Sample Efficient Reinforcement Learning with REINFORCE

Junzi Zhang, Jongho Kim, Brendan O'Donoghue, Stephen Boyd

EE & ICME Departments, Stanford University Google DeepMind

Algorithm Analysis for Learning and Games INFORMS Annual Meeting, 2020

- 2 Foundation of Policy Optimization/Gradient
- 3 Policy Gradient: Theory vs. Practice
- 4 Main Results
- 5 Conclusion

- 2 Foundation of Policy Optimization/Gradient
- 3 Policy Gradient: Theory vs. Practice
 - 4 Main Results
- 5 Conclusion

Markov Decision Process (MDP)

MDP (stationary, discounted): $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \gamma, \rho), \gamma \in [0, 1).$

• $\rho > 0$, $S = |S| < \infty$, $A = |A| < \infty$. W.I.o.g., $r(s, a) \in [0, 1]$.

• Goal: maximize $\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)\right]$, where $s_0 \sim \rho$, $a_t \sim \pi(s_t, \cdot)$, $s_{t+1} \sim p(\cdot|s_t, a_t)$, and $\pi: S \to \mathcal{P}(\mathcal{A})$ is called policy.

- **RL**: algorithms for solving MDPs with incomplete information of \mathcal{M} (*e.g.*, *p*, *r* accessible by interacting with the environment) as input.
- **Today**: fully online (no simulator), episodic (allow restart in the trajectory) and model-free (no storage of transition & reward models).

Success in practice is a combination of several major families of RL algorithms:

- Value function learning (relatively well understood)
 - Q-learning, SARSA, Bellman Residue Minimization, etc.
- Monte Carlo Tree Search (relatively well understood):
 - ϵ -greedy tree search, UCT, BRUE, etc.
- Policy optimization (not very well understood apart from first-order local convergence)
 - Policy gradient, random search, actor-critic, etc.

Today: practical versions of policy gradient methods including REINFORCE (one of the least understood).

- Poundation of Policy Optimization/Gradient
- 3 Policy Gradient: Theory vs. Practice
 - 4 Main Results
- 5 Conclusion

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

where

$$F(\pi) = \mathbf{E} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t),$$

 $s_0\sim
ho$, $a_t\sim \pi(s_t,\cdot)$, $s_{t+1}\sim p(\cdot|s_t,a_t)$, $orall t\geq 0$, and

$$\Pi = \left\{ \pi \in \mathbf{R}^{SA} \, \Big| \, \sum_{a=1}^{A} \pi_{s,a} = 1 \, (\forall s \in S), \, \pi_{s,a} \ge 0 \, (\forall s \in S, \, a \in \mathcal{A}) \right\}.$$

Policy Optimization

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

- $F(\pi)$ is also written as $V^{\pi}(\rho)$ in the value function learning literature.
- Policy parametrization: $\pi_{\theta} : \Theta \to \Pi$.
- New problem:

maximize_{$\theta \in \Theta$} $F(\pi_{\theta})$.

- **Today**: energy-based policies: $\pi_{\theta}(s, a) = \frac{\exp(\theta_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(\theta_{s,a'})}, \Theta = \mathbb{R}^{SA}$.
- Practical choice in reality, common basis for more advanced (*e.g.*, neural) parametrization.

- Question: Is $F(\pi_{\theta})$ differentiable?
- Answer: yes!
 - Indeed, $F(\pi_{\theta})$ is at least C^2 and $\nabla_{\theta}F(\pi_{\theta})$ is $8/(1-\gamma)^3$ -Lipschitz.

2 Foundation of Policy Optimization/Gradient

Olicy Gradient: Theory vs. Practice

4 Main Results

5 Conclusion

• (Vanilla) policy gradient method:

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

where $L_{\lambda}(\theta) = F(\pi_{\theta}) + \lambda R(\theta)$: e.g., entropy reg R.

- Some other variants: NPG (Fisher information matrix scaling), TRPO and PPO (trust region/KL regularization).
- What does the policy gradient look like?
 - Policy gradient theorems (PGT): hold for general C^1 -smooth π_{θ} .
 - Policy gradient estimators (PGE): Monte Carlo approx of PGT.
- How to reduce variance/errors caused by Monte Carlo approximation?
 - Mini-batch updates.

Poundation of Policy Optimization/Gradient

Olicy Gradient: Theory vs. Practice

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

4 Main Results

5 Conclusion

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathbf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla \log \pi_{\theta}(s, a) \right].$$

Here $au = (\textbf{s}_0, \textbf{a}_0, \textbf{r}_0, \textbf{s}_1, \textbf{a}_1, \textbf{r}_1, \dots)$ denotes a trajectory, and

$$\begin{split} \mathcal{Q}^{\pi}(s, \mathbf{a}) &= \mathsf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \mathbf{a}_{t}) \middle| s_{0} = s, \mathbf{a}_{0} = \mathbf{a}, \mathbf{a}_{t} \sim \pi(s_{t}, \cdot), s_{t+1} \sim p(\cdot|s_{t}, \mathbf{a}_{t}), \forall t > 0 \right], \\ d^{\pi}_{\rho} &= (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathsf{Prob}_{\pi}(s_{t} = s|s_{0} \sim \rho). \end{split}$$

PGE in Theoretical Analysis

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathbf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla \log \pi_{\theta}(s, a) \right].$$

• Vistation measure based PGE (used in theory):

$$ar{
abla}_{ heta}F(\pi_{ heta^k}) = rac{1}{1-\gamma}(ar{Q}^k(s,a)-b(s))
abla\log\pi_{ heta}(s,a),$$

where $s \sim d_{\rho}^{\pi_{\theta^k}}$, $a \sim \pi_{\theta^k}(s, \cdot)$, $\bar{Q}^k(s, a)$ approximates $Q^{\pi_{\theta^k}}(s, a)$, b is baseline: trajectory for sampling s is wasted.

• Example \bar{Q} : $\bar{Q}^k(s,a) = \sum_{t'=t}^{H^k} \gamma^{t'-t} r_{t'}^k$, H^k is a truncation horizon, $\tau^k = (s, a, r_0^k, \dots, s_{H^k}^k, a_{H^k}^k, r_{H^k}^k) \sim \mathbf{Prob}_{s,a}^{\pi_{\theta^k}}$.

• Trajectory-based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \mathsf{E}_{\tau \sim \mathsf{Prob}_{\rho}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q^{\pi_{\theta}}(s_{t}, a_{t}) \nabla \log \pi_{\theta}(s_{t}, a_{t}) \right]$$

• REINFORCE PGE (used in practice):

$$\hat{\nabla}_{\theta} F(\pi_{\theta^k}) = \sum_{t=0}^{\lfloor \beta H^k \rfloor} \gamma^t (\widehat{Q}^k(s_t^k, a_t^k) - b(s_t^k)) \nabla_{\theta} \log \pi_{\theta^k}(a_t^k | s_t^k),$$

where $\beta \in (0, 1)$, $\widehat{Q}^k(s, a)$ approximates $Q^{\pi_{\theta^k}}(s, a)$, b is baseline, H^k is truncation horizon, $\tau^k = (s_0^k, a_0^k, r_0^k, \dots, s_{H^k}^k, a_{H^k}^k, r_{H^k}^k) \sim \operatorname{Prob}_{\rho}^{\pi_{\theta^k}}$.

• Example
$$\widehat{Q}$$
: $\widehat{Q}^k(s_t^k, a_t^k) = \sum_{t'=t}^{H^k} \gamma^{t'-t} r_{t'}^k$.

- Actor-critic PGE: REINFORCE or visitation measure based estimators with *Q*-functions estimated using TD algorithms.
- Many other versions of policy gradient theorems, which is why you see so many different versions of so-called policy gradient algorithms.
 - Finite horizon cases

•
$$\nabla_{\theta} F(\pi_{\theta}) = \mathbf{E}_{\tau \sim \mathbf{Prob}_{\rho}^{\pi_{\theta}}}[Q^{\pi_{\theta}}(s_t, a_t) \sum_{t=0}^{H} \nabla \log \pi_{\theta}(s_t, a_t)]$$

- Zeroth-order approximation
 - a.k.a. random search, corresponding to a random perturbation/smoothing type "policy gradient theorem", widely used in PG + LQR literature.
- Question 1: Can we deal with all kinds of (practical) estimators (including REINFORCE)?

Poundation of Policy Optimization/Gradient

Olicy Gradient: Theory vs. Practice

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

4 Main Results

5 Conclusion

- Sample *M* independent trajectories τ₁^k,...,τ_M^k from *M* following policy π_{θ^k} and then compute an approximate gradient ∇_θ⁽ⁱ⁾L_{λ^k}(θ^k) (i = 1,..., M) using each of these *M* trajectories.
- Then update as follows:

$$\theta^{k+1} = \theta^k + \alpha^k \frac{1}{M} \sum_{i=1}^M \tilde{\nabla}_{\theta}^{(i)} L_{\lambda^k}(\theta^k).$$

• Question 2: Can we accurately characterize the effect of M?

Poundation of Policy Optimization/Gradient

Olicy Gradient: Theory vs. Practice

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

4 Main Results

5 Conclusion

	Global?	Practical PGE?	Finite MB?	High-Prob Rate?
Long Ago	No	Yes	Yes	No (a.s. Asymp)
~ 10 years	No	Yes	Yes	No (Rate in Expect.)
\sim 2 years	Yes	No	No: $\Omega(\frac{1}{M^p})$	No (Rate in Expect.)
Our Work	Yes	Yes	Yes	Yes (High-Prob $+ a.s.$)

Table: PGE: policy gradient estimators; MB: mini-batch

- Exceptions:
 - LQR [JSW20] (our work: general MDPs);
 - model-based NPG [CYJW19, ESRM20] (our work: model-free);
 - oracle-based NPG with linear regret term [AYBB+19] (our work: sub-linear regret).

- 2 Foundation of Policy Optimization/Gradient
- 3 Policy Gradient: Theory vs. Practice
 - Main Results
- 5 Conclusion

1) choose regularization $R(\theta) = \frac{1}{SA} \sum_{s \in S, a \in A} \log \pi_{\theta}(s, a)$; 2) decrease λ^k in doubling phases; 3) add simple truncation after each phase. Then we obtain (*N* is the number of episodes):

any-time sub-linear high-prob regret bound

$$O((M^{\frac{1}{6}} + M^{-\frac{5}{6}})(N + M)^{\frac{5}{6}}(\log(N/\delta))^{\frac{5}{2}} + M(\log N)^2) = \tilde{O}(N^{\frac{5}{6}}).$$

• a.s. convergence of average regret with asymptotic rate

$$O\left((M^{\frac{1}{6}}+M^{-\frac{5}{6}})N^{-\frac{1}{6}}\left(1+\frac{M}{N}\right)^{\frac{5}{6}}(\log N)^{\frac{5}{2}}+\frac{M(\log N)^{2}}{N}\right)=\tilde{O}(N^{-\frac{1}{6}}).$$

• A group of easy-to-verify assumptions for PGE:

- e.g., satisfied by REINFORCE with $\Theta(\log k)$ truncated horizon H^k ;
- **Phase analysis**: bound regret in each phase (with λ^k fixed)
 - Control of "bad" episodes: sub-linear upper bound on # episodes with large gradient norms ||∇_θL_λ(θ^k)||₂.
 - Gradient domination condition [AKLM19]: from gradient norm $\|\nabla_{\theta} L_{\lambda}(\theta^{k})\|_{2}$ to sub-optimality gap $F^{\star} F(\pi_{\theta^{k}})$.
- Doubling trick:
 - stitch together phase regrets with $\log N$ additional terms.
- \bullet From high prob (with $\log(1/\delta)$ dependency) to a.s.:
 - Borel-Cantelli.

- 2 Foundation of Policy Optimization/Gradient
- 3 Policy Gradient: Theory vs. Practice
 - 4 Main Results

Open problems:

- Practically widely used (relative) entropy regularization, and empirical tests of the log-barrier one adopted in our work and [AKLM19].
- Remove the necessity of $\rho > 0$.
- Function approximation.

Any Questions?

Thank you all for listening! Any questions?

[ZKOB20] Sample efficient reinforcement learning with REINFORCE, arXiv preprint arXiv:2010.11364, 2020.