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Abstract

We propose a new method for finding statistical arbitrages that can contain more
assets than just the traditional pair. We formulate the problem as seeking a portfolio
with the highest volatility, subject to its price remaining in a band and a leverage
limit. This optimization problem is not convex, but can be approximately solved using
the convex-concave procedure, a specific sequential convex programming method. We
show how the method generalizes to finding moving-band statistical arbitrages, where
the price band midpoint varies over time.
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1 Introduction

We consider the problem of finding a statistical arbitrage (stat-arb), i.e., a portfolio with
mean-reverting price. Roughly speaking, this means that the price of the portfolio stays in
a band, and varies over it. Such a stat-arb is traded in the obvious way, buying when the
price is in the low part of the band and selling when it is in the high part of the band.

Traditional stat-arbs focus on portfolios consisting of two or possibly three underlying
assets. When the portfolio contains two assets, trading the stat-arb is called pairs trading.
Pairs can be found by exhaustive search over all n(n − 1)/2 pairs of assets in a universe of
n assets. When the weights of the two assets in pairs trading are +1 and −1, the portfolio
value is the spread (between the two prices). The assets in a pair are called co-moving assets.

In this paper we propose a new method for finding stat-arbs that can contain multiple
(more than two) assets, with general weights. The problem is formulated as a nonconvex
optimization problem in which we maximize the portfolio price variation subject to the price
staying within a fixed band, along with a leverage limit, over some training period. Although
this approach requires maximizing a convex function, we show how to approximately solve
it using the convex-concave procedure [SDGB16, LB16].

Our second contribution is to introduce the concept of a moving-band stat-arb, in which
the price of the portfolio varies in a band that changes over time, centered at the recent
average portfolio price. (We refer to a traditional stat-arb as a fixed-band stat-arb.) We
show that the same method we use to find fixed-band stat-arbs can be used to find moving-
band stat-arbs, despite the apparent complexity of the average price also depending on the
portfolio. Moving-band stat-arbs are traded in the same obvious way as fix-band stat-arbs,
buying when the price is in the low part of the band and selling when it is in the high
part of the band; but with moving-band stat-arbs, the center of the band changes over time.
Moving-band stat-arb trading resembles trading using Bollinger bands [Bol02, Bol92], except
that the bands are associated with the price of a carefully constructed portfolio, and not a
single asset. Our empirical studies show that moving-band stat-arbs out-perform fixed-band
stat-arbs in terms of profit, and remain profitable for longer out-of-sample periods.

1.1 Related work

Stat-arbs. Stat-arb trading strategies date back to the 1980s when a group of Morgan
Stanley traders, led by Nunzio Tartaglia, developed pairs trading [Pol11, GGR06]. This
strategy involves identifying pairs of assets whose price tends to move together, hence referred
to as pairs trading. In pairs trading, the spread, i.e., price difference between two assets, is
tracked and positions entered when this difference deviates from its mean. This trading strat-
egy has enjoyed widespread popularity, with its success substantiated by numerous empirical
studies in various markets like equities [AL10], commodities [Nak19, VM17], and curren-
cies [FKD19]; see, e.g., [GGR06, AL10, Per09, HJTW04, KDH17, CM13, Huc19, DGLR10].

In the general setting, a stat-arb consists of multiple assets in a portfolio that exhibits
a mean-reverting behavior [FP16, §10.5]. Stat-arb trading is a widely used strategy in
quantitative finance. The literature on stat-arbs is extensive and generally splits into several
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categories: finding stat-arbs, modeling the (mean-reverting) portfolio price, and trading stat-
arbs. We give a brief review of these here and refer the reader to [Kra17] for a comprehensive
overview of the literature.

Finding stat-arbs. Probably the simplest approach to finding pairs of co-moving se-
curities is the distance approach. The distance pairs trading strategy finds assets whose
(normalized) prices have moved closely historically, in an exhaustive search through pairs of
assets [GGR06]. Assets whose prices have a low sum of squared deviation from each other
are considered for trading. The distance approach is simple and intuitive, although it does
not necessarily find good pairs [Kra17]. The objective itself is to minimize the distance be-
tween two asset prices, which does not directly relate to the desired properties of a stat-arb,
which crucially should also have a high variance. This paper addresses this issue by directly
optimizing for large fluctuations around the mean.

The co-integration approach is another popular method for finding co-moving securities.
Co-integration is an important concept in the econometrics literature [Joh00, AD05], and
dates back to Engle and Granger’s works in the 1980s (for which Granger was awarded the
2003 Nobel Memorial Prize in Economic Sciences) [Gra83, EG87]. The idea is that the
absence of stationarity in a multivariate time series may be explained by common trends,
which would make it possible to find linear combinations of assets that are stationary and
hence mean-reverting. Thus, the co-integration approach is based on identifying linear com-
binations of assets that result in a stationary time series [Kra17]. In [Vid04], the most cited
work on co-integration based pairs trading, potential asset pairs are found based on sta-
tistical measures, which are then tested for co-integration using an adapted version of the
Engle-Granger test. Several co-integration based methods have been proposed to extend the
pairs trading strategy to more than two assets. For example, in [ZP18, ZZWP18, ZZP19]
the authors consider a (non-convex) optimization problem for finding high variance, mean-
reverting portfolios. Their strategy is based on finding a portfolio of spreads, defined by a
co-integration subspace, and implemented using sequential convex optimization. Their pro-
posed optimization problem, i.e., maximizing variance subject to a mean reversion criterion
is similar to our problem formulation. However, our problem differs significantly in that we
do not rely on any co-integration analysis or statistical testing. Rather, we directly optimize
for a high variance portfolio that is mean-reverting.

Asset pairs can also be found using machine learning methods. In [SH20], the authors
use unsupervised learning and propose a density-based clustering algorithms to cluster as-
sets. Then, within asset clusters, pairs of assets are chosen for trading depending on co-
integration, as well as mean-reversion tendency and frequency. Modern machine learning
methods are also explored in [KDH17], where the authors propose the use of deep neural
networks, gradient-boosted trees, and random forests for finding stat-arb portfolios. Another
recent study of deep-learning stat-arb finding is [GOPZ21]. Earlier work on using machine
learning for finding stat-arbs includes, e.g., [DKB15, MZ14, TL13, Huc10, Huc09].
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Modeling the stat-arb spread. When a co-moving set of assets has been identified, the
next step is to model the portfolio price (or spread between the assets for a pair). Perhaps the
most popular approach is to model the spread using stochastic control theory. It is common
to consider investments in a mean-reverting spread and a risk-free asset and to model the
spread as an Ornstein-Uhlenbeck process [MPW08, JY07]. Other methods include those
borrowing tools from time series analysis [Kra17]. In [EVDHM05] the authors propose a
mean-reverting Gaussian Markov chain model for modeling the spread between two assets.
Copulas have also been proposed to model the joint distribution of the spread, both for pairs
and for larger sets of assets [DMPZ16, SMK18, KS17]. In [DMPZ16] the authors suggest
modeling the spread using linear state space models.

Trading stat-arbs. We mention here a number of stat-arb trading methods, ranging from
simple ones based on the intuitive idea of buying when the price is low and selling when it is
high, to more complex ones based on learning the price statistics and using stochastic control.
One simple method is based on hysteresis, as is used in a conventional thermostat. In this
approach we buy (enter into a long position) when the price drops below a threshold, and
sell (switch to a short position) when the price goes above another threshold. The thresholds
are typically based on price bands, as discussed below. A variation on this method sets the
thresholds based on the standard deviation of the price, as proposed in [GGR06]. Another
simple method is linear trading, where we take a position proportional to the difference
between the band midpoint price and the current price. This method can also be modified
to use volatility-based bands instead of fixed bands. (Such a trading policy is a simple
Markowitz policy, with the mean return given by the difference between the midpoint price
and the current price.)

Other methods for trading stat-arbs follow directly from the spread models described
above. When the spread is modeled as an Ornstein-Uhlenbeck process, the optimal trading
strategy is found by solving a stochastic control problem [MPW08, JY07, Ber10]. In [YP12,
PY18, YP18] the authors model the spread as an autoregressive process, a discretization
of the Ornstein-Uhlenbeck process, and show how to trade a portfolio of spreads under
proportional transaction costs and gross exposure constraints using model predictive control.
With the copula approaches of [DMPZ16, SMK18, KS17], the trading strategy is based on
deviations from confidence intervals. The machine learning methods of [SH20, KDH17,
GOPZ21, DKB15, MZ14, TL13, Huc10, Huc09] also include trading strategies.

Exiting a stat-arb. A stat-arb will not keep its mean-reverting behavior forever. Hence,
a strategy for exiting a stat-arb, i.e., closing the position, is needed. One approach is to exit
when the spread reaches a certain threshold in terms of its standard deviation or in terms of
a price-band, as described below. Another simple method is to exit after a fixed time-period,
as was done in [GGR06].

A simple variation on any of these exit methods does not exit the position immediately
when the exit condition is first satisfied. Instead it reduces the position to zero slowly (e.g.,
linearly) over some fixed number of periods.
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Price-bands. Price-bands are popular in technical analysis, and are used to identify trad-
ing opportunities based on the price of an asset relative to its recent price history [LLP21].
The most popular is the Bollinger band [Bol92]. It is constructed by computing the M -day
moving average (with common choice M = 21) of the asset price, denoted µt at time t, and
the corresponding price standard deviation σt. The Bollinger band is then defined as the
interval [µt − kσt, µt + kσt], where k > 0 is a parameter, typically taken to be k = 2. A
price signal is extracted based on if the price is near the top or bottom of the band. For
a detailed description of the Bollinger band and other trading-bands, we refer the reader
to [Bol02, Bol92].

1.2 This paper

This paper proposes a new method for finding stat-arbs, with two main contributions. The
first contribution of our method is to formulate the search for stat-arbs as an optimization
problem that intuitively and directly relates to the desired properties of a stat-arb: its price
should remain in a band (i.e., be mean-reverting) and also should have a high variance. Since
our method is based on convex optimization, it readily scales to large universes of assets. It
can and does find stat-arbs with ten or more assets, well beyond our ability to carry out an
exhaustive search.

Our second contribution is to introduce the concept of a moving-band stat-arb. While
the idea of a price band is widely known and used in technical analysis trading, the main
difference is that we apply it to carefully constructed portfolios (i.e., stat-arbs), instead of
single assets.

Our focus is on finding both fixed-band and moving-band stat-arbs, and not on trading
them. Our numerical experiments use a simple linear trading policy, and a simple time-based
exit condition. (We have also verified that similar results are obtained using hysteris-based
trading policies.) We also do not address the question of how one might trade a portfolio of
stat-arbs, the focus of a forth-coming paper.

1.3 Outline

The rest of the paper is organized as follows. In §2 we propose a new method for finding
traditional stat-arbs, i.e., with a fixed band. We extend this method to moving bands in §3.
In §4 we present experiments on real data, and in §5 we conclude the paper.

2 Finding fixed-band stat-arbs

We consider a vector time series of prices of a universe of n assets, denoted Pt ∈ Rn,
t = 1, 2, . . . , T , denoted in USD per share. (We presume these are adjusted for dividends
and splits.) We consider a portfolio of these assets given by s ∈ Rn, denoted in shares, with
si < 0 denoting short positions. The price or net value of the portfolio is the scalar time
series pt = sTPt, t = 1, . . . , T . The asset prices Pt are positive, but the portfolio price pt
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need not be, since the entries of s can be negative. For future use, we define the average
price of the n assets as the vector P̄ = (1/T )

∑T
t=1 Pt.

We seek a portfolio for which pt consistently varies over a band (interval of prices) with
two goals. It should stay in the price band, and also, vary over the band consistently; that
is, it should frequently vary between the high end of the band and the low end of the band.
We refer to such a portfolio s as a stat-arb, so we use the term to refer to the general concept
as well as a specific portfolio. Our method differs from the traditional statistical framework,
where one would seek a portfolio s for which pt is co-integrated.

2.1 Formulation as convex-concave problem

We formulate the search for a stat-arb s as an optimization problem. The condition that pt
varies over a band is formulated as −1 ≤ pt − µ ≤ 1, where µ is the midpoint of the band.
Here we fix the width of the price band as 2; s and µ can always be scaled so this holds. We
express the desire that pt vary frequently over the band by maximizing its volatility. Since
s, p, and µ can all be multiplied by −1 without any effect on the constraints or objective,
we can assume that µ ≥ 0 without loss of generality.

We arrive at the problem

maximize
∑T

t=2(pt − pt−1)
2

subject to −1 ≤ pt − µ ≤ 1, pt = sTPt, t = 1, . . . , T
|s|T P̄ ≤ L, µ ≥ 0,

(1)

with variables s ∈ Rn, p ∈ RT , and µ ∈ R, where the absolute value in the last constraint
is elementwise. The problem data are the vector price time series Pt, t = 1, . . . , T , and the
positive parameter L.

Note that |s|T P̄ is the average total position of the portfolio, sometimes called its leverage,
so the constraint |s|T P̄ ≤ L is a leverage constraint; it limits the total position of the
portfolio. The leverage is a weighted ℓ1 norm of s, and so tends to lead to sparse s, i.e.,
a portfolio that concentrates in a few assets, a typical desired quality of a stat-arb. The
problem (1) is a nonconvex optimization problem, since the objective is a convex function,
and we wish to maximize it; we will explain below how we can approximately solve it.

2.2 Interpretation via a simple trading policy

While our formulation of the stat-arb optimization problem (1) makes sense on its own,
we can further motivate it by looking at the profit obtained using a simple trading policy.
Suppose we hold quantity qt ∈ R of the portfolio, i.e., we hold the portfolio qts ∈ Rn (in
shares). We assume that q0 = qT = 0, i.e., we start and end with no holdings. In period t
we buy qt − qt−1 and pay pt(qt − qt−1). The total profit is then

T−1∑
t=1

qt(pt+1 − pt). (2)
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We will relate this to our objective in (1) above, with the simple trading policy

qt = µ− pt, t = 1, . . . , T − 1, (3)

which we refer to as a linear trading policy since the holdings are a linear function of the
difference between the band midpoint and the current price. This trading policy holds
nothing when pt = µ, i.e., the price is in the middle of the band. When the price is low,
pt = µ− 1, we hold qt = +1, and when it is high, pt = µ+ 1 we hold qt = −1.

With the simple linear policy (3) and the boundary conditions q0 = qT = 0, the profit
(2) is, after some algebra,

1

2

T∑
t=2

(pt − pt−1)
2 +

(p1 − µ)2 − (pT − µ)2

2
.

The first term is one half our objective. The second term is between −1/2 and 1/2, since
(pT − µ)2 and (p1 − µ)2 are both between 0 and 1. Thus the profit is at least

1

2

(
T∑
t=2

(pt − pt−1)
2 − 1

)
. (4)

This shows that our objective is the profit of the simple linear policy (3), scaled by one-half,
plus a constant. In particular, if the objective of the problem (1) exceeds one, the simple
linear policy makes a profit.

2.3 Solution method

Convex-concave procedure. We solve the problem (1) approximately using sequential
convex programming, specifically the convex-concave procedure [SDGB16, LB16]. Let k
denote the iteration, with sk the portfolio and pkt the portfolio price in the kth iteration.
In each iteration of the convex-concave procedure, we linearize the objective, replacing the
quadratic function f(p) =

∑T
t=2(pt − pt−1)

2 with the affine approximation

f̂(p; pk) = f(pk) +∇f(pk)T (p− pk) = ∇f(pk)Tp+ c,

where c is a constant (i.e., does not depend on p). This linearization is a lower bound on
the true objective, i.e., we have f(p) ≥ f̂(p; pk) for all p. For completeness we note that

(∇f(p))t =


2(p1 − p2) t = 1

2(2pt − pt−1 − pt+1) t = 2, . . . , T − 1

2(pT − pT−1) t = T.

We now solve the linearized problem

maximize f̂(p; pk)
subject to −1 ≤ pt − µ ≤ 1, pt = sTPt, t = 1, . . . , T

|s|T P̄ ≤ L, µ ≥ 0,

(5)
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with variables pt, s and µ. This is a convex problem, in fact a linear program (LP), and
readily solved [BV04]. We take the solution of this problem as the next iterate pk+1, sk+1,
µk+1. This simple algorithm converges to a local solution of (1), typically in at most a few
tens of iterations.

Cleanup phase. The leverage constraint |s|T P̄ ≤ L encourages sparse solutions, but in
some cases the convex-concave procedure converges to a portfolio with a few small holdings.
To achieve even sparser portfolios, we can carry out a clean-up step once the convex-concave
procedure has converged. We first determine the subset of assets for which si is zero or small,
as measured by its relative weight in the portfolio, i.e., i for which

|si|P̄i ≤ η|s|T P̄ ,

where η is a small positive constant such as 0.05. We then solve the problem again, this time
with the constraint that all such si are zero. This takes just a few convex-concave iterations,
and can be repeated, which results in sparse portfolios in which every asset has weight at
least η.

Implementation. To make the optimization problem better conditioned, we scale the
prices Pt so that (after scaling) P̄ = 1, the vector with all entries one. Thus after scaling,
the leverage |s|T P̄ becomes the ℓ1 norm of s. We also scale the gradient (or objective) to
be on the order of magnitude one. These scalings do not affect the solution, but make the
method less vulnerable to floating point rounding errors.

Initialization. The final portfolio found by the convex-concave procedure, plus the cleanup
phase, depends on the initial portfolio s1. It can and does converge to different final portfolios
for different starting portfolios. With a random initialization we can find multiple stat-arbs
for the same universe. (We also get some duplicates when the method converges to the same
final portfolio from different initial portfolios.) We have found that uniform initialization of
the entries of s1 in the interval [0, 1] works well in practice. Thus from one universe and data
set, we can obtain multiple stat-arbs.

3 Finding moving-band stat-arbs

3.1 Moving-band stat-arbs

In the fixed-band stat-arb problem (1) µ is constant, so the midpoint of the trading band
does not vary with time. In this section we describe a simple but powerful extension in
which the stat-arb band midpoint changes over time. One simple (and traditional) choice
is to define µt as the mean of the trailing prices pt, for example the mean over the last M
periods,

µt =
1

M

t∑
τ=t−M+1

pτ .
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(This requires knowledge of the prices P0, P−1, . . . , P−M+1.) In this formulation, µt is also
a function of s, the portfolio, but it is a known linear function of it. Any other linear
expression for the average recent price could be used, e.g., exponentially weighted moving
average (EWMA). A moving-band stat-arb is a portfolio s in which the price pt stays in a
moving band with width two and midpoint µt, and also has high variance.

Trading policy. The simple linear trading policy (3) can be modified in the obvious way,
as

qt = µt − pt, t = 1, . . . , T − 1. (6)

3.2 Finding moving-band stat-arbs

We arrive at the optimization problem

maximize
∑T

t=2(pt − pt−1)
2

subject to −1 ≤ pt − µt ≤ 1, pt = sTPt, t = 1, . . . , T

|s|T P̄ ≤ L, µt = (1/M)
∑t

τ=t−M+1 pτ , t = 1, . . . , T,

(7)

with variables s ∈ Rn, p1, . . . , pT , and µ1, . . . , µT . (The latter two sets of variables are simple
linear functions of s.) In this problem we have an additional parameter M , the memory for
the band midpoint.

Note that in the fixed-band stat-arb problem (1), µ is a scalar variable that we freely
choose; in the moving-band stat-arb problem (7), µt varies over time, and is itself a function of
s. Despite this complication, the moving-band stat-arb problem (7) can be (approximately)
solved using exactly the same convex-concave method as the fixed-band stat-arb problem
(1); the only difference is in the convex constraints.

4 Numerical experiments

We illustrate our method with an empirical study on historical asset prices. Everything
needed to reproduce the results is available online at

https://github.com/cvxgrp/cvxstatarb.

4.1 Experimental setup

Data set. We use daily data of the CRSP US Stock Databases from the Wharton Research
Data Services (WRDS) portal [WRD23]. The data set consists of adjusted prices of 15405
stocks from January 4th, 2010, to December 30th, 2023, for a total of 3282 trading days.
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Monthly search for stat-arbs. Starting December 23, 2011, and every 21 trading days
thereafter, until July 6th, 2022, we use the convex-concave method with 10 different random
initial portfolios. From these 10 stat-arbs we add the unique ones, defined by the set of
assets in the stat-arb, to our current set of stat-arbs. All together we solve fixed-band and
moving-band problems 1270 times.

Parameters. We set L = $50 for the fixed-band stat-arb and L = $100 for the moving-
band stat-arb. For the moving-band stat-arb, we take M = 21 days, i.e., we use the trailing
month average price as the midpoint, a value commonly used for Bollinger bands [Bol92,
Bol02]. We note that our results are not very sensitive to the choices of L and M , and that
choosing a larger L for the moving-band than for the fixed-band stat-arb is reasonable since
we expect the price of a portfolio to vary less around its short-term moving midpoint than
around a fixed midpoint.

Trading policy. We use the simple linear trading policies defined in (3) and (6) for the
fixed-band and moving-band stat-arbs, respectively. We use a simple time-based exit condi-
tion, where we trade a stat-arb for Tmax trading days, and then exit the position uniformly
(linearly) over the next T exit trading days. This means we take

qt = (1− αt)(µ− pt), t = Tmax, . . . , Tmax + T exit − 1,

where αt = (t + 1 − Tmax)/T exit. We use parameter values Tmax = 63 for the fixed-band
stat-arb and Tmax = 125 for the moving-band stat-arb, and T exit = 21 for both. We also
exit a stat-arb if the value of the stat-arb plus a cash account drops below a given level, as
described below.

4.2 Simulation and metrics

We simulate a stat-arb as follows.

Cash account. Each stat-arb is initialized with a cash account value

C0 = ν|s|TP0,

where ν is a positive parameter and P0 is the price vector the day before we start trading
the stat-arb. We take ν = 0.5 in our experiments. The cash account is updated as

Ct+1 = Ct − (qt+1 − qt)pt+1 − ϕt, t = 1, . . . , T,

where ϕt is the transaction and holding cost, consisting of the trading cost at time t+1 and
the holding cost over period t, described below. The cash account plus the long position is
meant to be the collateral for the short positions.
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Portfolio net asset value. The net asset value (NAV) of the portfolio, including the cash
account, at time t is then

Vt = Ct + qtpt.

(Note that V0 = C0.) The profit at time t is

Vt − Vt−1 = qtpt + Ct − qt−1pt−1 − Ct−1 = qt(pt − pt−1)− ϕt,

which agrees with the profit formula (2), after accounting for transaction and holding costs.

NAV based termination. If the NAV goes below 50% of C0, we liquidate the stat-arb
portfolio. We do this for two reasons. First, we do not want the portfolio to have negative
value, i.e., to go bust. Second, this constraint ensures that the short positions are always
fully collateralized by the long positions plus the cash account, with a margin of at least half
of our initial investment. All of our metrics include early termination stat-arbs.

Trading and shorting costs. Our numerical experiments take into account transaction
costs, i.e., we buy assets at the ask price, which is the (midpoint) price plus one-half the
bid-ask spread, and we sell assets at the bid price, which is the price minus one-half the
bid-ask spread. Note that while we do not take into account transaction cost in our simple
trading policy, we do in simulation and accounting. We use 3 basis points per day as a proxy
for shorting costs. This corresponds to 7.5% annualized.

Metrics. The profit of a stat-arb is

T∑
t=1

(Vt − Vt−1),

where T = Tmax + T exit is the number of trading days in the evaluation period. The return
at time t is

rt =
Vt − Vt−1

Vt−1

, t = 1, . . . , T.

We report several standard metrics based on the daily returns rt. The average return is

r =
1

T

T∑
t=1

rt,

which we multiply by 250 to annualize. The risk (return volatility) is(
1

T

T∑
t=1

(rt − r)2
)1/2

,
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Figure 1: Distribution of the number of assets per fixed-band stat-arb.

Figure 2: Number of active fixed-band stat-arbs over time.

which we multiply by
√
250 to annualize. The annualized Sharpe ratio is the ratio of the

annualized average return to the annualized risk. Finally, the maximum drawdown is

max
1≤t1<t2≤T

(
Vt1

Vt2

− 1

)
,

the maximum drop in value form a previous high.

4.3 Results for fixed-band stat-arbs

Stat-arb statistics. After solving the fixed-band stat-arb problem 1270 times, we found
545 unique stat-arbs. These stat-arbs contained between 3 and 9 assets, with a median value
of 6, as shown in figure 1. Over time the number of active stat-arbs ranges up to 28, with
a median value of 17, as shown in figure 2. Out of the 545 stat-arbs, 26 (around 5%) were
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Profitability
Fraction of profitable stat-arbs 63%

Annualized return
Average 10%
Median 18%
75th percentile 33%
25th percentile -2%

Annualized risk
Average 32%
Median 21%
75th percentile 36%
25th percentile 12%

Annualized Sharpe ratio
Average 0.81
Median 1.05
75th percentile 1.80
25th percentile -0.06

Maximum drawdown
Average 15%
Median 10%
75th percentile 19%
25th percentile 5%

Table 1: Metric summary for 545 fixed-band stat-arbs.

terminated before the end of the evaluation period, due to the NAV falling below 50% of the
initial investment.

Metrics. Table 1 summarizes metrics related to the profitability of the fixed-band stat-
arbs. Of the 545 stat-arbs, 63% were profitable. The average annualized return is 10%,
with an average annualized risk of 32%, and an average annualized Sharpe ratio of 0.81.
The maximum drawdown was on average 15% over the four-month trading period for each
stat-arb.
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Figure 3: A fixed-band stat-arb strategy that made money. Top. Price. Bottom. Cumulative
profit.

Example stat-arbs. We show the detailed evolution of two stat-arbs, one that made
money and one that lost money, in figures 3 and 4, respectively. These were chosen to have
average returns around the 75th and 25th percentiles of the return distribution across our 545
stat-arbs. As expected both stat-arbs are very profitable in-sample. The first one continues
to be profitable out-of-sample.

The first one, which made money, contained the assets

Facebook
The Walt Disney Company
Eli Lilly and Company
Biogen
Occidental Petroleum Corporation
Alexion Pharmaceuticals.
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Figure 4: A fixed-band stat-arb strategy that lost money. Top. Price. Bottom. Cumulative profit.
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The second one, which lost money, contained the assets

Berkshire Hathaway
Mastercard
ArcelorMittal
El Paso Corporation
Kinder Morgan Energy Partners.
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Figure 5: Distribution of the number of assets per moving-band stat-arb.

Figure 6: Number of active moving-band stat-arbs over time.

4.4 Results for moving-band stat-arbs

Stat-arb statistics. We found 712 unique moving-band stat-arbs (compared with 545
fixed-band stat-arbs). These stat-arbs contained between 1 and 10 assets, with a median
value of 5. The full distribution is shown in figure 5. The number of active moving-band
stat-arbs over time is shown in figure 6. The median number of active stat-arbs is 40. This
is considerably larger than the number of active fixed-band stat-arbs since we find more of
them, and they are active (by our choice) almost twice as long. Only three (around 0.4%) out
of the 712 moving-band stat-arbs were terminated before the end of the evaluation period,
due to the NAV falling below 50% of the initial investment.

Metrics. Table 2 summarizes the profitability of the moving-band stat-arbs. A large ma-
jority (70%) of the stat-arbs are profitable. The average annualized return was 15%, with
an average annualized risk of 20%, and an average annualized Sharpe ratio of 0.84. The
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Profitability
Fraction of profitable stat-arbs 70%

Annualized return
Average 15%
Median 12%
75th percentile 24%
25th percentile 3%

Annualized risk
Average 20%
Median 15%
75th percentile 25%
25th percentile 9%

Annualized Sharpe
Average 0.84
Median 0.88
75th percentile 1.52
25th percentile 0.21

Maximum drawdown
Average 12%
Median 9%
75th percentile 15%
25th percentile 5%

Table 2: Metric summary for 712 moving-band stat-arbs.

maximum drawdown was on average 12% over the seven-month trading period for each
stat-arb.

Comparison with fixed-band stat-arbs. Our first observation is that far fewer of the
moving-band stat-arbs were terminated early due to low NAV than the fixed-band stat-arbs,
despite their running for a period almost twice as long. Comparing tables 1 and 2 we see
that the metrics for fixed-band stat-arbs are more variable, with a larger range in each of
the metrics. The moving-band stat-arbs are more profitable than the fixed-band stat-arbs,
but the difference is not large.

Example stat-arbs. Two stat-arbs, picked to represent roughly the 70th and 15th per-
centiles of the return distribution across the 712 stat-arbs, are illustrated in figures 7 and 8,
respectively. Again, both stat-arbs are profitable in-sample, and the first one continues to
be profitable out-of-sample.

The first one, which made money, contained the assets
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Figure 7: A moving-band stat-arb strategy that made money. Top. Price. Middle. Price relative
to the trailing mean. Bottom. Cumulative profit.

20



Figure 8: A moving-band stat-arb strategy that lost money. Top. Price. Middle. Price relative
to the trailing mean. Bottom. Cumulative profit.
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Morgan Stanley
Monsanto
Walgreen
Accenture
Pioneer Natural Resources.

The second one, which lost money, contained the assets

Lockheed Martin
ServiceNow
Gilead Sciences
NXP Semiconductors.
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5 Conclusions and comments

We have formulated the problem of finding stat-arbs as a nonconvex optimization problem
which can be approximately solved using the convex-concave procedure. We have intro-
duced moving-band stat-arbs, which combine ideas from statistical arbitrage and price band
trading.

Our empirical study on historical data shows that moving-band stat-arbs perform bet-
ter than fixed-band stat-arbs, and remain profitable for longer out-of-sample periods. Our
empirical study uses very simple trading and exit policies; we imagine that with more so-
phisticated ones such as those cited above, the results would be even better. Our focus in
this paper is on finding stat-arbs, and not on trading them.

Variations and extensions. We mention here several ideas that we tried out, but were
surprised to find did not improve the empirical results.

• Asset screening. We construct stat-arbs using assets only within an industry or sector.

• Validation. We split past asset prices into a training and a test set. We find candidate
stat-arbs using the training data and then test them on the test data. We then only
trade those with good test performance.

• Incorporating transaction costs in the trading policy. We modify the linear policy to
take into account transaction costs. (Our simulations take trading cost into account,
but our simple linear trading policy does not.)

• Hysteresis-based trading. We use a hysteresis-based trading policy, which can help
reduce transaction costs compared to the linear policy.

Trading a portfolio of stat-arbs. We have focussed on finding individual stat-arbs. A
next obvious topic is how to trade a portfolio of stat-arbs. This will be addressed in an
upcoming paper by the authors. We simply note here that the results presented in this
paper are all for single stat-arbs, and so fall somewhere in between individual assets and a
full portfolio.
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