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Prox-affine form of generic convex optimization

We consider the following prox-affine representation/formulation of a

generic convex optimization problem:

minimize
∑N

i=1 fi (xi )

subject to
∑N

i=1 Aixi = b.

with variable x = (x1, . . . , xN) ∈ Rn1+···+nN , Ai ∈ Rm×ni , b ∈ Rm.

fi : Rni → R ∪ {+∞} is closed, convex and proper (CCP).

Each fi can only be accessed through its proximal operator:

proxtfi (vi ) = argminxi
(
fi (xi ) + 1

2t ‖xi − vi‖22
)
.
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Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi )

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.
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a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi )

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).
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Previous Work

Most common approaches for prox-affine formulation (sometimes goes by

the name ”distributed optimization”):

Alternating direction method of multipliers (ADMM).

Douglas-Rachford splitting (DRS).

Augmented Lagrangian method (ALM).

These are typically slow to converge – acceleration techniques:

Adaptive penalty parameters.

Momentum methods.

Quasi-Newton or Newton-type method with line search.
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Our Method

A2DR: Anderson acceleration (AA) applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free
Flexibility: Applicable to general non-expansive fixed-point (NEFP)
iterations (Zhang et al., 2018):

projected/proximal gradient descent, DRS, value iteration, etc.

globalized type-I AA proposed in (Zhang et al., 2018) used in SCS 2.x.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).
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Challenges and contribution

Challenges:

Instability: AA is unstable without modifications (Scieur et al., 2016,

Zhang et al., 2018).

Need for globalized type-II AA: globalized type-I AA for SCS 2.x

(Zhang et al., 2018) does not work that well with DRS + prox-affine.

Non-smoothness and pathology: DRS is non-smooth, and does not

always have a fixed-point solution (unlike SCS).

Theory: First globally convergent type-II AA variant in non-smooth,

potentially pathological settings.

Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.
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DRS Algorithm

Rewrite problem as (IS is the indicator of set S)

minimize

f (x)︷ ︸︸ ︷∑N

i=1
fi (xi ) +

g(x)︷ ︸︸ ︷
IAx=b(x) .

DRS iterates for k = 1, 2, . . .,

x
k+1/2
i = proxtfi (v

k), i = 1, . . . ,N

vk+1/2 = 2xk+1/2 − vk

xk+1 = ΠAv=b(vk+1/2)

vk+1 = vk + xk+1 − xk+1/2

ΠS(v) is Euclidean projection of v onto S .
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Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping

vk+1 = F (vk)

F is firmly non-expansive.

vk converges to a fixed point of F (if it exists).

xk and xk+1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.
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Type-II AA

Quasi-Newton type method for accelerating FP iterations.

Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Also has an intuitive extrapolation formulation (used later).

Why AA (but not other quasi-newton methods)?

Successful applications in SCS 2.x (type-I) and SuperSCS (type-II).
AA is more memory-efficient (AA with M = 5 ∼ 10 beats
LBFGS/restarted Broyden with M = 200 ∼ 500).
AA is line-search free: just accept or reject is the best practice.

Why type-II AA?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.
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Type-II AA

Extrapolation perspective of type-II AA:

Extrapolates next iterate using M + 1 most recent iterates

vk+1 =
M∑
j=0

αk
j F (vk−M+j)

Let G (v) = v − F (v) (FP residual), then αk ∈ RM+1 is solution to

minimize ‖
∑M

j=0 α
k
j G (vk−M+j)‖22

subject to
∑M

j=0 α
k
j = 1

(constrained LS)

Minimizing the FP residual of extrapolated point
∑M

j=0 α
k
j v

k−M+j

when F is affine.
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Regularization

Type-II AA is unstable (Scieur et al., 2016), and can even provably

diverge when applied to the gradient descent on a one-dimensional smooth

unconstrained optimization problem (Mai & Johansson, 2019):

(Scieur et al., 2016) showed that adding constant quadratic

regularization to the objective leads to local convergence

improvement.

Insufficient for global convergence both in theory and practice.
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Adaptive Regularization

Our approach:

Add adaptive regularization to the unconstrained formulation.

Change variables to γk ∈ RM (unconstrained LS):

αk
0 = γk0 , α

k
i = γki − γki−1, (i = 1, . . . ,M − 1), αk

M = 1− γkM−1

Adaptive quadratic regularization: (adaptive LS)

minimize ‖gk − Ykγ
k‖22 + η

(
‖Sk‖2F + ‖Yk‖2F

)
‖γk‖22,

where η ≥ 0 is a regularization parameter and

gk = G (vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1]

sk = vk+1 − vk , Sk = [sk−M . . . sk−1]
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A2DR

A2DR iterates for k = 1, 2, . . ., (ε > 0, M positive integer)

1. Compute vk+1
DRS = F (vk), gk = vk − vk+1

DRS .

2. Update Yk and Sk to include the new information

& Compute αk by solving the adaptive LS w.r.t. γk .

3. Compute vk+1
AA =

M∑
j=0

αk
j v

k−M+j+1
DRS .

4. If the residual ‖G (vk)‖2 = O(1/n1+εAA ): (safeguard)

Adopt vk+i = vk+i
AA for i = 1, . . . ,M.

(nAA: # of adopted AA candidates)

5. Otherwise, take vk+1 = vk+1
DRS .
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Stopping Criterion of A2DR

Stop and output xk+1/2 when ‖rk‖2 ≤ εtol = εabs + εrel‖r0‖2:

rkprim = Axk+1/2 − b,

rkdual = 1
t (vk − xk+1/2) + ATλk ,

rk = (rkprim, r
k
dual).

Remark:

Just KKT conditions. Notice that (vk − xk+1/2)/t ∈ ∂f (xk+1/2).
proxf is enough, and no need for access to f or its sub-gradient.

Dual variable is solution to least-squares problem

λk = argminλ ‖rkdual‖2
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Key lemmas to the proof

Lemma (Bounded approximate inverse Jacobian)

We have vk+1
AA = vk − Hkg

k , where gk = G (vk) is the FP residual at vk ,

and ‖Hk‖2 ≤ 1 + 2/η, where η > 0 is the regularization parameter in the

adaptive LS subproblem.

Lemma (Connecting FP residuals with OPT residuals)

Suppose that lim inf j→∞ ‖G (v j)‖2 ≤ ε for some ε > 0, then

lim inf
j→∞

‖r jprim‖2 ≤ ‖A‖2ε, lim inf
j→∞

‖r jdual‖2 ≤
1

t
ε.
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Convergence of A2DR

Theorem (Solvable Case)

If the problem is solvable (e.g., feasible and bounded), then

lim inf
k→∞

‖rk‖2 = 0

and the AA candidates are adopted infinitely often. Furthermore, if F has

a fixed point, then

lim
k→∞

vk = v? and lim
k→∞

xk+1/2 = x?,

where v? is a fixed-point of F and x? is a solution to our problem.

Remark. when the proximal operators and projections are evaluated with

errors bounded by ε, then lim infk→∞ ‖rk‖2 = O(
√
ε).
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Convergence of A2DR

Theorem (Pathological Case)

If the problem is pathological (strongly primal infeasible or strongly dual

infeasible), then

lim
k→∞

(
vk − vk+1

)
= δv 6= 0.

Furthermore, if limk→∞ Axk+1/2 = b, then the problem is unbounded and

‖δv‖2 = t dist(dom f ∗, range(AT )).

Otherwise, it is infeasible and ‖δv‖2 ≥ dist(dom f , {x : Ax = b}) with

equality when the dual problem is feasible.
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Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):

Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i ) = fi (ei x̂i )

D and E are diagonal positive, ei > 0 corresponds to ith block

diagonal entry of E , and chosen by equilibrating A

Proximal operator of f̂i can be evaluated using proximal operator of fi

proxtf̂i (v̂i ) = 1
ei

prox(e2i t)fi
(ei v̂i )

Choice of t (in DRS, proxtfi ): t = 1
10

(∏N
j=1 ej

)−2/N
.

Parallelization: multiprocessing package in Python.
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Nonnegative Least Squares (NNLS)

minimize ‖Fz − g‖22
subject to z ≥ 0

with respect to z ∈ Rq

Problem data: F ∈ Rp×q and g ∈ Rp

Can be written in standard form with

f1(x1) = ‖Fx1 − g‖22, f2(x2) = IRn
+

(x2)

A1 = I , A2 = −I , b = 0

We evaluate proximal operator of f1 using LSQR
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NNLS: Convergence of ‖r k‖2

p = 104, q = 8000, F has 0.1% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

OSQP and SCS took respectively 349 and 327 seconds, while A2DR only

took 55 seconds.
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NNLS: Effect of regularization

p = 300, q = 500, F has 0.1% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (no-reg)
Residuals (constant-reg)
Residuals (ada-reg)

FZB2018 (Stanford University) November 2, 2019 27 / 40



Sparse Inverse Covariance Estimation

Samples z1, . . . , zp IID from N (0,Σ)

Know covariance Σ ∈ Sq
+ has sparse inverse S = Σ−1

One way to estimate S is by solving the penalized log-likelihood

problem

minimize − log det(S) + tr(SQ) + α‖S‖1,

where Q is the sample covariance, α ≥ 0 is a parameter

Note log det(S) = −∞ when S � 0
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Sparse Inverse Covariance Estimation

Problem can be written in standard form with

f1(S1) = − log det(S1) + tr(S1Q), f2(S2) = α‖S2‖1,
A1 = I , A2 = −I , b = 0.

Both proximal operators have closed-form solutions.
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Covariance Estimation: Convergence of ‖r k‖2

p = 1000, q = 100, S has 10% nonzeros

0 200 400 600 800 1000
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101
Residuals (DRS)
Residuals (A2DR)
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Covariance Estimation: larger examples

Ran A2DR on instances with q = 1200 and q = 2000 (vectorizations on

the order of 106) and compared its performance to SCS:

In the former case, A2DR took 1 hour to converge to a tolerance of

10−3, while SCS took 11 hours to achieve a tolerance of 10−1 and

yielded a much worse objective value.

In the latter case, A2DR converged in 2.6 hours to a tolerance of

10−3, while SCS failed immediately with an out-of-memory error.
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Multi-Task Logistic Regression

minimize φ(W θ,Y ) + α
∑L

l=1 ‖θl‖2 + β‖θ‖∗

with respect to θ = [θ1 · · · θL] ∈ Rs×L

Problem data: W ∈ Rp×s and Y = [y1 · · · yL] ∈ Rp×L

Regularization parameters: α ≥ 0, β ≥ 0

Logistic loss function

φ(Z ,Y ) =
L∑

l=1

p∑
i=1

log (1 + exp(−YilZil))
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Multi-Task Logistic Regression

Rewrite problem in standard form with:

f1(Z ) = φ(Z ,Y ), f2(θ) = α

L∑
l=1

‖θl‖2, f3(θ̃) = β‖θ̃‖∗,

A =

[
I −W 0

0 I −I

]
, x =

 Z

θ

θ̃

 , b = 0

We evaluate proximal operator of f1 using Newton-CG method, and

the rest with closed-form formulae.
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Multi-Task Logistic: Convergence of ‖r k‖2

p = 300, s = 500, L = 10, α = β = 0.1

0 200 400 600 800 1000
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10 5

10 3

10 1

101
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Residuals (A2DR)
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Other examples

A (very) brief summary of other examples (see the paper for more details):

l1 trend filtering.

Stratified models.

Single commodity flow optimization (match the performance of

OSQP, and largely outperform SCS).

Optimal control (largely outperform both SCS and OSQP).

Coupled quadratic program (match the performance of OSQP and

SCS).

Remark. The advantage compared to OSQP probably comes from the

inclusion of AA, while the advantage compared to SCS (which includes

type-I AA) is probably due to the more compact standard form

representation.
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Conclusion

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr
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Future Work

More work on feasibility detection.

Expand library of proximal operators (non-convex proximal).

User-friendly interface with CVXPY (with the help of Epsilon).

GPU parallelization and cloud computing,
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Thanks for listening!
Any questions?
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