 1. The N-dimensional L-J ellipsoid is obtained by intersecting the
(N + 1)-dimensional L-J ellipsoid centered at the origin with the plane at
height x4 = 1.

sion of the ambient space. This establishes an upper bound on the
distance of the surface of £ from P, and consequently indicates that
the L-J ellipsoid is always an intuitively acceptable approximation.

We describe now an efficient e-accuracy algorithm for what we
shall call the L-J problem — to compute the L-J ellipsoid contain-
ing a given convex polyhedron P. We do this in two steps. First,
following [L7], the L-J problem is shown to be a convex optimization
problem. Then the standard ellipsoid algorithm used to solve such
problems is described in the context of our problem. Appendix A
contains a short account of the convex optimization problems and
the ellipsoid algorithm.

m

|

Let N be the dimension of the ambient space (N = 2 or 3 in our
case), and denote its coordinates by (z,...2zy). Also, let 'S{)VH be
an (N +1)-dimensional ellipsoid centered at the origin of RN+1, The
idea is to embed P in a space of dimension N + 1, in the plane at
height zy1) = 1, and then to compute the minimum-volume £N+?
containing the embedded P. It turns out that the resulting et
determines the N-dimensional L-J ellipsoid by simply intersecting
ENF with the plane zy4y = 1, as shown in Figure 1. This fact is
mentioned in {17, pp 229)].

The latter problem — of computing the minimum-volume EARS
containing P — is a convex optimization problem. To see this, con-
sider the volume of an (N + 1)-ellipsoid, £(z, X), given by

Bn1

Vdet X’

where X is £s (N 4+ 1) X (N +1) symmetric positive-definite matrix,
and By, is the volume of the unit ball in RV*! but we will not
need By, ,. Since (2) is equivalent to the equation

volume () =

2)

log (volume (£)) = log By, — 3 log(det X),

the L-J problem is equivalent to minimizing —log(det X) subject to
the constraints that X be symmetric positive-definite, and that £)/*!
contain the polyhedron P embedded at height zx4; = 1. In general,
an ellipsoid contains a convex polyhedron if and only if it contains
its vertices, vy,..0,. Thus the L-J problem becomes

min{—log(det X)} (3)

subject to

vy

X >0 and (vIT l)X(1

) <1l fori=1,.m. (4)

Let the optimization variables be the distinct entries of the sym-
metric matrix X, and let M be the number of these entries, M =
(N + 1)(N +2). The problem (3)-(4) is convex if the objective
function (3) and the constraints in (4) are convez functions in terms
of the entries of X. Indeed, it is shown in [21] that —log(det X) is
convex in the region X > 0. The constraint X > 0 in (4) can be
written as

/\max(—X) <0 (5)

(Amax(—X) is the largest eigenvalue of the matrix —X), and is shown

i

in [21] to be convex. Similarly, the constraint (»],1)X <1

is a linear inequality in the entries of X and is also convex. Having
shown that (3)-(4) is a convex optimization problem, we can now
apply the ellipsoid algorithm.

Given a convex polyhedron P ¢ RM described by its vertices
v1,...Vm, the ellipsoid algorithm computes a matrix X that mini-
mizes (3) up to € accuracy,

0 < (—log(det X)) — (—log(det X*}) <,

where X is the true minimum. It is shown in [21] that the N-
ellipsoid obtained by intersecting the resulting e-optimal (N + 1)-
ellipsoid with the plane x4 = 1 is also e-optimal. Hence the origi-
nal L-J problem is solved within a specified relative error of e~€. Let
us describe now the algorithm and some of its details.

First, we will need to compute subgradients of Apmax(—X). Let
£(0,X) be an (N + 1)-ellipsoid. Using the definition of subgradient
given in Appendix A, the subgradient of Apax(—X) is a matrix G
satisfying the inequality

Amax(=2) 2 Amax(=X) +tr (GT(Z - X)),

for all symmetric matrices Z (tr denotes the trace). Let v be a unit-
magnitude eigenvector of X corresponding to its maximal eigenvalue.
It can be easily verified that the inequality

IR T

362

Mmax(=Z) > v [~ ZJo = o' [- X]o = 07(Z - X),

valid for all symmetric matrices Z, implies that the desired G is
simply the symmetric matrix

G = -wol.

In the following, (Xy, Ax) € (IRM, RM*M) is the center and ma-
trix of the k** ellipsoid in the ellipsoid algorithm and, for simplicity,
X also represents the corresponding matrix of the (N + 1)-ellipsoid
£(0, Xi). For simplicity, as well, we replace Amax(—Xx) by the equiv-
alent expression Amin(Xx). Last, we will need to use the stack nota-
tion: if A € IR®*", then A°® denotes the n? x 1 vector obtained by
stacking the columns of A over each other. More details about the
algorithm can be found in Appendix A and in [3].

X1, A1 — an initial M-ellipsoid that contains the mini-
mum;

k—0;

repeat {

k—k+1;

? fori=1,...m;
if (Amin(X%) € 0) { /* X is not positive definite */
compute eigenvector v for Amin(X4);

hi = (—vvT)%; /* compute a subgradient */

§ — hi/\/hf Aghy;

} else {

if ((v],1) X% Zi) > 1 for some i = 4) { /* X is

infeasible */

’Dl

P)
§ — hi/\/hT Achy;
}

} else { /* X is feasible */
gk = V(—log(det X})) = (_XEI) ; /* compute a gradi-
ent */

G — g&/\/9F Argi;

compute Amin(X%) and (v7, 1) X}

s
hi 1)) ; /* compute a subgradient */

Xiy1 & X — ;,%Ak!?;

Aur = 2 (A - A7 AL

Yuntil ((Amin(Xk) > 0) and (no ig exists) and (1/gf Argr <
€)).

It is shown in [21] that the initial X, A; can be conveniently chosen
in terms of the radii of two balls in RN, one that is contained in the
polyhedron P and one that contains it.

Figure 2. The L-J ellipsoid of two convex polygons

The ellipsoid algorithm computes the L-J ellipsoid to a rela-
tive accuracy of e=€ in mp(M)log(1) steps, where p(M) is a con-
stant polynomial (see Appendix A). We have implemented a two-
dimensional (N = 2 hence M = 6) version of this algorithm on a
DEC5000 machine. A typical computation takes 600 iterations and
runs for about 2 seconds. Two numerical examples are shown in
Figure 2.

3 The Free Margin Function

Given two ellipsoids in RY, £, = £(z1, P) and &; = £(zy,Q), we
would like to find the point z* in &, such that

(a" = 2)TP(a* ~21) < (& - 21) Pz - 1), (6)

for all z € £3. Geometrically, z* is the point in £ that is the closest
to £; with respect to a distance function whose equidistance level-
sets are the ellipsoidal surfaces surrounding £;,. We consequently
define the free-margin of £; about £; is defined to be,

margin(£1,£,) 2 (z* ~z)TP(e* —zy) ~ 1

A
(= denotes a definition).
Clearly, margin(£1,&5) is positive when £; and &, are disjoint,
zero when they touch, and negative when their interiors overlap.
Note, however, that margin(£;,£2) is not symmetric i.e.,

margin(&,, £2) # margin(£2, 1),

and that it resembles the actual Euclidean distance only when £; and
£, are close to each other. Ideally, one would like to compute the
Euclidean distance, but we are not aware of any closed-form formula
for it. In contrast, the computation of the free-margin function turns
out to be equivalent to an eigenvalue problem, that can be solved by
traditional methods.

First let us apply a coordinate transformation that will make £;
look like a unit ball,

Al _1
T=Q2(z—=23) or =0 27+ 2. (7}

In the new coordinates our problem becomes:
min{(Z — ¢)TC(Z — ¢))} such that llz))? < 1, (8)

where L 1 1
C2Q2PQ 2 and ¢2Q2(z;1-1)

(C is positive definite). The ellipsoid £; has thus become a unit
ball. For our purposes we may assume that the center ¢ is always
outside the unit ball. This implies that the quadratic polynomial in
(8) must attain its minimum on the boundary of the unit ball, where
]|a’:||2 = 1. For simplicity, we shall hereafter replace z by z.

Using Lagrange multiplier, a necessary condition for z* to be a
solution of (8) is

Az = C{z* ~ ¢) for some scalar X; (9)

or, equivalently,

2" = [C — M|,

where

b& e,

and I is the N x N identity matrix. Substituting z* into the con-
straint ||z]|® = 1,

bT[C = AII"%b = 1, (10)

yields a 2N-degree polynomial in A.
It turns out that the minimal (real) root of the polynomial (10)
solves the problem. This fact is evident from the following identity:

T

363

Theorem 1 ([8)) If (z1,\) and (22, A2) are solutions of (9)-(10),
then
(22— ¢)TC(az —¢) = (21— e)'C(zy —¢)

S S

Thus the problem is solved if we can compute the minimal (real) root
of the polynomial (10).

Using a method developed by Gander, Golub, and Matt [7], the
problem is transformed into an eigenvalue problem via the introduc-
tion of two new variables, y € R" and z € RV, as follows

y2(C- A% and z2(C- A (11)
Expressing equations (10) and (11) in terms of (y,2) and A, yields
the following system of equations

Ty =1
[C-Mz=b
[C=My—2z=0.

(12)

Substituting b7y = 1 into the right side of the second equation yields,
[C = M)z = [bbT]y.

Combining the third equation in (12) with the last equation yields,

[d](2)=(2):

a standard eigenvalue problem. Let A* be the minimal (real) eigen-
value of (13). It is shown in [21] that X" is exactly the minimal
root of the 2N-degree polynomial (10). It follows that the point 27,
and consequently margin(£1,&2), can be computed in terms of A* as
follows:

-1

c (13)

Theorem 2 Given two ellipsoids £, = E(z1, P) and €4 = £(22,Q),
let A* be the the minimal eigenvalue of (13). Then the point z* € &,
is given by

o = [~ NI, (14)
where C = Q_%PQ_% and b = Q_% P(x) — z2); and the free-margin
function, margin(€1, E2), satisfies equation (1) above.

Geometrically, margin(£1, £2) determines the smallest ellipsoid with
center z; and matrix P that touches £.

Two planar (N = 2) examples are shown in Figure 3. We have
computed the minimal eigenvalue using the QR algorithm. This al-
gorithm requires roughly 4(2V)® operations {21]. The QR algorithm
was used without exploiting the specifics of our matrix, and the aver-
age time for one distance computation was 2.5 msec (on a DEC5000
machine). In the next section we describe how to track only the min-
imal eigenvalue, and consequently achieve a considerable efficiency
gain.

robot link

/

x*

Figure 3. The closest point, z*, according to the generalized distance
determined by the ellipse surrounding the robot link

4 Incremental Computation of the Generalized Dis-
tance

We have seen that the computation of the generalized distance with
the QR method is efficient. It computes, however, all the eigenvalues

of the matrix
A cC I
wel G d

while only the minimal eigenvalue is needed.

In robotics, as well as in computer-graphics animation, the dis-
tance is typically computed along a trajectory i.e., the matrix M
becomes M(z(k)), where z(k) is the robot’s k** configuration. The
computation time can be substantially reduced by tracking only
the minimal eigenvalue along the trajectory. The Inverse Iteration
method [20, pp 394] is suitable for this task. It is initialized with
an estimate for the minimal eigenvalue,), and for the corresponding
eigenvector, ¢; and works as follows:

I(O) — 1'3;

k—0;

A= M-

repeat {

ke—k+1;

z(k) — Az(k - 1);

normalize z(k);

} until ([lz(k) — 2(k — 1)]| < ¢)

A= At lle(k = DIP/(a(k) - (k- 1))

The idea behind this method is simple. Let A" and v* be the minimal
eigenvalue and the corresponding eigenvector of M. For any value of
A, v* is also an eigenvector of M — AI, with eigenvalue A* — . Hence
if is closer to A* than to the other eigenvalues of M, then the error
llz(k) — z(k — 1)|| converges exponentially to zero. The number of
steps A required for the error to become less than ¢ satisfies

1
K<c log(;),

where ¢ is a constant that depends on the initial estimate . Note
that K grows slowly with the accuracy ¢. The constant ¢ depends
on A via the ratio |;\ — A" /‘;\ - A(M)l for A # A*, and we shall
hereafter make the rather gross simplification that ¢ is approximately
unity.

For this method to be of practical use, one must characterize the
distance between A* and the other eigenvalues of M. The following
theorem asserts that A* is the only eigenvalue in the left-hand side of
the complex plane. We shall hereafter call * the minimal eigenvalue
of M. To the best of our knowledge this fact was previously unknown.

Theorem 3 The minimal eigenvalue of M, X", is negative real
whenever the center c of the ellipsoid £(c,C) is outside the unit ball.
Moreover, all the other eigenvalues of M satisfy

Re{A(M)} > X\ >0,
where Ay is the minimal eigenvalue of C (C > 0).

The theorem, whose proof is given in [21], asserts that A* is always
isolated in the complex plane. This, in turn, affords a conclusion,
stated in the following corollary, that A* is a real analytic function
of the geometrical data. We will use in the corollary the following
notation. Let R be an N X N rotation matrix that diagonalizes C,
and let A be the resulting diagonal matrix,

A = diag(M,...\) & RTCR.
and let
5£ RTb.
Corollary 4.1 *, and hence margin(£1,), are real analytic func-

tions of the geometrical data. Moreover, a formula for the gradient
of A™ is given by

364

I

rmr T

(A 1 b

o a(M-A7)?
d]]
" aX(bA) 1 B
D a(n-XP
where -
sy M
o = P (Ai—A‘)B.

Theorem 3 guarantees that there is a fixed-size disc of radius
larger than A; in the complex plane from which all initial guesses
A will converge to A*. A practical criterion to detect correct con-
vergence is the attainment of e-convergence to some negative real
number in less than K steps, where K = log(%).

The number of operations required by the inverse-iteration method
is shown in [21] to be 5N3+ (2N)%log(). A comparison of this count
with that of the QR method, with the substitution log(1) = K, shows
that the number of steps K required for an efficiency gain of two is

K =3N where N =2,3.

The accuracy of the solution obtained after K such steps is ¢ =
10-3N,

We have experimented with the incremental algorithm on a pla-
nar scene, in which an ellipsoidal link navigates in the presence of one
stationary ellipsoidal obstacle. The link executes a biased random-
walk, and at each step the free margin about the ellipsoidal link is
computed with the incremental method. The random-walk was re-
peated for several randomly chosen polygonal link and obstacle pairs.
A numerical example is shown in Figure 4, in which the rotational
increment is one degree and the translational increment is one cell in
a 128 x 128 grid. The average number of iterations required to attain
€ = le — 06 accuracy was 7, and the average time for one distance
computation was 1 msec (on a DEC5000 machine)— shorter by a
factor of about 2.5 than the QR-method discussed in the previous
section. The incremental method ceased to converge correctly for ro-
tational increment of about five degrees and translational increment
of about five cells.

Figure 4. The closest point, marked by x, is traced as the ellipse sur-
rounding the robot link moves around an obstacle (the ellipse surrounding
the obstacle is not shown)

4.1 Conclusion

We have proposed in this paper a “complete” system: First a poly-
hedral robot and environment are approximated by ellipsoids. Then
the free margin about each of the ellipsoidal links is computed in con-
stant time per ellipsoidal obstacle. Hence, in terms of the ellipsoidal
representation, the free margin about an n-link robot in an environ-
ment described by union of m convex polyhedra takes O(n - m) to
compute. We have also shown how to accelerate the computation by
exploiting the previous one along the robot’s trajectory. Our ellip-
soidal approach compares favorably with the polyhedral one, since
there is no need to deal with the geometrical features of the under-
lying polyhedra the free-margin function takes essentially constant
time to compute.

We have also presented in this paper an analytic formula for the
free-margin function, and for its gradient vector-field. This, in turn,
expands the catalogue of shapes for which a closed-form formula
for the forbidden regions in configuration-space is known. This new
formula also advances our larger program of research, concerned with
setting up a system that will admit arbitrary Boolean combinations
of linear and quadratic inequalities.

Last, it is worthwhile to note in the context of bounding shapes by
ellipsoids that similar convex programming techniques can be used
to efficiently compute the ellipsoid of maximal volume contained in
a given convex polyhedron. This could be used to model the outer
boundary of a robot work-cell. Moreover, by maintaining a pair of
such ellipsoids, one surrounding the polyhedron and one contained
in it, an estimate for the tightness of the ellipsoidal approximation
can be effectively computed. The intersection between two polyhe-
dra could then be first checked for the enclosing ellipsoids, for if they
do not intersect than the underlying polyhedra are disjoint. Other-
wise their interior ellipsoids are checked for intersection, and their
intersection would imply that the underlying polyhedra intersect.

A Convex Programming

A real-valued function ¢ : R™ — IR is a convex function if

d(szy + (1 — 8)za) < s(21) + (1 — 5)p(22)

for all 21,2, € R™ and 0 < s < 1. A convex optimization (or
convex programming) problem is to compute z* that minimizes ¢(z),
subject to the constraint that z be in K, where ¢ is a convex function
and K C IR" is a convex region. One standard algorithm used to
solve this problem is the ellipsoid algorithm. It requires that X
be described by a convex function ¢ : IR® — IR in the form

K ={z e R":y(z)<0}.

The algorithm produces a sequence of points z;x € IR™ that converge
to z*. It needs to compute at the k** step a separating plane passing
through z; for one of the two convex regions

{z:8(2) < d(zi)} or {z:9(z) < 9lae)}-

The separating plane is not necessarily unique, since the boundary
of the region may have a sharp corner at z4. In such situations the
separating-plane’s normal becomes a subgradient. More precisely, if
¢ : IR" — IR is convex, but not necessarily differentiable, ¢ € IR™ is
a subgradient of ¢ at z if

#(2) > p(z) + ¢¥(z —z) forall z € R™

The ellipsoid algorithm is initialized with an n-ellipsoid contain-
ing the minimizer z* (e.g. a large n-ball containing K). At the kt*
step the current center of the ellipsoid, z, is compared against the
constraint function . If the constraint is violated (¢(zx) > 0), a sep-
arating plane passing through zj for the region {z : ¥(z) < ¥(zk)}
is computed. Otherwise, a separating plane passing through z; for
the region {z : ¢(z) < #(zk)} is computed. Clearly, one side of
the resulting plane contains the entirety of K in the first case, and
contains the minimizer z* in the other. In both cases the (k + 1)**
ellipsoid is computed as the minimum-volume ellipsoid that contain
the intersection of the k* ellipsoid with the half space determined
by the separating plane. A closed-form formula for such an ellipsoid
is known,

Erpr = {21 (2~ o) X (0 - 2pq) < 13,
where

1 .
=2y - ——Xid

Tht1 ntl

and

Xops = - (X 2 X357 X)
k+1—n2_1 k nt 1 k99 Ak |,
and g is the normal to the separating plane. At each step the volume

of the new ellipsoid is less than the volume of the previous one:

~1/2n

volume (£xy1) < e volume (&),

by a factor that depends only on the dimension n of the ambient
space. This affords in turn a conclusion that the number of steps K
required to achieve e-accuracy solution satisfies,

¢

K < 2n® log(),
where ¢ is constant. Note that this number grows slowly with both
dimension n and accuracy ¢ (n = 2 or 3 and is constant in our case).
Note, as well, that each step of the algorithm requires an evalua-
tion of y(z), an operation that is typically linear in the number of
constraints used to describe K. A more complete description can be
found in (21} and [3, Chap. 14].

References

[1] C. Bajaj and M. Kim. Generation of configuration space obstacles: Moving
algebraic surfaces. The International Journal of Robotics Research, 9(1):92-
112, February 1990.

[2] J. E. Bobrow. A direct minimization approach for obtaining the distance
between convex polyhedra. The International Journal of Robotics Research,
8(3):65-76. June 1989.

[3] S.P. Boyd and C.H. Barratt. Linear Controller Design. Prentice Hall. NJ, 1991.

[4] J. F. Canny. The complexity of robot motion planning. MIT Press, Cambridge,
MA. 1988.

[5] J.R. Dooley and J.M, McCarthy. Parametrized descriptions of the joint space
obstacles for a 2v closed chain robot. In IEEE International Confcrence on
Robotics and Antomation. pages 1536-1541. Cincinnati. OH. May 1990.

[6] W. Gander. Least squares with a quadratic constraint. Numerische Mathe-
matik, 36:291-307, 1981.

[7] W. Gander, G.H. Golub, and U. Matt. A constrained eigenvalue problem.
Linear Algebra and its Applications. pages 815-839, 1989.

S} E. Gilbert and D. W. Johnson. Distance functions and their application to
5 P
robot path planning in the presence of obstacles. [EEE Journal of Robotics
and Automation. RA-1(1):21-30, March 1985.

(9] E.G. Gilbert and C-P Foo. Computing the distance between general convex
objects in three-dimensional space. [EEE Transactions on Robolics and Au-
tomation, 6(1):53-61. Feb 1990.

{10] F. John. Extremum problems with inequalities as subsidiary conditions {1948).
In J. Moser. editor, Fritz John Collccted Papers. chapter Vol 2, pages 543-560.
Birkhauser. Boston, 1985.

{11] O. Khatib. Real time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5(1):90-99, Spring 1986.

{12] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
1990.

[13] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. In ACM SIG-
GRAPH, pages 327-335, Las-Vegas, July 1990.

[14] J. Levin. A parametric algorithm for drawing pictures of solid objects composed
of quadratic surfaces, Communications of the ACM, 19(10):555-563, Oct 1976.

[15] M. C. Lin and J.F. Canny. A fast algorithm for incremental distance calculation.
In IEEE International Conference on Robotics and Automation, pages 1008-
1014, Sacramento, CA, April 1991.

(16] R. R. Martin and P.C. Stephenson. Containment algorithm for objects in rect-
angular boxes. In Theory and Practice of Geometric Modeling, pages 307-325.
Springer Verlag, New York, 1989.

[17] Y.E. Nesterov and A.S. Nemirovsky. Interior Point Polynomial Methods in
Convexr Programming: Theory and Applications. Springer Verlag, New York,
1992,

[18] A. P. Pentland. Perceptual organization and the representation of natural form.
In Readings in Computer Vision, pages 680-699. M. Kaufmann Publishers, Los
Altos, CA, 1987,

[19] M.J. Post. Minimum spanning ellipsoids. In ACM Symposium on Theory of
Compuling, pages 108-116. Washington. D.C.. April 1934,

{20] WL Press. B.P. Flanne
Recipes in C. Cambridge U

S.A. Teukolsky. and W.T. Vetterling. Vumerical
versity Press. NY. 1988.

[21] E. Rimon and S.P. Boyd. Efficient distance computation using best ellipsoid
fit. Technical report, Information Systems Laboratory, Stanford University,
Dec 1991.

[22] S. Sclaroff and A. Pentland. Generalized implicit functions for computer graph-
ics. In ACM SIGGRAPH. pages 247-250. Las Vegas. July 1991.

