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About this talk

I ideas, sloppy math

I opinions (some controversial)

I covers lots of work done by others with no explicit attribution

I sadly, no fun videos or cool examples
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Convex optimization control policies

I many control policies are based on solving a convex optimization problem

I we call these convex optimization control policies (COCPs)
I examples

– linear quadratic regulator (LQR), Kalman filter (KF)
– convex control
– approximate dynamic programming (ADP)
– model predictive control (MPC) / receding horizon control (RHC)
– single and multiple period (financial) trading
– actuator allocation
– real-time resource allocation

I a few of these are analytically solvable; we focus on the others
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Traditional quadratic control

I dynamics xt+1 = Axt + But + wt , wt IID zero mean

I convex quadratic stage cost xTQx + uTRu

I minimize expected average stage cost

I optimal (LQR) policy has form

ut = argmin
u

(
uTRu + (Axt + Bu)TP(Axt + Bu)

)
i.e., find ut by minimizing a convex quadratic function

I analytically solve to get ut = Kxt
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Convex control via dynamic programming

I dynamics xt+1 = f (xt , ut , ωt), ωt IID, f affine in x , u

I stage cost g convex in x , u

I minimize expected average stage cost

I optimal policy is

ut = argmin
u

E
(
g(xt , u, ωt) + V (f (xt , u, ωt)

)
I V is (convex) value or Bellman function

I ut obtained by minimizing a convex function
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Approximate dynamic programming

I use dynamic programming form with approximate value function

I ADP policy is

ut = argmin
u

E
(
g(xt , u, ωt) + V̂ (f (xt , u, ωt))

)
I V̂ is (convex) approximate or surrogate value function

I V̂ chosen to

– capture general shape of V
– make optimization problem tractable, i.e., convex in u

I requires only that f is affine in u, g is convex in u
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Model predictive control

I dynamics function f affine in x , u, stage cost g convex in x , u

I MPC policy: solve

minimize
∑t+H

τ=t g(xτ , uτ , ω̂τ |t)
subject to xτ+1 = f (xτ , uτ , ω̂τ |t), τ = t, . . . , t + H − 1

and take ut as control

I xt is given; xt+1, . . . , xt+H are variables

I ω̂τ |t is forecast of ωτ made at time t

I plan full trajectory xτ , uτ over τ = t, t + 1, . . . , t + H; use only ut
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Multi-forecast model predictive control

I use multiple forecasts ω̂i
τ |t , i = 1, . . . ,K

I interpret as K different scenarios or contingencies

I MF-MPC policy: solve

minimize
∑K

i=1

∑t+H
τ=t g(x iτ , u

i
τ , ω̂

i
τ |t)

subject to x iτ+1 = f (x iτ , u
i
τ , ω̂

i
τ |t), τ = t, . . . , t + H − 1, i = 1, . . .K

u1
t = · · · = uKt

and take u1
t as control

I plan for all contingencies, but require first action to be the same for all
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Single period trading

I wt is (given, current) asset allocation weight in period t, 1Twt = 1

I w̃t is post-trade allocation, chosen by maximizing

αT
t w̃t − γw̃T

t Σtw̃t − φhld
t (w̃t)− φtc

t (w̃t − wt)

(risk and cost-adjusted expected return) subject to 1T w̃t = 1

I αt is forecast return, Σt is return covariance, γ > 0 is risk aversion

I φhld and φtc are convex holding and transaction cost functions
(can be +∞ to encode constraints)

I readily extended to multi-period (MPC)
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Actuator allocation

I higher level control policy produces desired forces and torques ft
I actuator allocation: choose actuator values ut by solving

minimize gt(u) + λ‖u − ut−1‖2
2

subject to u ∈ Ut , Atu = ft

I gt is convex cost function (fuel use, energy, . . . )

I second objective term encourages smooth actuator values, λ > 0

I Ut is actuator constraint set

I At maps actuator values into net forces and torques

I gracefully handles actuator failure, degradation, varying effectiveness
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Resource allocator

I m resources to be distributed across n agents or tasks

I at ∈ Rm
+ is available resources

I action is resource allocation ut ∈ Rm×n

I choose ut by solving
maximize Ut(u)
subject to u ≥ 0, u1 ≤ at

I Ut is concave utility, usually separable across tasks
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Convex optimization policy: General form

convex optimization control policy (COCP): action ut is solution of

minimize f0(xt , u, θ)
subject to fi (xt , u, θ) ≤ 0, i = 1, . . . ,m

A(xt , θ)u = b(xt , θ)

with variable u (and possibly others, not shown)

I fi are convex in u

I xt is the state or context

I θ ∈ Θ are parameters that flavorize the policy
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Procedural versus declarative policies

I procedural policy:

– designer explicitly specifies what to do in given context
– e.g., ut = −KPet − KI

∑t
τ=0 eτ

I declarative policy:

– designer articulates what she wants and requires
– and lets the optimization solver figure out how to do it
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Advantages (non-controversial)

COCPs

I are interpretable; we understand exactly what they do

I respect constraints better than simple projection / clipping

I can incorporate (almost never active) safety constraints

I gracefully handle changing dynamics / availabilities / failures

I can be effectively tuned (more later)

a non-disadvantage:

I COCPs can be made fast, totally reliable, even division free in some cases
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Advantages (possibly controversial)

I COCPs never do anything crazy, like characterize a stop sign as a banana

I parametrizing COCP is better than raw controller or policy
(stated in LQR context since 1960)
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Design flow

1. build high fidelity simulator, using real historical data, generative model, etc.

2. implement code that evaluates true performance objective(s)

3. choose a parametrized convex optimization based policy

4. tune the parameters until you’re OK with the simulated performance
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Traditional tuning / tweaking

I typically done by hand for a few parameters that scale objective terms
I the method:

1. start with a reasonable value for θ
2. simulate and evaluate performance objective
3. update θ by hand (typically one parameter at a time)
4. repeat until (happy ‖ bored ‖ out of time)

I alternative: fire up a derivative free method, then go to lunch
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Auto-tuning

I compute ∇θL(θk)

I L is true performance objective evaluated via simulation

I update θk+1 = ΠΘ

(
θk − tk∇θL(θk)

)
I L often not differentiable

I follow NN tradition and ignore

I use automatic differentiation to compute “∇”L(θk)

I θ can contain more than a few parameters

I use different test and validation simulations to avoid over-tuning
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Example: ADP for box-constrained LQR

I xt+1 = Axt + But + wt , wt ∼ N (0, I )

I actuator limit ‖ut‖∞ ≤ 1

I cost is average value of xTt Qxt + uTt Rut
I ADP policy: ut is solution of

minimize uTRu + ‖θ(Axt + Bu)‖2
2

subject to ‖u‖∞ ≤ 1

I we’ll compare to clipped LQR and LMI-based upper- and lower-bounds
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Auto-tuning ADP for box-constrained LQR
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Example: Single period trading engine

I wt ∈ R7 are weights on 7 ETFs

I post-trade allocation w̃t is solution of

maximize αT
t w − γtwTΣtw − γhld

t 1T (w)− − γtc
t ‖w − wt‖1

subject to 1Tw = 1, ‖w‖1 ≤ 1.5, w ≤ 0.5

I αt and Σt depend on VIX (volatility index) quintiles

I 15 parameters: (γ, γhld, γtc) for each of 5 VIX quintiles

I simulations on (realistic) log-normal returns conditioned on VIX index,
0.1% transaction costs, 0.02% shorting costs
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Tuning objective

I Sharpe ratio: annualized return / annualized volatility
I drawdown at time t is dt = (ht − vt)/ht = 1− vt/ht

– vt is portfolio value
– ht = maxτ=1,...,t vτ is previous high value

I tuning objective: maximize Sharpe ratio minus average drawdown %

I initialize with γ = 5 and true costs

I we’ll compare to a policy that ignores VIX, uses common α and Σ
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Tuning results

policy return volatility Sharpe drawdown objective

common 9.2% 7.9% 1.2 2.6% -1.4

initial 13.5% 7.1% 1.9 1.3% 0.6

tuned 17.3% 6.7% 2.6 1.0% 1.6

(average of eight 750-day simulations, not used for tuning)
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Tuning progress
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Wealth trajectory
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Drawdown
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Domain specific languages for convex optimization

I DSLs make it easy to specify and solve convex problems

I grammar and semantics based on a single rule from convex analysis

I examples: YALMIP, CVX, CVXPY, Convex.jl, CVXR

I basic deal:

– you accept strong restrictions on the problems you can specify
– in return, your problem is solved globally and efficiently
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CVXPY example

import cvxpy as cp

x = cp.Parameter((n, 1))

theta = cp.Parameter((n, n))

u = cp.Variable((m, 1))

x_next = cp.Variable((n, 1))

objective = cp.sum_squares(theta @ x_next) + cp.quad_form(u, R)

constraints = [x_next == A @ x + B @ u, cp.norm(u, "inf") <= 1]

cocp = cp.Problem(cp.Minimize(objective), constraints)

cocp.solve()
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How they work

three steps:

1. canonicalize your problem description into a standard form

2. solve the standard form problem

3. retrieve solution of your problem from the standard form solution

normal people do not need to know this; they just call the solve() method

can view as three-step mapping from problem parameters to solution

parameters C S R solution
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Differentiating through a convex optimization problem

I if you accept some additional restrictions on how parameters enter the problem
description, canonicalization and retrieval maps can be linear

I parameters-to-solution map is RSC , where R and C are sparse matrices

I eliminates canonicalization / retrieval cost when you solve for different parameters

I derivative of parameters-to-solution map: R(DS)C

I can be chained to automatically and efficiently compute ∇θL(θ)
(even when L(θ) involves solving many convex problems)
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CVXPY layers

from cvxpylayers.torch import CvxpyLayer

layer = CvxpyLayer(cocp, parameters=[theta, x], variables=[u])

cost = 0.

for t in range(100):

u_t, = layer(theta_torch, x_t)

cost += stage_cost(u_t, x_t)

x_t = dynamics(x_t, u_t)

cost.backward()

gradient = theta_torch.grad
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Bonus: Code generation

I CSR form gives easy method for code generation

I compute R and C explicitly as sparse matrices

I canonicalization, retrieval now super fast

I link to suitable embedded solver like OSQP
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Conclusions (non-controversial)

COCPs

I are simple and interpretable

I we understand how they work

I will never do anything crazy

I handle constraints, changes, failures gracefully

I can be safety fenced with constraints

I can be effectively tuned, quasi-automatically

there are or will soon be high-level tools to design and implement such controllers
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Conclusion (controversial)

I tuned COCP is the PID controller of the 21st century
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