
Akshay Agrawal

Convex optimization layers

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, Zico Kolter

@akshaykagrawal

Convex optimization

➢ x ∈ Rn is the variable
➢ 𝛳 ∈ Rm is the parameter
➢ f and g are convex (curve upwards)
➢ find x that minimizes f while satisfying the constraints

Why convex optimization?
➢ Convex optimization problems can be solved quickly, reliably, and exactly

Why convex optimization?
➢ Convex optimization problems can be solved quickly, reliably, and exactly
➢ Software libraries like CVXPY make convex optimization easy

Why convex optimization?
➢ Convex optimization problems can be solved quickly, reliably, and exactly
➢ Software libraries like CVXPY make convex optimization easy

Why convex optimization?
➢ Convex optimization problems can be solved quickly, reliably, and exactly
➢ Software libraries like CVXPY make convex optimization easy
➢ Tons of applications

Controlling self-driving cars

Landing rockets

Designing airplanes

Until now ...
➢ Difficult to use convex optimization problems in TensorFlow pipelines
➢ Parameters 𝛳 were chosen and tuned by hand

CVXPY Layers

0 import cvxpy as cp
1 import tensorflow as tf
2 from cvxpylayers.tensorflow import CvxpyLayer

3 n, m = 2, 3
4 x = cp.Variable(n)
5 A, b = cp.Parameter((m, n)), cp.Parameter(m)
6 constraints = [x >= 0]
7 objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
8 problem = cp.Problem(objective, constraints)

9 cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])

10 A_tf = tf.Variable(tf.random.normal((m, n)))
11 b_tf = tf.Variable(tf.random.normal((m,)))
12 with tf.GradientTape() as tape:
13 solution, = cvxpylayer(A_tf, b_tf)
14 summed_solution = tf.math.reduce_sum(solution)
15 gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf])

0 import cvxpy as cp
1 import tensorflow as tf
2 from cvxpylayers.tensorflow import CvxpyLayer

3 n, m = 2, 3
4 x = cp.Variable(n)
5 A, b = cp.Parameter((m, n)), cp.Parameter(m)
6 constraints = [x >= 0]
7 objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
8 problem = cp.Problem(objective, constraints)

9 cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])

10 A_tf = tf.Variable(tf.random.normal((m, n)))
11 b_tf = tf.Variable(tf.random.normal((m,)))
12 with tf.GradientTape() as tape:
13 solution, = cvxpylayer(A_tf, b_tf)
14 summed_solution = tf.math.reduce_sum(solution)
15 gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf])

0 import cvxpy as cp
1 import tensorflow as tf
2 from cvxpylayers.tensorflow import CvxpyLayer

3 n, m = 2, 3
4 x = cp.Variable(n)
5 A, b = cp.Parameter((m, n)), cp.Parameter(m)
6 constraints = [x >= 0]
7 objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
8 problem = cp.Problem(objective, constraints)

9 cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])

10 A_tf = tf.Variable(tf.random.normal((m, n)))
11 b_tf = tf.Variable(tf.random.normal((m,)))
12 with tf.GradientTape() as tape:
13 solution, = cvxpylayer(A_tf, b_tf)
14 summed_solution = tf.math.reduce_sum(solution)
15 gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf])

0 import cvxpy as cp
1 import tensorflow as tf
2 from cvxpylayers.tensorflow import CvxpyLayer

3 n, m = 2, 3
4 x = cp.Variable(n)
5 A, b = cp.Parameter((m, n)), cp.Parameter(m)
6 constraints = [x >= 0]
7 objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
8 problem = cp.Problem(objective, constraints)

9 cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])

10 A_tf = tf.Variable(tf.random.normal((m, n)))
11 b_tf = tf.Variable(tf.random.normal((m,)))
12 with tf.GradientTape() as tape:
13 solution, = cvxpylayer(A_tf, b_tf)
14 summed_solution = tf.math.reduce_sum(solution)
15 gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf])

Learning to control a car

Learning to control a car

iteration 0

Learning to control a car

iteration 0 iteration 100

For more ...

NeurIPS paper

github.com/cvxgrp/cvxpylayers

Learning control policies (L4DC)

with examples in

➢ controlling a car
➢ managing a supply chain
➢ allocating financial portfolios

Thank you!

