Differentiable Convex Optimization Layers

Akshay AgrawalBrandon AmosShane BarrattStephen BoydSteven DiamondJ. Zico Kolter

Stanford University Carnegie Mellon University Facebook AI

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Convex optimization

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

Convex optimization problems

$$\begin{array}{ll} \text{minimize} & f(x;\theta) \\ \text{subject to} & g(x;\theta) \leq 0 \\ & A(\theta)x = b(\theta) \end{array}$$

with variable $x \in \mathbf{R}^n$

- objective and inequality constraints f₀,..., f_m are convex
 i.e., graphs of f_i curve upward
- equality constraints are linear
- ▶ find a value for x that minimizes objective, while satisfying constraints

Why convex optimization?

- beautiful, fairly complete, and useful theory
- solution algorithms that work well, in theory and practice

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

- many applications in
 - machine learning, statistics
 - control
 - signal, image processing
 - networking
 - engineering design
 - finance
 - \ldots and many more

How do you solve a convex optimization problem?

use someone else's ('standard') solver

- your problem must be written in a standard form
- analogous to writing machine code

write your own (custom) solver

Iots of work, but can take advantage of special structure

use a domain-specific language

- transforms user-friendly format into solver-friendly standard form
- extends reach of problems solvable by standard solvers

Domain-specific languages (DSLs)

- DSLs make it easy to specify and solve convex problems
- Grammar and semantics based on a rule from convex analysis [GBY06]
- Examples: CVXPY, CVXR, Convex.jl, CVX

Example

CVXPY is a Python-embedded DSL [DB16; AVD⁺18]

```
1
      import cvxpy as cp
2
      import numpy as np
3
4
      m, n = 30, 20
5
      A = np.random.randn(m, n)
6
      b = np.random.randn(m)
7
8
      x = cp.Variable(n)
      objective = cp.Minimize(cp.sum_squares(A @ x - b))
9
      constraints = [0 \le x, x \le 1]
10
11
      problem = cp.Problem(objective, constraints)
      problem.solve()
12
```

Neural networks?

Differentiable programming

Deep learning uses derivatives ("backpropagation") to train neural networks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- A special case of differentiable programming
 - Library of *parametrized* atomic functions
 - Each atomic function is differentiable
 - ► A differentiable program is a composition of atomic functions
 - ▶ Use chain rule to tune parameters to better achieve some goal

Differentiable programming

This talk: (analytically) differentiating through CVXPY

Why?

- encode prior knowledge (e.g., physics) into a differentiable program
- implement hard constraints or specialized operations in a neural network

- sensitivity analysis
- *learn* the structure of convex problems
 - learn to control a vehicle
 - model utility functions for agents
 - tune portfolio optimization policies

and more ...

Differentiating through convex optimization problems

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Parametrized convex optimization problems

A convex optimization problem with variable $x \in \mathbf{R}^n$ can be *parametrized* by numerical data $\theta \in \mathbf{R}^p$:

$$\begin{array}{ll} \text{minimize} & f_0(x;\theta) \\ \text{subject to} & f_i(x;\theta) \leq 0, \quad i=1,\ldots,m \\ & A(\theta)x = b(\theta), \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(here, A and b are functions of θ).

Parametrized convex optimization problems

Toy example:

minimize
$$(x-2\theta)^2$$
,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

with variable $x \in \mathbf{R}$ and parameter $\theta \in \mathbf{R}$.

• Each choice of θ induces a new optimization problem.

Parametrized convex optimization problems

```
Toy example, in CVXPY:
```

```
1
      import cvxpy as cp
2
3
      theta = cp.Parameter()
      x = cp.Variable()
4
      objective = (x - 2*theta)**2
5
6
      problem = cp.Problem(cp.Minimize(objective))
7
8
      # solve an instance of problem with theta == 3.0
9
      theta.value = 3.0
10
      problem.solve()
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Solution mapping of a convex optimization problem

A convex problem can be viewed as a map from parameters to solutions

$$egin{array}{rl} \mathsf{x}^{\star}(heta) &= & {
m argmin} & f_0(x; heta) \ & {
m subject to} & f_i(x; heta) \leq 0, \quad i=1,\ldots,m \ & \mathcal{A}(heta) x = b(heta) \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

• $x^*(\theta) = \{2\theta\}$ for the problem of minimizing $(x - 2\theta)^2$

For most problems $x^*(\theta)$ cannot be written down analytically

Derivative of the solution map of a convex problem

- When $x^*(\theta)$ is single-valued, we can compute its derivative [ABB+19]
 - requires implicitly differentiating optimality conditions of a cone program
- For our toy example, $x^*(\theta) = 2\theta$, $\frac{dx^*}{d\theta}(\theta) = 2$
- ► Can efficiently differentiate through problems, even when solution is not analytical

Solution map of a parametrized CVXPY problem: $x^*(\theta) = (R \circ S \circ C)(\theta)$

- ▶ Problem is canonicalized (C) to a standard form
- The canonicalized problem is solved (S)
- ► A solution for the original problem is *retrieved* (R)

We can efficiently differentiate through C, S, and R [AAB+19]

- in fact, we ensure C and R are affine
- ▶ we call this *affine-solver-affine* (ASA) form
- ▶ we introduce a grammar that ensures problem is in ASA form

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Differentiate through the solver (S) by differentiating through a *cone program*

- every convex program can be written as a convex cone program
- \blacktriangleright solving a cone program equivalent to finding a 0 of a map ${\cal N}$
- a vector z can be used to construct a solution of a cone program if and only if $\mathcal{N}(z, Q) = 0$, where Q is an embedding of problem data
- if technical conditions are satisfied, the solution z is given by a function of Q, and we can compute its derivative

- application of implicit function theorem
- details in [ABB⁺19]

```
1
      import cvxpy as cp
2
3
      theta = cp.Parameter()
4
      x = cp.Variable()
5
      objective = (x - 2*theta)**2
      problem = cp.Problem(cp.Minimize(objective))
6
7
8
      theta.value = 3.0
9
      problem.solve(requires_grad=True)
      problem.backward()  # backpropagate through solution
10
11
      print(theta.gradient) # theta.gradient now equals 2.0
```

Exporting to PyTorch and TensorFlow

 $\tt cvxpylayers:$ an open-source library for exporting CVXPY problems to PyTorch and TensorFlow

Exporting to PyTorch and TensorFlow

- 1 from cvxpylayers.torch import CvxpyLayer 2 import torch
 - # export to torch (or tensorflow) with just one line
 - layer = CvxpyLayer(problem, parameters=[theta], variables=[x])
- 7 theta_tch = torch.tensor(3.0, requires_grad=True)
- 8 soln = layer(theta_tch)[0]
- 9 soln.backward()

3 4

5

6

10 print(theta_tch.grad)

Examples

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

Consider a stochastic control problem

$$\begin{array}{ll} \text{minimize} & \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T-1} \|x_t\|_2^2 + \|\phi(x_t)\|_2^2 \right] \\ \text{subject to} & x_{t+1} = Ax_t + B\phi(x_t) + \omega_t, \quad t = 0, 1, \dots, \\ & \|\phi(x_t)\|_{\infty} \le u^{\max}, \quad t = 0, 1, \dots, \end{array}$$

- ▶ $x_t \in \mathbf{R}^n$ is the state, $\phi(x_t) \in \mathbf{R}^m$ the control, ω_t is random
- expectation is over ω_t and x_0
- optimization is over states x_t and policy $\phi : \mathbf{R}^n \to \mathbf{R}^m$
- this problem is computationally intractable

- Common heuristic for stochastic control is approximate dynammic programming (ADP), which parametrizes φ
- \blacktriangleright ADP replaces minimization over functions ϕ with minimization over parameters
- > Differentiable convex optimization layers can be used in an ADP method

• Take ϕ to be the solution of a convex optimization problem:

$$\phi(x_t) = \underset{u}{\operatorname{argmin}} \|P^{1/2}(Ax_t + Bu)\|_2^2 + \|u\|_2^2$$

subject to $\|u\|_{\infty} \le u^{\max}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Here, the parameter is $P^{1/2} \in \mathbf{R}^{n \times n}$
- Learning method:
 - simulate the system with the policy in the loop
 - approximate expected cost
 - update $P^{1/2}$ using gradient descent

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- Many real-world applications, including
 - finance
 - vehicle control
 - supply-chain management
- See our paper: "Learning convex-optimization control policies"

Data poisoning attack

- given data (x_i, y_i) , $i = 1, \ldots, m$
 - $x_i \in \mathbf{R}^n$ are feature vectors
 - $y_i \in \{0, 1\}$ are associated boolean outcomes
- linear classifier: $\hat{y} = \mathbf{1}[\beta^T x \ge 0]$
- find optimal weights β^* by minimizing

$$(1/m)\sum_{i}\mathcal{L}(\beta;x_{i},y_{i})+r(\beta)$$

- $\mathcal{L}(\beta; x_i, y_i) = \log(1 + \exp(\beta^T x_i + b)) y_i \beta^T x_i$ is the logistic loss
- $r(\beta) = 0.1 \|\beta\|_1 + 0.1 \|\beta\|_2^2$ is elastic-net regularization
- ► adversary seeks to increase test loss L^{test}(β^{*}) by (just barely) perturbing training data

Data poisoning attack

- β^* is a solution to a convex problem parametrized by x_i
- ∇_{xi} L^{test}(β^{*}) gives direction x_i should be moved to achieve greatest increase in test loss

Data poisoning attack

```
X = cp.Parameter((m, n))
beta = cp.Variable(n)
log_likelihood = cp.sum(
    cp.multiplv(Y, X @ beta) - cp.logistic(X @ beta)
)
r = 0.1*cp.norm(beta, 1) + 0.1*cp.norm(beta, 2)**2)
problem = cp.Problem(cp.Minimize(-log_likelihood/m + r))
fit_logreg = CvxpvLayer(problem, parameters=[X], variables=[beta])
beta_star = fit_logreg(X_train)[0]
test_loss = compute_loss(beta_star, X_test, Y_test)
test loss.backward()
```

Summary

Our software makes it easy to differentiate through DSLs for convex optimization, letting you pair

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

- convex optimization
 - rich modelling capabilities
 - large number of applications
 - efficient solution algorithms
 - mature, high-level software libraries
- with machine learning

Software

https://github.com/cvxgrp/cvxpylayers

https://github.com/cvxgrp/cvxpy

(ロ) (国) (E) (E) (E) (O)

References

[AAB ⁺ 19]	A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances in Neural Information Processing Systems. 2019.
[ABB ⁺ 19]	A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone program. <i>Journal of Applied and Numerical Optimization</i> 1.2 (2019), pp. 107–115.
[AVD ⁺ 18]	A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex optimization problems. <i>Journal of Control and Decision</i> 5.1 (2018), pp. 42–60.
[DB16]	S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. <i>Journal of Machine Learning Research</i> 17.1 (2016), pp. 2909–2913.
[GBY06]	M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global optimization. Springer, 2006, pp. 155-210.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

Additional examples

Tuning a Markowitz policy

Figure: left: untuned; right: policy with tuned constraints, mean and covariance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tracking a vehicle trajectory

Figure: left: untrained path; middle: trained path: right: expected cost histogram.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □臣 = の�?