Lecture 11
Feedback: static analysis

- feedback: overview, standard configuration, terms
- static linear case
- sensitivity
- static nonlinear case
- linearizing effect of feedback
Feedback: general

a portion of the output signal is ‘fed back’ to the input

standard block diagram:

\[u \rightarrow e \rightarrow A \rightarrow y \]

\[F \]

\[u \] is the input signal; \(y \) is the output signal; \(e \) is called the error signal

\[A \] is called the forward or open-loop system or plant

\[F \] is called the feedback system

in equations: \(y = Ae, \ e = u - Fy \)
• feedback ‘loop’: \(e \) affects \(y \), which affects \(e \) . . .
• overall system is called *closed-loop* system
• signals can be analog electrical (voltages, currents), mechanical, digital electrical, . . .
• the – sign is a tradition only

Feedback is very widely used

• in amplifiers
• in automatic control (flight control, hard disk & CD player mechanics)
• in communications (oscillators, phase-lock loop)
when properly designed, feedback systems are

- less sensitive to component variation
- less sensitive to some interferences and noises
- more linear
- faster

(when compared to similar open-loop systems)

we will also see some disadvantages, *e.g.*

- smaller gain
- possibility of instability
Other feedback configurations

we will also see other feedback configurations, \textit{e.g.}

\begin{center}
\begin{tikzpicture}
 \node[coordinate] (input) at (0,0) {};
 \node[coordinate] (error) at (1,0) {};
 \node[coordinate] (controller) at (2,0) {};
 \node[coordinate] (plant) at (4,0) {};
 \node[coordinate] (output) at (5,0) {};
 \node[coordinate] (feedback) at (2,-1) {};

 \draw[->] (input) -- node[above] {r} (error);
 \draw[<->] (error) -- node[above] {e} (controller);
 \draw[->] (controller) -- node[above] {C} (plant);
 \draw[->] (plant) -- node[above] {P} (output);
 \draw[->] (feedback) -- node[below] {} (controller);
 \draw[->] (feedback) -- node[below] {} (plant);
 \draw[<->] (feedback) -- node[below] {} (output);
\end{tikzpicture}
\end{center}

which is often used in automatic control

for now we stick to the ‘standard configuration’ (p.11–2)
sometimes the ‘feedback loop’ is not clear (e.g., in amplifier circuits)

here we have

\[V_{\text{out}} = R_l f(V_{\text{GS}}), \quad V_{\text{GS}} = V_{\text{in}} - (R_s/R_l)V_{\text{out}}, \]

where \(I_d = f(V_{\text{GS}}) \)
Static linear case

static case: signals do not vary with time, \textit{i.e.}, signals \(u, e, y \) are (constant) real numbers

(dynamic analysis of feedback is \textit{very} important — we’ll do it later)

suppose forward and feedback systems are linear, \textit{i.e.}, \(A \) and \(F \) are numbers (‘gains’)

eliminate \(e \) from \(y = Ae, e = u - Fy \) to get \(y = Gu \) where

\[
G = \frac{A}{1 + AF}
\]

is called the \textit{closed-loop system gain} (\(A \) is called open-loop system gain)

\(L = AF \) is called the \textit{loop gain} — it is the gain around the feedback loop, cut at the summing junction
observation: if $L = AF$ is large (positive or negative!) then $G \approx 1/F$ and is relatively independent of A.

how close is G to $1/F$?

consider relative error: $\frac{1/F - G}{1/F} = \frac{1}{1 + AF}$ (after some algebra)

$$S = \frac{1}{1 + AF} = \frac{1}{1 + L}$$

is called the sensitivity (and will come up many times)

for large loop gain, sensitivity ≈ 1/loop gain

thus:

for 20dB loop gain, $G \approx 1/F$ within about 10%

for 40dB loop gain, $G \approx 1/F$ within about 1%

etc.
Example: feedback amplifier

\[v_{\text{out}} = A v, \quad v = v_{\text{in}} - \left(\frac{R_1}{R_1 + R_2} \right) v_{\text{out}} \]

- \(v_{\text{in}} \) is the input \(u \); \(v_{\text{out}} \) is the output \(y \)
- \(v \) is the ‘error signal’ \(e \)
- open-loop gain is \(A \)
- feedback gain is \(F = \frac{R_1}{R_1 + R_2} \)

\[v_{\text{out}} = G v_{\text{in}}, \text{ where closed-loop gain is } G = \frac{A}{1 + AF} \]
example: for $F = 0.1$ and $A \geq 100$, $G \approx 10$ within 10%

as A varies from, say, 100 to 1000 (20dB variation), G varies about 10% (around 1dB variation)

in this example, large variations in open-loop gain lead to much smaller variations in closed-loop gain
Sensitivity to small changes in A

how do small changes in the open-loop gain A affect closed-loop gain G?

$$\frac{\partial G}{\partial A} = \frac{\partial}{\partial A} \frac{A}{1 + AF} = \frac{1}{(1 + AF)^2}$$

so for small change δA, we have

$$\delta G \approx \frac{1}{(1 + AF)^2} \delta A$$

express in terms of *relative* or *fractional* gain changes:

$$(\delta G/G) \approx \frac{1}{1 + AF} (\delta A/A) = S(\delta A/A)$$

hence the name ‘sensitivity’ for S
for small fractional changes in open-loop gain,

\[S \approx \frac{\text{fractional change in closed-loop gain}}{\text{fractional change in open-loop gain}} \]

(so ‘sensitivity ratio’ is perhaps a better term for \(S \))

for large loop gain (positive or negative), \(|S| \ll 1 \), so small fractional changes in \(A \) yield \textit{much smaller} fractional changes in \(G \):

feedback has \textit{reduced} the sensitivity of the gain \(G \) w.r.t. changes in the gain \(A \)
we can relate (small) relative changes to changes in dB:

$$\delta(20 \log_{10} X) = \frac{20}{\log 10} \delta \log X \approx \frac{20}{\log 10} (\delta X/X)$$

($20/\log 10 \approx 9$, i.e., 10% relative change ≈ 0.9dB)

hence we have (for small changes in A),

$$\delta(20 \log_{10} G) \approx S \delta(20 \log_{10} A)$$

thus (for small changes in open-loop gain),

$$S \approx \frac{\text{dB change in closed-loop gain}}{\text{dB change in open-loop gain}}$$

Example: ± 2dB variation in A, with $L \approx 10$, yields approximately ± 0.2dB variation in G
Summary:

for loop gain $|L| \gg 1$,

- gain is reduced by about $|L|$
- sensitivity of gain w.r.t. A is reduced by about $|L|$

thus, feedback allows us to trade gain for reduced sensitivity

e.g., convert amplifier with gain $30 \pm 2\text{dB}$ to one with gain $20 \pm 0.7\text{dB}$ or $10 \pm 0.2\text{dB}$
Remarks:

- feedback critical with vacuum tube amplifiers (gains varied substantially with age . . .
- get benefits for ‘negative’ \(AF > 0 \) or ‘positive’ \(AF < 0 \) feedback — makes little difference in static case
- sensitivity w.r.t. \(F \) is \(not \) small — need accurate, reliable feedback components
- can also trade sensitivity for more gain, by setting \(AF \approx -1 \)
Nonlinear static feedback

We suppose now that the forward system is nonlinear static, i.e., A is a function from \mathbb{R} into \mathbb{R}, e.g.,

![Graph showing a curve that represents $A(e)$, with e on the horizontal axis and y on the vertical axis, ranging from -1.5 to 1.5.]

very common for amplifiers, transducers, etc. to be at least a bit nonlinear A is called the *nonlinear transfer characteristic* of the forward system (never to be confused with transfer function!)
we’ll keep the feedback system F linear for now

\[
\begin{array}{c}
 \text{\textbf{Feedback system is described by}} \\
 y = A(e), e = u - F y \\
 \text{these are coupled \textit{nonlinear} equations:} \\
 \text{\bullet maybe \textit{multiple} solutions; maybe \textit{no} solutions} \\
 \text{\bullet usually impossible to solve analytically} \\
 \text{\bullet can be solved graphically, or by computer} \\
 \text{usually for each } u \in \mathbb{R} \text{ there is one solution } y, \text{ so we can express the} \\
 \textit{closed-loop transfer characteristic} \text{ as a function: } y = G(u)
\end{array}
\]
Example: open-loop characteristic A:
with feedback gain $F = 0.2$, yields closed-loop characteristic

(you should check a few points!)
Observations: with feedback

- ‘gain’ is lower (note different horizontal scales)
- characteristic is more linear (for $|y| < 1$)

these phenomena are general . . .

closed-loop transfer characteristic function G satisfies

$$G(u) = y = A(e), \quad e = u - FG(u)$$

differentiate w.r.t. u:

$$G'(u) = A'(e)\frac{de}{du}, \quad \frac{de}{du} = 1 - FG'(u)$$
eliminate de/du to get

$$G'(u) = \frac{A'(e)}{1 + A'(e)F}$$

conclusions: for u s.t. $|A'F| \gg 1$,

- $G'' \approx 1/F$ (independent of u) i.e., G is nearly linear!

- slope of G is smaller than slope of A
 (by factor $1 + A'F'$)
A measure of nonlinear distortion

let \(w = H(v) \) be a nonlinear I/O characteristic

assume \(H(0) = 0 \) and look at Taylor series

\[
H(v) = H'(0) v + \frac{1}{2} H''(0) v^2 + \cdots
\]

ratio of quadratic term to first order term is

\[
\frac{H''(0)}{2H'(0)} v,
\]

so \(H''(0)/H'(0) \) gives a measure of distortion
(for a given input \(v \), or a given output \(w \))

now consider feedback system, with \(A(0) = 0 \)

distortion measure for open-loop system is \(A''(0)/A'(0) \)
differentiate $G' = A'/(1 + A'F)$ w.r.t. u to get

$$G''(u) = \frac{A''(e)}{(1 + A'(e)F)^2}$$

distortion measure for closed-loop system is

$$G''(0)/G'(0) = \frac{1}{1 + A'(0)F} \frac{A''(0)}{A'(0)}$$

thus, nonlinear distortion measure is reduced by the sensitivity S of the linearized system!
Finding the closed-loop characteristic

Graphical method (load line): write feedback equations as \(y = A(e) \), \(e = u - Fy \)

for given \(u \) sketch both equations on \(e-y \) plane; intersection gives solution

easy to visualize what happens as \(u \) or \(F \) changes
Newton’s method to solve \(y = A(e), \ e = u - Fy \) (given \(A, u, \) and \(F \))

1. guess a value \(e_0 \) for \(e \); set \(k = 0 \)
2. set \(y_k := A(e_k) \)
3. if \(e_k = u - Fy_k \), quit
4. replace nonlinear equation \(y = A(e) \) with first-order Taylor expansion near \(e_k \),
\[
y \approx A(e_k) + A'(e_k)(e - e_k)
\]
Then solve the linear equations
\[
\hat{y} = A(e_k) + A'(e_k)(\hat{e} - e_k), \\
\hat{e} = u - F\hat{y}
\]
for \(\hat{e} \) and \(\hat{y} \); set \(e_{k+1} := \hat{e} \)

I.e., set \(e_{k+1} := \frac{u - Fy_k + FA'(e_k)e_k}{1 + FA'(e_k)} \)
5. \(k := k + 1; \) go to 2
works very well when initial guess is good; may not converge for bad initial guess
Graphical interpretation of Newton’s method

\[e = u - Fy \]

\[y = A(e_k) + A'(e_k)(e - e_k) \]
Tracing the closed-loop characteristic curve

write feedback equations as

\[
y = A(e), \quad u = e + Fy
\]

given error \(e\), we can easily find associated \(y\) and \(u\)!

can use this to trace the curve, parametrized by \(e\):

1. choose \(e_1, e_2, \ldots, e_n\) that cover an appropriate range for \(e\)
2. for \(i = 1\) to \(n\), set \(y_i := A(e_i), u_i := e_i + Fy_i\)
3. plot \((u_1, y_1), \ldots, (u_n, y_n)\)

note that here we don’t specify the \(u\) values (as in Newton’s method)
Example: JFET amplifier (we assume $v_{GS} \leq 0$)

\[v_{out} = A(v_{GS}), \quad v_{GS} = v_{in} - F v_{out}, \]

with $F = R_s / R_l$ and

\[
A(v_{GS}) = \begin{cases}
R_l I_{DSS} (1 - v_{GS}/V_P)^2 & V_P \leq v_{GS} \leq 0 \\
0 & v_{GS} < V_P
\end{cases}
\]
we’ll take $R_l = 10k\Omega$, $I_{DSS} = 1\text{mA}$, $V_P = -2\text{V}$

plot shows v_{out} vs. v_{in} for $R_s = 0, 1, \ldots, 5k\Omega$
(corresponds to $F = 0, 0.1, \ldots, 0.5$)

as feedback increases, closed-loop ‘gain’ is smaller; closed-loop characteristic is more linear
Summary

- using feedback we can trade raw gain for lower sensitivity, greater linearity

- benefits determined by $S = 1/(1 + AF)$:
 sensitivity and nonlinearity are both reduced by S

- large loop gain $L = AF$ (positive or negative) yields small S hence benefits of feedback