Search to own or search to rent? Housing market churn in the cross section of cities

Boaz Abramson
Stanford
Tim Landvoigt
Wharton

Monika Piazzesi
Stanford
Martin Schneider
Stanford

SITE September 2021
Motivation: vacancies & inventory across US MSAs
Motivation: vacancies & inventory across US MSAs
Months supply = vacancies / turnover = time on market

![Graph showing months supply for rent and sale, with a linear relationship indicated by a diagonal line.](image-url)
This paper

- Widespread housing shortage, but lots of vacancies?
 - distinguish structural from frictional vacancies
 - structural vacancies := excess supply as search frictions \(\rightarrow 0 \)
 - how large are structural vacancies in US cities?

- Search model with tenure choice & financial frictions
 - demand rent/own: flow utility, transaction costs, borrowing constraint
 → poorer or more mobile households rent, low match surplus
 - supply: developers indifferent between selling, renting out
 → low rental surplus compensated by low rental TOM

- Estimate with data on cross section of US MSAs
 - months supply = TOM, turnover rates, rent/price, income, ownership
 - city specific construction cost, mobility rates, growth

⇒ Negative structural vacancies in majority of cities, driven by cost
 - typically much more negative in rental markets
 low vacancies \(\rightarrow \) short TOM, compensates developers
 - x-city differences reflect how tenure choice changes renter pool:
 shorter rental TOMs when more mobile renters (= lower surplus)
Model: agents & houses

- Small open city, continuous time, no aggregate risk
- Infinitely lived households
 - quasilinear utility in housing & numeraire
 - born with exogenous income, choose to enter owner or renter market
 - for buyers, house price \leq multiple of income
 - move out at exogenous Poisson rate σ, replaced by identical copy
- Indivisible houses
 - flow utility a grows with income; lower by $\rho < 1$ if house rented
 - sold in competitive market to developers \rightarrow become vacant
 - bought or rented in search markets from developers
- Developer firms
 - quadratic construction cost
 - sell or rent out to households found in search markets
Model: housing markets

- Owner and renter search markets
 - potential buyers & renters meet vacant houses
 - random matching: Cobb-Douglas matching function
 - bargaining: equal split of surplus among observable types

- Competitive wholesale housing markets
 - mover households sell s.t. transaction cost
 - developers buy & build, then sell or rent in search markets
 - search frictions for finding dwellings, not getting rid of them

- Balanced growth equilibrium in each city
 - construction cost, # houses grow with population
 - prices & rents grow with income
Identification of structural vacancies: one market

- Intuition with rental market only, fixed supply & population
- Mass one of people meet mass H of houses

 \[\text{vacancies } I + \text{occupied houses } O = H \quad \Rightarrow \quad I - S = H - 1 \]
 \[\text{searchers } S + \text{house occupiers } O = 1 \quad \Rightarrow \quad \text{structural vacancies} \]

 - structural vacancies negative = excess demand for houses in city

- Structural vacancies not observable

 - observe vacancies I but not number of searchers
 \[\Rightarrow \text{use model to infer } H - 1! \]

- Steady state flow of houses

 - $\sigma =$ arrival rate of moving shocks, $m(S, I) =$ matching function
 - houses vacated by movers = new matches

 \[\sigma(H - I) = m(S, I) \]

 - rearrange to relate vacancy rate I/H, turnover rate m/H...
Equilibrium vacancies & turnover

Steady state flow of houses: movers = new matches

\[
\sigma \left(1 - \frac{I}{H}\right) = m \left(\frac{I}{H} - \frac{H - 1}{H}, \frac{I}{H}\right)
\]
More mobile city: more turnover & (frictional) vacancies

Steady state flow of houses: movers = new matches

\[
\sigma \left(1 - \frac{I}{H}\right) = m \left(\frac{I}{H} - \frac{H - 1}{H}, \frac{I}{H}\right)
\]

- Higher mobility σ
 - more renters move out, more supply of rental houses
 - higher vacancy rate I/H, turnover rate $m(S,I)/H$
Fewer houses: more turnover, fewer vacancies

Steady state flow of houses: \textit{movers} = \textit{new matches}

\[
\sigma \left(1 - \frac{l}{H} \right) = m \left(\frac{l}{H} - \frac{H - 1}{H}, \frac{l}{H} \right)
\]

- Lower \(H\)
 - relatively more demand for rental houses
 - lower vacancy rate \(l/H\), higher turnover rate \(m(S, l)/H\)
Structural vacancies from TOM = vacancies / turnover!

Steady state flow of houses: movers = new matches

\[
\sigma \left(1 - \frac{l}{H} \right) = m \left(\frac{l}{H} - \frac{H - 1}{H}, \frac{l}{H} \right)
\]

Observe vacancy rate
- solid eq: turnover low
- dotted eq: turnover hi
- slope from origin to equilibrium = 1/TOM
- flat slope, long TOM
- identifies hi \(H - 1/H \) structural vacancies
The role of tenure choice

- **Structural vacancies in owner & rental markets**
 - households choose tenure based on
 1. mobility: moving shocks \(\rightarrow\) transaction costs of ownership
 2. income: must be rich enough to afford ownership
 - firms buy houses at wholesale price \(P\), divide housing stock

- **Firms indifferent between renting out & selling**

\[
\frac{1}{TOM\text{_own}} (E[\text{sales price}] - P) = \frac{1}{TOM\text{_rent}} (E[\text{PV rents}] - P)
\]

 - TOMs decrease with queue = \# searchers / vacancies
 - sales price - \(P\), \(PV(\text{rent})\) - \(P\) = firm’s share of surplus
 - vacancies adjust to achieve indifference

- **Surplus vs time on market**

 - surplus lower in rental market: lower flow utility + more mobile types
 - shorter TOM in rental market to compensate firms
 - if short TOMs, queues respond more to differences in surplus
 - more mobile renters \(\rightarrow\) shorter TOM rent, longer TOM own
Quantitative exercise

- MSA level data, mostly from Census
 - housing stock, tenure, vacancies for rent, median rent, median price
 - share of recent (1yr) movers by tenure to measure turnover rate
 - distribution of income, population growth
 - inventory for sale from Zillow

- Parametrization
 - two household types: high vs low mobility
 → equilibrium owners = rich & low mobility households

- Preliminary steps
 - document strong common variation in TOMs
 → project own and rent TOMs on 1st principal component (explains 75% of variation)
 - income distribution & flow value matter only via borrowing constraint
 → compute share of households "rich enough" for ownership
 := households with 10*income > median house price in city
 (strongly positively correlated with rental turnover, ownership rate)
Months supply = vacancies / turnover = time on market

months supply for rent
months supply for sale
Turnover rent & share of "rich enough" households
Estimation

- Pre-set common parameters
 - lower flow utility $\rho = .9$ from renting, interest rate $r = .02$
 - transaction cost 6%, matching functions $\tilde{m}\sqrt{SI}$, with \tilde{m} s.t.
 \[\text{TOM} = \text{time to find a house in average city renter/owner markets}\]

- Exactly identified estimation of city-specific parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>x-city median</th>
<th>Most relevant moment</th>
<th>x-city median</th>
</tr>
</thead>
<tbody>
<tr>
<td>low mobility rate</td>
<td>.04</td>
<td>turnover own</td>
<td>.06</td>
</tr>
<tr>
<td>high mobility rate</td>
<td>.41</td>
<td>turnover rent</td>
<td>.31</td>
</tr>
<tr>
<td>share of high mob type</td>
<td>.29</td>
<td>ownership rate</td>
<td>.57</td>
</tr>
<tr>
<td>marginal constr. cost</td>
<td>4.1mn</td>
<td>TOM own (1st PC)</td>
<td>.30</td>
</tr>
<tr>
<td>growth rate of income</td>
<td>0</td>
<td>rent/price</td>
<td>.048</td>
</tr>
</tbody>
</table>

- Intuition for identification
 - growth rate determines rent/price because search discounts small
 - ownership rate driven by share of rich or immobile people
 - mobility rates track turnover closely, since vacancies small
Structural vacancies and TOM own

Northeast
Midwest
South
West
Structural vacancies in rental and owner markets

Northeast
Midwest
South
West
Structural vacancies in rental and owner markets
This paper

- Widespread housing shortage, but lots of vacancies?
 - distinguish structural from frictional vacancies
 - structural vacancies := excess supply as search frictions $\rightarrow 0$
 - how large are structural vacancies in US cities?

- Search model with tenure choice & financial frictions
 - estimated with data on cross section of US MSAs
 - accounts for comovement in vacancies, TOM
 - key mechanism: short TOM compensates for low surplus

⇒ Negative structural vacancies in majority of cities
 - driven by construction cost, especially high in West

⇒ More negative in rental markets, even if positive in owner markets
 - few vacancies \rightarrow short TOM, compensates firms for low surplus

⇒ X-city differences reflect how tenure choice changes renter pool
 - more mobile renters \rightarrow more structural vacancies rent
 - more constrained, less mobile renters \rightarrow fewer struct. vacancies rent