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Abstract 

Assessment of seismic losses in a portfolio of buildings can be a challenging task, since there can be large 

epistemic uncertainties associated with the different steps of the probabilistic seismic risk analysis: hazard 

estimation, exposure modeling, fragility functions, and damage-to-loss estimation. Refining models and 

gathering more data to reduce the epistemic uncertainties can require substantial time investment and incur 

significant costs; therefore, to make this process more efficient, variables that drive the epistemic uncertainty 

must be identified. This paper explores the use of two sensitivity analysis methods to evaluate the effect of 

uncertain variables on the epistemic uncertainty of portfolio losses from earthquakes: 1) a well established 

variance-based sensitivity analysis technique and 2) a novel method that leverages regression tree ensemble 

methods with functional outputs. The two methods are examined using a fictional portfolio of 20 buildings in 

the San Francisco Bay Area. The results from the methods are compared, and advantages and disadvantages 

of the regression tree ensemble method are highlighted. Also discussed are recommendations for treatment of 

uncertain input variables based on insights about epistemic uncertainty in the losses. 
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1. Introduction 

Probabilistic seismic risk analysis of building portfolios can be challenging, since there are often large 

epistemic uncertainties in each of the steps involved, i.e. in hazard estimation (e.g. [1]), exposure modeling 

(e.g. [2]), fragility functions (e.g. [3]) and damage-to-loss estimation [4]. Gathering more data to reduce the 

epistemic uncertainties can require substantial time investment and incur significant costs [5], so it is beneficial 

to make the process more efficient by identifying the variables that drive the epistemic uncertainty in the losses. 

 This paper explores the use of two sensitivity analysis methods to quantify the effect of uncertain variables 

on the epistemic uncertainty of portfolio losses due to earthquakes: (1) a well established variance-based 

sensitivity analysis technique and (2) a novel method that leverages regression tree ensemble methods with 

functional outputs. 

 Variance-based sensitivity analysis measures sensitivity in terms of the effect of a model input on the 

variance of a model output. The use of variance-based methods in sensitivity analysis has developed from the 

work of Sobol [6], Homma and Seltelli [7], and  Jansen et al. [8] in particular.  The technique has been applied 

in seismic risk analyses of individual buildings [9] as well as in a wide variety of other fields, including 

biological modeling [10].  

 Regression trees are a non-linear regression method that was introduced in the 1980's [11] and further 

popularized with the introduction of ensemble methods such as bagging, random forest, and boosting [12], 

[13]. Benefits of regression trees include the ability to handle missing data, and it is a powerful technique to 

assess variable importance since it is inherently used for variable selection. Tree ensemble methods have been 

widely used for variable selection and importance studies in bioinformatics [14] and more recently in flood 

risk modeling [15]. In this paper, we use an extension of tree ensemble methods, regression trees with 

functional output [16], to analyze variable importance in epistemic uncertainty of building portfolio losses. 

 The two methods are used to examine the sensitivity of average annual loss (AAL) to eight input variables 

with epistemic uncertainty, in a fictional San Francisco Bay Area portfolio of 20 buildings. The results from 

the two methods are compared, and advantages and disadvantages of the regression tree ensemble method are 

highlighted. Finally, based on the results, modeling recommendations related to reduction of epistemic 

uncertainty in the losses are provided. 

2. Sensitivity methods 

2.1 Variance-based sensitivity analysis 

Given a model of the form 𝑌 = 𝑔(𝐗), variance-based sensitivity analysis measures the sensitivity of the output 

𝑌 to the inputs 𝐗 in terms of a reduction in the variance of 𝑌. Let 𝑉𝐗[𝑌] denote the variance of 𝑌 across the 

whole input space. 𝑉𝐗[𝑌] can be decomposed as follows:  

𝑉X[𝑌] = ∑𝑉𝑖

𝑝

𝑖=1

+ ∑ 𝑉𝑖𝑗

1≤𝑖<𝑗≤𝑝

+ ⋯+ 𝑉1…𝑝 (1) 

where 𝑝 is the number of input variables. 𝑉𝑖 measures the main effect of the input 𝑋𝑖 on 𝑌, and is defined as 

[17]: 

𝑉𝑖 = 𝑉𝑋𝑖
[𝐸X∼𝑖

(𝑌|𝑋𝑖)] (2) 

where 𝑉[. ] denotes variance, 𝐸(. ) denotes expectation, and 𝐗∼𝑖  includes all inputs but 𝑋𝑖. It is the expected 

reduction in variance that would be obtained if 𝑋𝑖 could be fixed. The inner expectation operator takes the 

mean of 𝑌 over all possible values of 𝐗∼𝑖 for a fixed value of 𝑋𝑖. The outer variance is then taken over all 

possible values of 𝑋𝑖 . The sensitivity measure associated with 𝑉𝑖  is the first order sensitivity coefficient, 

defined as:  
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𝑆𝑖 =
𝑉𝑋𝑖

[𝐸X∼𝒊
(𝑌|𝑋𝑖)]

𝑉X[𝑌]
 (3) 

We use this sensitivity coefficient as the metric of sensitivity in this study. 

𝑆𝑖 is estimated as follows. We generate 𝑁𝑠 Monte Carlo samples of each of the inputs, according to the 

corresponding probability distributions. The Monte Carlo samples are used to construct matrix A, termed the 

`sampling matrix':   

A =

[
 
 
 
 𝑥1

(1)
𝑥2

(1)
… 𝑥𝑝

(1)

𝑥1
(2)

𝑥2
(2)

… 𝑥𝑝
(2)

⋮ ⋮ ⋱ ⋮

𝑥1
(𝑁𝑠) 𝑥2

(𝑁𝑠) … 𝑥𝑝
(𝑁𝑠)

]
 
 
 
 

(4) 

We generate a further 𝑁𝑠 Monte Carlo samples of each of the input variables, independent of matrix A. 

These Monte Carlo samples are used to construct matrix B, termed the ‘re-sampling matrix’:    

B =

[
 
 
 
 𝑥1

(𝑁𝑠+1)
𝑥2

(𝑁𝑠+1)
… 𝑥𝑝

(𝑁𝑠+1)

𝑥1
(𝑁𝑠+2)

𝑥2
(𝑁𝑠+2)

… 𝑥𝑝
(𝑁𝑠+2)

⋮ ⋮ ⋱ ⋮

𝑥1
(2×𝑁𝑠) 𝑥2

(2×𝑁𝑠) … 𝑥𝑝
(2×𝑁𝑠)

]
 
 
 
 

(5) 

We construct a third sampling matrix  𝐂𝑖, which is matrix, B with the ith column substituted for the ith 

column of matrix A.  

The output variables obtained using each input matrix (𝑌𝐴, 𝑌𝐵, 𝑌𝐶𝑖
) are then used to estimate 𝑆𝑖 as [18]: 

𝑆𝑖 =

(
1
𝑁)(∑ 𝑌𝐴

(𝑗)
𝑌𝐶𝑖

(𝑗)
𝑁

𝑗=1
) − 𝑓0

2

(
1
𝑁)∑ (𝑌𝐴

(𝑗)
)2

𝑁

𝑗=1
− 𝑓0

2

 (6) 

 where 𝑓
^

0
2 =

1

𝑁
∑ 𝑌𝐴

(𝑗)
𝑌𝐵

(𝑗)
𝑁

𝑗=1
 from [19]. These estimates can be derived from the well-known identity 

𝑉[𝑍]  =  𝐸(𝑍2)  − 𝐸2(𝑍).  

 Note that when inputs are correlated, they are grouped together as a multidimensional variable 𝐗𝑟 [20]. 

The first order sensitivity coefficient becomes: 

𝑆𝑟 =
𝑉Xr

[𝐸X∼𝑟
(𝑌|X𝑟)]

𝑉X[𝑌]
(7) 

 The corresponding 𝐂𝑟 matrix is obtained by substituting the columns of the relevant correlated inputs in matrix 

A for those of matrix B. 

2.2 Regression tree ensemble methods 

The tree-based methodology used to conduct the sensitivity (variable importance) analysis is adapted from 

[16], where both scalar and vector outputs can be considered. First, a training sample, 𝒯 = {x(𝑖), 𝑦(𝑖)}1
𝑁𝑠, is 

considered, where x(𝑖) = (𝑥1
(𝑖)

, 𝑥2
(𝑖)

, . . . , 𝑥𝑝
(𝑖)

) is a vector of input variables in 𝑅𝑝 space, and 𝑦(𝑖) is a scalar 

output. Regression tree methods are greedy algorithms that recursively partition the 𝑅𝑝 input space into 𝑀 

disjoint sub-regions (𝑅𝑚), by splitting the space on one input variable at a time. A split 𝑠 into sub-regions 𝑅𝑚𝑙 

and 𝑅𝑚𝑟 is made along some input, 𝑝, such that it achieves the highest split quality, 𝑄𝑠,𝑝
𝑚 : 
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𝑄𝑠,𝑝
𝑚 = 𝐺(𝑅𝑚) − [𝐺(𝑅𝑚𝑙) + 𝐺(𝑅𝑚𝑟)] (8) 

where 𝐺(𝑅𝑚) is the cost function. In the case of scalar outputs, 𝑦, the sum of squared errors cost function, 

𝐺𝑠𝑠𝑒(𝑅𝑚) = ∑ (𝑦(𝑖) − 𝜇𝑚)2
𝑦(𝑖)∈𝑅𝑚

, can be used, where the true output is approximated by a local mean, 𝜇𝑚. 

In the case of functional outputs, 𝑦(𝑡), a commonly used cost function shown in Eq. (9) can be used, where 

𝜇𝑚(𝑡) is the mean function of sub-region 𝑚. 

𝐺(𝑅𝑚) = ∑ ∫(𝑦(𝑖)(𝑡) − 𝜇𝑚(𝑡))2𝑑𝑡 
𝑇

𝑦(𝑖)(𝑡)∈𝑅𝑚

(9)
 

Building just one regression tree can lead to over-fitting, therefore, tree ensemble methods such as 

bagging and random forest are often used. In this case study we use bagging to grow multiple trees, where 

each tree is built using data sampled with replacement from the original data. The predicted output is taken as 

the mean of all of the outputs produced by the multiple trees.  

In order to determine variable importance, a variable importance index, 𝑆𝑝, can be calculated for each 

of the variables, 𝑝, in accordance with Eq. (10) where 𝑁𝑚 is the number of training samples in a region 𝑚. 

𝑆𝑝 =
1

𝑀
∑

1

𝑁𝑚
max{𝑄𝑠,𝑝

𝑚 , ∀𝑠}

𝑀

𝑚=1

(10) 

When using ensemble methods with multiple trees, such as bagging or random forest, the importance index is 

taken as the average 𝑆𝑝 across all trees. 

3. Epistemic uncertainty in portfolio losses 

3.1 Case study description 

The fictional portfolio used in this study consists of 20 buildings in the San Francisco-Bay Area (Fig. 1). The 

properties of the buildings are obtained using the HAZUS methodology [21] and vary with different 

simulations, as explained in Section 3.2.2. 

 

Fig. 1 – The fictional San Francisco Bay Area portfolio of 20 buildings examined in this study. Also 

included is a sample of peak ground accelerations (PGA's) for one of the earthquake rupture scenarios  

The epistemic uncertainty is captured by randomly drawing 1000 samples of each of the uncertain variables 

(i.e., 𝑁𝑠  =  1000 in Eqs. (4) and (5); variable distributions are described in Section 3.2). For each of the 1000 

samples, a probabilistic risk analysis for the portfolio is performed using the UCERF2 Earthquake Rupture 
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Forecast scenarios [22], where for each of the scenarios an additional 300 correlated ground motion fields and 

damages are simulated to take into account aleatory uncertainty.  

3.2 Sources of epistemic uncertainty  

We examine epistemic uncertainties in eight variables associated with each step in the probabilistic seismic 

risk analysis of a portfolio of buildings: hazard estimation, exposure modeling, fragility functions, and damage-

to-loss estimation.  

3.2.1 Hazard estimation 

Ground motion prediction equation (GMPE): GMPE's are used to predict the ground shaking for a 

particular earthquake scenario and site. The USGS hazard maps [23] use a logic tree to capture epistemic 

uncertainty in various GMPE's. In this analysis we examine four of the five GMPE's used in these maps – 

ASK, BSSA, CB, CY [24] – by sampling one model for each of the 1000 samples using equally weighted 

categorical distribution. The fifth model (IM) was excluded from the analysis since the between-event standard 

deviation values for this model are not provided by the UCERF2 Earthquake Rupture Forecast tool. 

Median ground motion (GM): It is necessary to account for epistemic uncertainty in the median ground 

motion intensity obtained from GMPE's, due to within-model uncertainties as well as model-to-model 

differences. We quantify this epistemic uncertainty with the model proposed in [25], which uses a three-point 

discrete approximation to a normal distribution to represent epistemic uncertainty in the median prediction of 

a given GMPE. This approach involves development of three separate models for each GMPE. One of the 

models is equal to the original GMPE median and has weight 0.63. The other two models are equal to the 

median  ±1.645𝜎𝜇ln (𝑔𝑚) and have weight 0.185. Note that for strike-slip faults: 

𝜎𝜇 ln(𝑔𝑚) = {
0.083, 𝑀 < 7

0.056 × (𝑀 − 7) + 0.083, 𝑀 ≥ 7
(11) 

where 𝑀 is earthquake magnitude. 

Spatial correlation: Spatial correlation accounts for the joint occurrence of ground motion intensities at 

different sites within the portfolio, during a given earthquake. We use a spatial correlation model with the same 

functional form as that of [26]: 𝜌(ℎ) = 𝑒𝑥𝑝 (
−3×ℎ

𝑏
), where 𝜌(ℎ) is the correlation between normalized intra-

event ground motion residuals located ℎ  km apart, and 𝑏  is the range of the correlation distance for the 

residuals. Epistemic uncertainty in the model is introduced via the 𝑏 variable, as this depends on local-site 

conditions that are often unknown. 𝑏 is assumed to vary according to the following lognormal distribution:  

𝑙𝑛(𝑏) ∼ 𝒩(𝑙𝑛(20𝑘𝑚), 0.5)                                                                            (12) 

3.2.2 Exposure modeling 

To capture epistemic uncertainty due to a lack of knowledge about building characteristics (i.e., design level, 

structural type, and occupancy type) in the portfolio, we assume that the proportion of buildings in the portfolio 

associated with each of the building characteristics is unknown. The proportions for a given building 

characteristic (variable) are then drawn from a Dirichlet distribution, where the sum of the samples equals one. 

The distribution is parameterized by a vector 𝛼 as follows: 

[𝑃1, . . , 𝑃𝑖, . . , 𝑃𝑁] ∼ 𝐷𝑖𝑟(𝛼 = [𝟏, . . , 𝟏, . . , 𝟏]) (13) 

where 𝑃𝑖 is the proportion of buildings associated with the 𝑖th possible value of the variable, and 𝑁 is the 

number of possible values. For variance-based sensitivity analysis, the proportions can be viewed as random 

correlated sub-variables, so we use the coefficient defined in Eq. (7) to estimate the sensitivity for each 

variable, where 𝐗𝑟 is the matrix of all associated 𝑃𝑖 values. In order to use vector  [𝑃1, . . . , 𝑃𝑁] as an input into 

the regression tree ensemble method, the samples are ordered using hierarchical clustering and the Bar-Joseph 

leaf reordering algorithm (see [16]).  
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Design level: This variable indicates the level of seismic design in a building, which affects the 

vulnerability of both structural and non-structural components. We investigate all HAZUS design levels in this 

study: (1) Pre-Code, (2) Low-Code, (3) Moderate-Code, and (4) High-Code. The proportions of each design 

level are obtained using Eq. (12) for 𝑁 = 4. 

Structural type: This variable indicates the type of lateral system in a building, which affects the 

vulnerability of structural components. We consider the following HAZUS structural types: (1) W2 - Wood, 

commercial and industrial (>5000 square feet), (2) S1L - Steel moment frame, (3) S2L - Steel braced frame, 

(4) S4L - Steel frame with cast-in-place concrete shear walls, (5) C1L - concrete moment frame, and (6) C2L 

- concrete shear walls. The proportions of each structural type are found using Eq. (12) for 𝑁 = 6. 

Occupancy type: This variable indicates how the building is used, which affects the losses that occur 

for a given level of damage. We examine the following HAZUS occupancy types: (1) RES3 - Multi-family 

dwelling, (2) RES4 - Temporary Lodging, (3) COM1 - Retail Trade, (4) COM4 - Professional/Technical/ 

Business Services, (5) COM6 - Hospital, and (6) EDU1 - Schools/Libraries. The proportions of each structural 

type are found using Eq. (12) for 𝑁 = 6.  

3.2.3 Fragility functions 

Building level fragility functions are used to represent the vulnerability of buildings in a portfolio, and are a 

function of both the design level and the structural type. We assume that epistemic uncertainty in the fragility 

functions is associated with the type of analytical model used to derive the functions and we quantify this 

uncertainty using the double-lognormal model, in which the median (𝜃) of a given function is considered a 

random variable, i.e., 

ln(𝜃) ∼ 𝒩(ln(𝑦𝜃) , 𝛽𝐸) (14) 

where 𝑦𝜃 is the median of the HAZUS equivalent peak ground acceleration (PGA) fragility function for the 

specific design level, structural type, and damage state (as reported in Section 5.4.4 of [21]), and 𝛽𝐸 is the 

epistemic uncertainty. The final fragility function is expressed as: 

𝑃(𝐷𝑆 ≥ 𝑑𝑠𝑘|𝑃𝐺𝐴 = 𝑝𝑔𝑎𝑖) = Φ(
ln (

𝑝𝑔𝑎𝑖
𝜃

)

𝛽𝑎
) (15) 

where 𝑃(𝐷𝑆 ≥ 𝑑𝑠𝑘|𝑃𝐺𝐴 = 𝑝𝑔𝑎𝑖) is the probability of being in or exceeding damage state 𝑑𝑠𝑘 when 𝑃𝐺𝐴 =
 𝑝𝑔𝑎𝑖 , Φ(. ) is the standard normal cumulative distribution function, and 𝛽_𝐴 is the aleatoric uncertainty. It is 

assumed that 𝛽𝐸   =  0.1, and 𝛽𝑇 = √𝛽𝐸
2 + 𝛽𝐴

2 is the log standard deviation of the HAZUS equivalent PGA 

fragility function. 

We assume that there is perfect correlation among all fragility functions in the analysis (i.e., they were 

all derived using the same model), such that the same standard score is used to calculate each \theta value in a 

given simulation. We analyze fragility function sensitivity specifically in terms of these scores. 

3.2.4 Damage-to-loss modeling 

Damage-to-loss models translate the damage predicted by the fragility functions to repair cost ratios, and are 

a function of the occupancy type. We quantify epistemic uncertainty in a given HAZUS mean repair cost ratio 

(𝜇𝑅𝐶𝑅) according to the following normal distribution: 

𝑅𝐶𝑅 ∼ 𝒩(𝜇𝑅𝐶𝑅 , 𝐶𝑉 × 𝜇𝑅𝐶𝑅) (16) 

where RCR is the simulated mean repair cost ratio and 𝐶𝑉 is the coefficient of variation for the given damage 

state, as reported in Table VI of [4]. Note that 𝑅𝐶𝑅 < 0 is set to 0 and 𝑅𝐶𝑅 > 1 is set to 1 (though such values 

are rare).  
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We assume that there is perfect correlation in all mean repair cost ratios that occur for a given occupancy 

in a given simulation, such that the same standard score is used to calculate each value. The sensitivity analyses 

for damage-to-loss focus on these scores specifically. 

4. Results 

Results of both sensitivity analysis methods for AAL are very similar (Fig. 2). The ranking of the five most 

important variables are identical for both methods (i.e., design level, fragility functions, median ground motion, 

ground motion prediction equations, and structural type, in order of importance) and the magnitude of the 

sensitivity parameters are also similar. While the rankings of the three other variables (i.e., repair cost ratio, 

occupancy type, and correlation distance) slightly differ, these variables can be considered negligible since 

their sensitivity coefficient in the variance-based analysis is ∼ 0,  and the sensitivity index in the regression 

tree ensemble method is comparable to that of an independent random variable sampled outside of the analysis. 

 

Fig. 2 – AAL sensitivity results for both analysis methods. In the case of regression tree ensemble, the 

sensitivity indices are normalized by the sensitivity index of using AAL as an input, i.e. the perfect predictor. 

There are two main advantages to using regression tree ensemble over variance-based sensitivity 

analysis: computational efficiency and ability to analyze functional outputs. While both methods give a similar 

ranking, regression tree ensemble is 2+n times more efficient, where n is the number of input variables. In our 

study, variance-based sensitivity analysis took 10 times longer (23 hours) than the regression tree ensemble 

method (2.3 hours).   

Since the regression tree ensemble method can handle functional outputs, it can also be used to analyze 

the sensitivity of the portfolio's annual loss exceedance probability (EP) to the input variables. In this case 

study, the ranking and magnitude of variable importance for loss EP curves is the same as that for AAL. 

Variance-based sensitivity analysis cannot be used in this context, since it is designed for univariate outputs. 

One disadvantage of regression trees is that they become less reliable when using multi-modal functions 

or input vectors with high dimensionality, since optimal ordering of these vectors becomes less effective. 

4.1 Recommendations on the treatment of uncertain variables 

Based on the results of the sensitivity analyses, we provide two recommendations for treating epistemic 

uncertainty in portfolio losses. First, the uncertainty on the variables with the largest sensitivity should be 

reduced either through refining the model or obtaining more data. In our case study, as a first step we would 

acquire more data on the distribution of design levels within the portfolio. If we assume that the distribution 
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of design levels (DL) is known, we can see in Fig. 3 that the epistemic uncertainty in both AAL and loss EP is 

reduced. 

The second recommendation is to ‘prune’ variables, or assume values for the unimportant variables (e.g. 

mean value). In the case of regression tree ensemble, a variable can be considered unimportant if its sensitivity 

index is comparable to the index of a randomly drawn input. For variance-based sensitivity analysis, a variable 

can be considered unimportant if its first-order sensitivity coefficient is close to zero. In our case study, the 

unimportant variables are the uncertainty on the repair cost ratio, occupancy type, and correlation distance. 

The effects of the two recommendations on AAL and loss EP uncertainty are shown in Fig. 3, where it can be 

seen that obtaining more data for important variables (i.e. design level) helps reduce the epistemic uncertainty, 

while assuming any value for the unimportant variables (i.e. repair cost ratio, correlation distance and 

occupancy type) preserves the distribution.  

 

Fig. 3 – The effect of reducing epistemic uncertainty of important variables (design level, DL) and 

unimportant variables (repair cost ratio, correlation distance, and occupancy type) on the distribution of AAL 

(top sub-figures) and loss EP curves (bottom sub-figures). Portfolio losses are expressed as a percentage of 

the total replacement cost (RC). Changes in the mean and the 95% confidence interval of EP curve are also 

shown. 

5.  Conclusions 

This paper explored the use of two sensitivity analysis methods – 1) a well established variance-based 

sensitivity analysis method and 2) a novel regression tree ensemble method with functional outputs -- to 

quantify the effect of eight uncertain variables on the epistemic uncertainty of average annual losses of a 

fictional portfolio of 20 buildings in the San Francisco Bay Area. We found that the two methods produce very 

similar results in terms of ranking and magnitude of sensitivities; the five most important variables according 

to both methods are building design level, fragility functions, median ground motion, ground motion prediction 

equations, and building's structural type (in order of importance).  

The regression tree ensemble method was found to be significantly more efficient than variance-based 

sensitivity analysis. Unlike variance-based sensitivity analysis, the regression tree ensemble method can also 
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handle functional outputs, such as a portfolio's annual loss exceedance probability curve. However, it should 

be noted that regression trees become less reliable when using inputs that are multi-modal functions or vectors 

with high dimensionality. 

To deal with epistemic uncertainty, we recommend reducing uncertainty in variables with the largest 

sensitivities (such as building design level in this study). We also showed that assuming values (e.g. the mean 

value) for unimportant variables does not change the epistemic uncertainty in the output of interest.  
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