Sample Efficient Reinforcement Learning with REINFORCE

Junzi Zhang¹, Jongho Kim¹, Brendan O'Donoghue², Stephen Boyd¹

¹EE & ICME Departments, Stanford University ²Google DeepMind

AAAI 2021 Virtual Presentation

1 / 31

ZKOB20 (Stanford University)

1 Why Policy Gradient & REINFORCE?

2 Review of Policy Gradient Methods

3 REINFORCE & Practical Policy Gradient Methods

1 Why Policy Gradient & REINFORCE?

- 2 Review of Policy Gradient Methods
- 3 REINFORCE & Practical Policy Gradient Methods

Reinforcement Learning (RL)

• **RL**: algorithms for solving MDPs with incomplete information of \mathcal{M} (*e.g.*, *p*, *r* accessible by interacting with the environment) as input.

Reinforcement Learning (RL)

- **RL**: algorithms for solving MDPs with incomplete information of \mathcal{M} (*e.g.*, *p*, *r* accessible by interacting with the environment) as input.
- **Today**: episodic (allow restart in the trajectory) and model-free (no storage of transition & reward models).

イロト イポト イヨト イヨト

э

イロン イ理ト イヨト イヨト

ZKOB20 (Stanford University)

E

イロト イヨト イヨト イヨト

- Value function learning (global convergence \checkmark)
 - Q-learning, SARSA, Bellman Residue Minimization, etc.

- Value function learning (global convergence \checkmark)
 - Q-learning, SARSA, Bellman Residue Minimization, etc.
- Monte Carlo Tree Search (global convergence ✓):
 - ϵ -greedy tree search, UCT, BRUE, etc.

- Value function learning (global convergence \checkmark)
 - Q-learning, SARSA, Bellman Residue Minimization, etc.
- Monte Carlo Tree Search (global convergence ✓):
 - $\epsilon\text{-greedy}$ tree search, UCT, BRUE, etc.
- Policy optimization (global convergence ✓メ)
 - Policy gradient, random search, actor-critic, etc.

- Value function learning (global convergence \checkmark)
 - Q-learning, SARSA, Bellman Residue Minimization, etc.
- Monte Carlo Tree Search (global convergence ✓):
 - $\epsilon\text{-greedy}$ tree search, UCT, BRUE, etc.
- Policy optimization (global convergence ✓メ)
 - Policy gradient, random search, actor-critic, etc.

Today: global convergence & sample efficiency of practical versions of policy gradient methods such as REINFORCE

REINFORCE: balance between **good empirical performance** & **implementation simplicity**

REINFORCE: balance between **good empirical performance** & **implementation simplicity**

- Neural Architecture Search
- Semantic Program Parser
- Visual Question Answering
- Dialogue generation
- Coreference resolution

Sample architecture A with probability p The controller (RNN) Compute gradient of p and scale it by R to update

scale it by R to upda the controller

イロト イポト イヨト イヨト

э

REINFORCE: balance between **good empirical performance** & **implementation simplicity**

- Neural Architecture Search
- Semantic Program Parser
- Visual Question Answering
- Dialogue generation
- Coreference resolution
- ...

イロト イポト イヨト イヨト

A good baseline and starting point!

Why Policy Gradient & REINFORCE?

2 Review of Policy Gradient Methods

3 REINFORCE & Practical Policy Gradient Methods

ZKOB20 (Stanford University)

MDP (stationary, discounted): $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \gamma, \rho)$, $\gamma \in [0, 1)$.

3

イロト イポト イヨト イヨト

MDP (stationary, discounted): $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \gamma, \rho), \gamma \in [0, 1).$

- $\rho > 0$, $S = |S| < \infty$, $A = |A| < \infty$. W.I.o.g., $r(s, a) \in [0, 1]$.
- Goal: maximize $\mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)\right]$, where $s_0 \sim \rho$, $a_t \sim \pi(s_t, \cdot)$, $s_{t+1} \sim p(\cdot|s_t, a_t)$, and $\pi : S \to \mathcal{P}(\mathcal{A})$ is called policy.

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

where

$$F(\pi) = \mathbf{E} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t),$$

 $s_0\sim
ho$, $a_t\sim\pi(s_t,\cdot)$, $s_{t+1}\sim p(\cdot|s_t,a_t)$, $orall t\geq 0$, and

$$\Pi = \left\{ \pi \in \mathbf{R}^{SA} \, \Big| \, \sum_{a=1}^{A} \pi_{s,a} = 1 \, (\forall s \in S), \, \pi_{s,a} \ge 0 \, (\forall s \in S, \, a \in \mathcal{A}) \right\}.$$

3

イロト 不得下 イヨト イヨト

Policy Optimization

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

• $F(\pi)$ is also written as $V^{\pi}(\rho)$ in the value function learning literature.

Policy Optimization

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

- $F(\pi)$ is also written as $V^{\pi}(\rho)$ in the value function learning literature.
- Policy parametrization: $\pi_{\theta}: \Theta \to \Pi$.

• New problem:

maximize_{$\theta \in \Theta$} $F(\pi_{\theta})$.

A B > A B >

Policy Optimization

• Policy optimization reformulation:

maximize_{$\pi \in \Pi$} $F(\pi)$,

- $F(\pi)$ is also written as $V^{\pi}(\rho)$ in the value function learning literature.
- Policy parametrization: $\pi_{\theta} : \Theta \to \Pi$.
- New problem:

maximize_{$\theta \in \Theta$} $F(\pi_{\theta})$.

- Today energy-based policies: $\pi_{\theta}(s, a) = \frac{\exp(\theta_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(\theta_{s,a'})}, \Theta = \mathbb{R}^{SA}$.
- Practical choice in reality, common basis for more advanced (*e.g.*, neural) parametrization.

- 本間 ト イヨ ト イヨ ト 二 ヨ

• Question: Is $F(\pi_{\theta})$ differentiable?

- モト ・ モト

- Question: Is $F(\pi_{\theta})$ differentiable?
- Answer: yes!
 - Indeed, $F(\pi_{\theta})$ is at least C^2 and $\nabla_{\theta}F(\pi_{\theta})$ is $8/(1-\gamma)^3$ -Lipschitz.

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

where $L_{\lambda}(\theta) = F(\pi_{\theta}) + \lambda R(\theta)$: *e.g.*, entropy reg *R*.

• Some other variants: NPG, TRPO/PPO, DPG etc.

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

- Some other variants: NPG, TRPO/PPO, DPG etc.
- What does the policy gradient look like?

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

- Some other variants: NPG, TRPO/PPO, DPG etc.
- What does the policy gradient look like?
 - **Policy gradient theorems** (PGT): hold for general C^1 -smooth π_{θ} .
 - Policy gradient estimators (PGE): Monte Carlo approx of PGT.

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

- Some other variants: NPG, TRPO/PPO, DPG etc.
- What does the policy gradient look like?
 - **Policy gradient theorems** (PGT): hold for general C^1 -smooth π_{θ} .
 - Policy gradient estimators (PGE): Monte Carlo approx of PGT.
- How to reduce variance caused by Monte Carlo approximation?

$$\theta^{k+1} = \theta^k + \alpha^k \nabla_\theta L_{\lambda^k}(\theta^k),$$

- Some other variants: NPG, TRPO/PPO, DPG etc.
- What does the policy gradient look like?
 - **Policy gradient theorems** (PGT): hold for general C^1 -smooth π_{θ} .
 - Policy gradient estimators (PGE): Monte Carlo approx of PGT.
- How to reduce variance caused by Monte Carlo approximation?
 - Mini-batch updates.

8 REINFORCE & Practical Policy Gradient Methods

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathsf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathsf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right].$$

글 🖌 🖌 글 🕨

Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathsf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathsf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right].$$

Here $au = (s_0, a_0, r_0, s_1, a_1, r_1, \dots)$ denotes a trajectory, and

$$\begin{aligned} \mathcal{Q}^{\pi}(s,a) &= \mathsf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) \middle| s_{0} = s, a_{0} = a, a_{t} \sim \pi(s_{t},\cdot), s_{t+1} \sim p(\cdot|s_{t},a_{t}), \forall t > 0\right], \\ d^{\pi}_{\rho} &= (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathsf{Prob}_{\pi}(s_{t} = s|s_{0} \sim \rho). \end{aligned}$$

프 에 에 프 어

PGE in Theoretical Analysis

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathsf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathsf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right].$$

• Vistation measure based PGE (used in theory):

$$\hat{
abla}_{ heta}F(\pi_{ heta^k}) = rac{1}{1-\gamma}(\hat{Q}^k(s,a)-b(s))
abla_{ heta}\log\pi_{ heta}(s,a),$$

where $s \sim d_{\rho}^{\pi_{\theta^k}}$, $a \sim \pi_{\theta^k}(s, \cdot)$, $\hat{Q}^k(s, a) \approx Q^{\pi_{\theta^k}}(s, a)$, b is baseline:

(4) 医(1) (4) 医(1)

PGE in Theoretical Analysis

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathsf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathsf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right].$$

• Vistation measure based PGE (used in theory):

$$\hat{
abla}_{ heta}F(\pi_{ heta^k}) = rac{1}{1-\gamma}(\hat{Q}^k(s,a)-b(s))
abla_{ heta}\log\pi_{ heta}(s,a),$$

where $s \sim d_{\rho}^{\pi_{\theta^k}}$, $a \sim \pi_{\theta^k}(s, \cdot)$, $\hat{Q}^k(s, a) \approx Q^{\pi_{\theta^k}}(s, a)$, b is baseline: • Trajectory for sampling s is wasted, rarely used in practice.

PGE in Theoretical Analysis

• Visitation-measure based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathsf{E}_{s \sim d_{\rho}^{\pi_{\theta}}} \mathsf{E}_{a \sim \pi_{\theta}(s, \cdot)} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right].$$

• Vistation measure based PGE (used in theory):

$$\hat{
abla}_{ heta}F(\pi_{ heta^k}) = rac{1}{1-\gamma}(\hat{Q}^k(s, a) - b(s))
abla_{ heta}\log\pi_{ heta}(s, a),$$

where $s \sim d_{\rho}^{\pi_{\theta^k}}$, $a \sim \pi_{\theta^k}(s, \cdot)$, $\hat{Q}^k(s, a) \approx Q^{\pi_{\theta^k}}(s, a)$, b is baseline:

- Trajectory for sampling s is wasted, rarely used in practice.
- Example \hat{Q} : $\hat{Q}^k(s, a) = \sum_{t'=t}^{H^k} \gamma^{t'-t} r_{t'}^k$, H^k is a truncation horizon, $\tau^k = (s, a, r_0^k, \dots, s_{H^k}^k, a_{H^k}^k, r_{H^k}^k) \sim \mathbf{Prob}_{s,a}^{\pi_{\theta^k}}$.

PGE in Practice

• Trajectory-based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \mathbf{E}_{\tau \sim \mathbf{Prob}_{\rho}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t}) \right]$$

E

イロト イポト イヨト イヨト

• Trajectory-based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \mathbf{E}_{\tau \sim \mathbf{Prob}_{\rho}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t}) \right]$$

• REINFORCE PGE (used in practice):

$$\hat{\nabla}_{\theta} F(\pi_{\theta^k}) = \sum_{t=0}^{\lfloor \beta H^k \rfloor} \gamma^t (\widehat{Q}^k(s_t^k, a_t^k) - b(s_t^k)) \nabla_{\theta} \log \pi_{\theta^k}(a_t^k | s_t^k),$$

where $\beta \in (0,1)$, $\widehat{Q}^k(s,a) \approx Q^{\pi_{\theta^k}}(s,a)$, *b* is baseline, H^k is the truncation horizon, $\tau^k = (s_0^k, a_0^k, r_0^k, \dots, s_{H^k}^k, a_{H^k}^k, r_{H^k}^k) \sim \operatorname{Prob}_{\rho}^{\pi_{\theta^k}}$.

• Example
$$\widehat{Q}$$
: $\widehat{Q}^k(s_t^k, a_t^k) = \sum_{t'=t}^{H^k} \gamma^{t'-t} r_{t'}^k$.

• Another trajectory-based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \mathbf{E}_{\tau \sim \mathbf{Prob}_{\rho}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \sum_{h=0}^{t} \nabla_{\theta} \log \pi_{\theta}(s_{h}, a_{h}) \right]$$

イロト イポト イヨト イヨト

• Another trajectory-based PGT:

$$\nabla_{\theta} F(\pi_{\theta}) = \mathbf{E}_{\tau \sim \mathbf{Prob}_{\rho}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \sum_{h=0}^{t} \nabla_{\theta} \log \pi_{\theta}(s_{h}, a_{h}) \right]$$

• GPOMDP PGE (used in practice):

$$\hat{\nabla}_{\theta} F(\pi_{\theta^k}) = \sum_{t=0}^{H^k} \gamma^t (r_t^k - b_t) \sum_{h=0}^t \nabla_{\theta} \log \pi_{\theta^k}(a_h^k | s_h^k),$$

where b is baseline, H^k is the truncation horizon.

• Actor-Critic PGE: Q-functions estimated using TD algorithms.

- イヨト イヨト

- Actor-Critic PGE: Q-functions estimated using TD algorithms.
- Zeroth-Order/Random Search PGE:
 - $\bullet\,$ Corresponding to a random perturbation/smoothing type "policy gradient theorem", widely used in PG + LQR literature.

- Actor-Critic PGE: Q-functions estimated using TD algorithms.
- Zeroth-Order/Random Search PGE:
 - $\bullet\,$ Corresponding to a random perturbation/smoothing type "policy gradient theorem", widely used in PG + LQR literature.
- Question 1: Can we deal with all kinds of (practical) estimators (*e.g.*, REINFORCE)?

8 REINFORCE & Practical Policy Gradient Methods

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

Sample *M* independent trajectories τ^k₁,...,τ^k_M from *M* following policy π_{θ^k} and then compute an approximate gradient \$\hat{\sigma_{\theta}^{(i)}L_{\lambda^k}(\theta^k)\$}\$ (i = 1,..., M) using each of these *M* trajectories.

- Sample *M* independent trajectories τ^k₁,...,τ^k_M from *M* following policy π_{θ^k} and then compute an approximate gradient \$\hat{\sigma_{\theta}^{(i)}L_{\lambda^k}(\theta^k)\$}\$ (i = 1,..., M) using each of these *M* trajectories.
- Then update as follows:

$$\theta^{k+1} = \theta^k + \alpha^k \frac{1}{M} \sum_{i=1}^M \hat{\nabla}_{\theta}^{(i)} L_{\lambda^k}(\theta^k).$$

- Sample *M* independent trajectories τ^k₁,...,τ^k_M from *M* following policy π_{θ^k} and then compute an approximate gradient \$\hat{\sigma_{\theta}^{(i)}L_{\lambda^k}(\theta^k)\$}\$ (i = 1,..., M) using each of these *M* trajectories.
- Then update as follows:

$$\theta^{k+1} = \theta^k + \alpha^k \frac{1}{M} \sum_{i=1}^M \hat{\nabla}_{\theta}^{(i)} \mathcal{L}_{\lambda^k}(\theta^k).$$

• Question 2: Can we accurately characterize the effect of M?

8 REINFORCE & Practical Policy Gradient Methods

- Policy Gradient Estimators
- Mini-batch updates
- Our Contribution

	Global?	Practical PGE?	Finite MB?	High-Prob Rate?		
Long Ago	No	Yes	Yes	No (a.s. Asymp)		
\sim 10 years	No	Yes	Yes	No (Rate in Expect.)		
\sim 2 years	Yes	No	No: $\Omega(\frac{1}{M^p})$	No (Rate in Expect.)		
Our Work	Yes	Yes	Yes	Yes (High-Prob + a.s.)		

Table: PGE: policy gradient estimators; MB: mini-batch

	Global?	Practical PGE?	Finite MB?	High-Prob Rate?		
Long Ago	No	Yes	Yes	No (a.s. Asymp)		
~ 10 years	No	Yes	Yes	No (Rate in Expect.)		
\sim 2 years	Yes	No	No: $\Omega(\frac{1}{M^p})$	No (Rate in Expect.)		
Our Work	Yes	Yes	Yes	$Yes\;(High\operatorname{-Prob}\;+\;a.s.)$		

Table: PGE: policy gradient estimators; MB: mini-batch

• Exceptions:

- LQR [JSW20] (our work: general MDPs);
- NPG [AYBB+19, CYJW19, ESRM20] (our work: vanilla PG).

Algorithm Specification & PGE Assumptions

• Choose regularization
$$R(\theta) = \frac{1}{SA} \sum_{s \in S, a \in A} \log \pi_{\theta}(s, a)$$
 ($\frac{\lambda}{S}$ -smooth);

3

イロト イポト イヨト イヨト

Algorithm Specification & PGE Assumptions

- Choose regularization $R(\theta) = \frac{1}{SA} \sum_{s \in S, a \in A} \log \pi_{\theta}(s, a)$ ($\frac{\lambda}{S}$ -smooth);
- **②** Decrease λ^k in doubling phases indexing: $k \to (l, k)$;

Algorithm Specification & PGE Assumptions

- Choose regularization $R(\theta) = \frac{1}{SA} \sum_{s \in S, a \in A} \log \pi_{\theta}(s, a)$ ($\frac{\lambda}{S}$ -smooth);
- **2** Decrease λ^k in doubling phases indexing: $k \to (l, k)$;
- Add simple truncation after each phase (to bound log).

Assumption (PGE: nearly unbiased & bounded variance)

There exist constants C, C₁, C₂, M₁, M₂ > 0, such that for all I, $k \ge 0$, we have $\|\widehat{\nabla}_{\theta}L_{\lambda'}(\theta^{I,k})\|_2 \le C_1$ almost surely and that

$$\nabla_{\theta} L_{\lambda'}(\theta^{I,k})^{T} \mathsf{E}_{I,k} \widehat{\nabla}_{\theta} L_{\lambda'}(\theta^{I,k}) \geq C_{2} \|\nabla_{\theta} L_{\lambda'}(\theta^{I,k})\|_{2}^{2} - \delta_{I,k}, \tag{1}$$

$$\mathbf{E}_{I,k}\|\widehat{\nabla}_{\theta}L_{\lambda^{k}}(\theta^{I,k})\|_{2}^{2} \leq M_{1} + M_{2}\|\nabla_{\theta}L_{\lambda^{I}}(\theta^{I,k})\|_{2}^{2},$$

$$(2)$$

where $\sum_{k=0}^{T_l-1} \delta_{l,k}^2 \leq C$, $\forall l \geq 0$. Also, $H^{l,k} \geq \log_{1/\gamma}(k+1)$, $\forall l, k \geq 0$.

イロト イポト イヨト イヨト 二日

Then we obtain (N is the number of episodes):

Ξ

- イヨト イヨト

Then we obtain (N is the number of episodes):

any-time sub-linear high-prob regret bound

$$O((M^{\frac{1}{6}} + M^{-\frac{5}{6}})(N + M)^{\frac{5}{6}}(\log(N/\delta))^{\frac{5}{2}} + M(\log N)^{2}) = \tilde{O}(N^{\frac{5}{6}}).$$

글 🖌 🖌 글 🕨

Then we obtain (N is the number of episodes):

any-time sub-linear high-prob regret bound

$$O((M^{\frac{1}{6}} + M^{-\frac{5}{6}})(N + M)^{\frac{5}{6}}(\log(N/\delta))^{\frac{5}{2}} + M(\log N)^2) = \tilde{O}(N^{\frac{5}{6}}).$$

a.s. convergence of average regret with asymptotic rate

$$O\left((M^{\frac{1}{6}}+M^{-\frac{5}{6}})N^{-\frac{1}{6}}\left(1+\frac{M}{N}\right)^{\frac{5}{6}}(\log N)^{\frac{5}{2}}+\frac{M(\log N)^{2}}{N}\right)=\tilde{O}(N^{-\frac{1}{6}}).$$

For REINFORCE & GPOMDP PGEs:

• PGE assumptions easily verified with $\Theta(\log k)$ truncated horizon H^k .

For REINFORCE & GPOMDP PGEs:

- PGE assumptions easily verified with $\Theta(\log k)$ truncated horizon H^k .
- $\textbf{0} \hspace{0.1 cm} \text{any-time sub-linear high-prob regret bound (w.p. at least <math>1-\delta)$

$$O\left(\left(\frac{S^2A^2}{(1-\gamma)^7} + \left\|\frac{d_{\rho}^{\pi^{\star}}}{\rho}\right\|_{\infty}\right)(M^{\frac{1}{6}} + M^{-\frac{5}{6}})(N+M)^{\frac{5}{6}}(\log(N/\delta))^{\frac{5}{2}} + M(\log N)^2\right)$$

For REINFORCE & GPOMDP PGEs:

- PGE assumptions easily verified with $\Theta(\log k)$ truncated horizon H^k .
- $\textbf{0} \hspace{0.1 cm} \text{any-time sub-linear high-prob regret bound (w.p. at least <math>1-\delta)$

$$O\left(\left(\frac{S^2A^2}{(1-\gamma)^7} + \left\|\frac{d_{\rho}^{\pi^*}}{\rho}\right\|_{\infty}\right)(M^{\frac{1}{6}} + M^{-\frac{5}{6}})(N+M)^{\frac{5}{6}}(\log(N/\delta))^{\frac{5}{2}} + M(\log N)^2\right)$$

2 a.s. convergence of average regret with asymptotic rate

$$O\left(\left(\frac{S^2A^2}{(1-\gamma)^7} + \left\|\frac{d_{\rho}^{\pi^*}}{\rho}\right\|_{\infty}\right)(M^{\frac{1}{6}} + M^{-\frac{5}{6}})N^{-\frac{1}{6}}\left(1 + \frac{M}{N}\right)^{\frac{5}{6}}(\log N)^{\frac{5}{2}} + \frac{M(\log N)^2}{N}\right)$$

1

• **Phase analysis**: bound regret in each phase (with λ^k fixed)

(*) *) *) *)

- **Phase analysis**: bound regret in each phase (with λ^k fixed)
 - Control of "bad" episodes: sub-linear upper bound on # episodes with large gradient norms ||∇_θL_λ(θ^k)||₂.

- Phase analysis: bound regret in each phase (with λ^k fixed)
 - Control of "bad" episodes: sub-linear upper bound on # episodes with large gradient norms ||∇_θL_λ(θ^k)||₂.
 - Gradient domination condition [AKLM19]: from gradient norm $\|\nabla_{\theta} L_{\lambda}(\theta^{k})\|_{2}$ to sub-optimality gap $F^{\star} F(\pi_{\theta^{k}})$.

- **Phase analysis**: bound regret in each phase (with λ^k fixed)
 - Control of "bad" episodes: sub-linear upper bound on # episodes with large gradient norms ||∇_θL_λ(θ^k)||₂.
 - Gradient domination condition [AKLM19]: from gradient norm $\|\nabla_{\theta} L_{\lambda}(\theta^{k})\|_{2}$ to sub-optimality gap $F^{\star} F(\pi_{\theta^{k}})$.
- Doubling trick:
 - stitch together phase regrets with $\log N$ additional terms.

- Phase analysis: bound regret in each phase (with λ^k fixed)
 - Control of "bad" episodes: sub-linear upper bound on # episodes with large gradient norms ||∇_θL_λ(θ^k)||₂.
 - Gradient domination condition [AKLM19]: from gradient norm $\|\nabla_{\theta} L_{\lambda}(\theta^{k})\|_{2}$ to sub-optimality gap $F^{*} F(\pi_{\theta^{k}})$.
- Doubling trick:
 - stitch together phase regrets with $\log N$ additional terms.
- From high prob (with $\log(1/\delta)$ dependency) to a.s.:
 - Borel-Cantelli.

Extended version of this work (posting soon, check https://stanford.edu/~boyd/papers/conv_reinforce.html):

- Episodic finite horizon MDPs.
- Additional PGEs.

Extended version of this work (posting soon, check https://stanford.edu/~boyd/papers/conv_reinforce.html):

- Episodic finite horizon MDPs.
- Additional PGEs.

Some future directions:

- Practically widely used (relative) entropy regularization, and empirical tests of the log-barrier one adopted in our work and [AKLM19].
- Remove the necessity of the positivity assumption ($\rho > 0$).
- Function approximation.

Thank you all for listening! Any questions?

э