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Purpose
• Overview of Bloch/Matrix simulations

– Exact simulation of many cases
– Numerical simulations often reasonable

• In-depth explanation of EPG method
– Extended phase graph
– Simulates “dephased states”
– Common in many MRI sequences

Matrix Simulations
• Single Spin
• RF rotation
• Gradient- or off-resonance-induced rotation
• Relaxation

Jaynes 1955 “The Matrix Treatment of Nuclear Induction”

Rotations
RF (x) Rotation:

Any rotation is just a matrix multiplication

•RF can rotate about any transverse axis
•Rotations due to precession are just about z

Magnetization Propagation
Relaxation:

Can represent any 
propagation in the form 

(Jaynes – 1955)

Magnetization Expressions

• Matrix expression for 
magnetization propagation:

• Steady state solution:

If we let

then



Example:  T1 Weighting
Assume Longitudinal Magnetization dies out
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Example:  T1-Weighted Imaging
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Comments
• 3x3 Matrix reduced to 1D
• Other examples reduce to 2D
• Sometimes analytic solution is reasonable

 Zur Y, Stokar S, Bendel P. An analysis of fast imaging sequences with steady-state 
transverse magnetization refocusing. Magn Reson Med 1988; 6:175–193.

 Sekihara K. Steady-state magnetizations in rapid NMR imaging using small flip angles 
and short repetition intervals. IEEE Trans Med Imaging 1987; 6:157–164.

 van der Meulen P, Groen JP, Tinus AMC, Bruntink G. Fast field echo imaging: An 
overview and contrast calculations. Magn Reson Imaging 1988; 6:355–368.

 Buxton RB, Fisel CR, Chien D, Brady TJ. Signal intensity in fast NMR imaging with 
short repetition times. J Magn Reson 1989; 83:576–585.

Example:  Balanced SSFP (on-resonance)
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• Same periodic steady state 

• Transient paths differ based on initial state
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Matrix Calcs:  Other Sequences
• Inversion Recovery
• Driven Equilibrium
• Fat-Saturation
• Transient magnetization preparation
• Spin-echo trains

Gradient Spoilers or Crushers
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Gradient-Spoiling?
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Does a spoiler gradient completely eliminate transverse 
signal at the end of each TR?

1)  Yes

2)  No

Gradient Spoiling
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Signal is NOT eliminated at the end of TR!

Matrix Simulation:  Gradient Spoiling

• Signal is net-sum of different dephased spins
• Similar to crushers in spin echo
• Diffusion is an extension, but more spins!

• Quickly these problems become intractable

Extended Phase Graphs
• Treat a group of spins under constant gradients
• Decompose spin system into “dephased states”

– Transverse states Fk and F-k 

– Longitudinal states Zk  (k>=0)

Hennig J. Multiecho imaging sequences with low refocusing flip angles. J 
Magn Reson 1988; 78:397–407.

Weigel M, Schwenk S, Kiselev V, Scheffler K, Hennig J. Extended phase 
graphs with anisotropic diffusion. J Magn Reson 2010; 205:276–285.

Weigel M - ISMRM Educational Sessions 2010 and 2011

Miller KL - ISMRM Educational Sessions 2010 and 2011

Fourier Interpretation
• F+ = DFT { Mx + i*My }
• F-  = DFT { Mx - i*My }
• Z  = DFT { Mz }

There are some minor
subtleties to be exact

F0 F1 F-1 F2 F-2

Z states are just sinusoids of Mz magnetization

Review Question
• What are the F states this magnetization 

represents?

My

Mx

zMx(z) = 0
My(z) = cos(2pi *z)

Answers:   
A)  F1 + F-1
B)  F1 + iF-1
C)  i(F1 + F-1)



Phase Graph Example
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“Coherence Pathway Diagram”

Phase Graph Basic Definitions
• Different “dephasing” states
• Each has transverse and longitudinal M

• RF pulse (generally) for state k:
– Produces signal in longitudinal state k and 

transverse states k and -k.
(180 pulses may be an exception)

• Gradient dephaser for state k:
– Moves transverse magnetization to k+1
– Does not affect longitudinal magnetization

Phase Graph “States”
• F+ and F- states for transverse magnetization:

– Examples:
• F2 state is 2nd order, positive  
• F-1 state is 1st order, negative
• F0- = conj(F0+)

• Z states for longitudinal magnetization:
• Z3 is 3rd order state

• Can represent as a matrix:

Phase Transitions:  RF
• RF Pulses can invert state (e.g. F3  to F-3 ) or 

can transfer between F and Z states.
• Simple pre-multiplication P’ = RP
• Example   90y pulse:

Phase Transitions:  Gradient
• Increase number of states by 1
• Replace all Fk states with Fk-1

• (Replace F0 in first row using F0* from second)
• Do not change Z states



Phase Transitions:  Relaxation
• Transverse:  

– All states attenuated by E2 = exp(-T/T2)
• Longitudinal:  

– All states attenuated by E1 = exp(-T/T1)
– Z0 state only has recovery of   m0(1-E1)

Phase Transitions:  Diffusion
• F and Z states “increase” diffusion attenuation 

exponentially with state number and time
• F state transition is adjusted to model diffusion 

during a gradient

• Basic story:  You can model diffusion!
• Full story:

Weigel M, Schwenk S, Kiselev V, Scheffler K, Hennig J. Extended 
phase graphs with anisotropic diffusion. J Magn Reson 2010; 
205:276–285.

Matlab Examples
• Transition functions:

– epg_RF.m          Applies RF to P matrix
– epg_grad.m       Applies gradient to P matrix
– epg_grelax.m    Gradient, relaxation and diffusion

• Helper functions:
– epg_trim.m        Reduce states w/ threshold
– epg_plot.m        Plot states

– epg_spins2FZ     Convert M vectors to F,Z states
– epg_FZ2spins     Convert F,Z states to M vectors

Stimulated Echoes:  Code
RF

Gz

function [S,P] = epg_stim(flips)

P = [0 0 1]';                           % Z0=1 (Equilibrium)
for k=1:length(flips)   
  P = epg_rf(P,flips(k)*pi/180,pi/2);   % RF pulse
  P = epg_grelax(P,1,.2,0,1,0,1);       % Gradient
end;
S = P(1,1);                             % Signal from F0

??

fplot(epg_stim([x x x],[0,120]) Example:  Spin Echo Trains
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Spin Echo Trains
• 90x  180y 180y 180y 180y  ....  (CPMG)
• 90x  180x 180x 180x 180x  ....  (Non CPMG)
• 90x  150y 120y 120y 120y  ....  (Prep CPMG)
• 90x  120y 120y 120y 120y  ....  (Const CPMG)
• 90x  120x 120x 120x 120x  ....  (Non CPMG)

Spin Echo Train Results 1

Spin Echo Train:  F,Z States

120-deg Refocusing, Non CPMG 120-deg Refocusing, CPMG

Diffusion-Weighted Imaging (DWI)
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Diffusion-Weighted Imaging
• Simple Spin Echo Sequence
• Compare with theoretical diffusion attenuation



Steady-State EPG -- I
• Can calculate state propagation repeatedly
• Difficult, often unnecessary to do analytically
• Fast when number of states can be limited

Steady-State EPG -- II
• Recall steady states:   M’ = AM + B
• Is there an EPG form?

– Assuming a finite number (N) of states, yes!
– Write each state as real + imaginary
– Expand to vector of length 6N
– RF rotations become block-diagonal matrices
– Gradient transformation is mostly off-diagonal and 

diagonal 1’s, except for F0*  to F0 state (conjugate)

Gradient-Spoiled EPG Simulation
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RF-Spoiled Gradient Echo

RF

Gz

TR
(Quadratic Phase Increment)

S
ig

na
l

1

0

M
z

X X
Eliminate transverse magnitization:  T1 contrast

RF-Spoiled Gradient Echo RF-Spoiled EPG Simulation
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(“perfect” spoiling = 0.05)
If increment is 120deg,
not 117 deg...



Other Comments
• Phase graphs work when gradient dephasing 

is in quantized units
• Phase graphs do not really describe bSSFP
• Nicely show how RF spoiling works

• Excellent utility in understanding spin echoes 
with reduced flip angles

Resources
• ISMRM Lectures (taped or live)

– Karla Miller:  Nice EPG description and how they 
are used for gradient echo sequences

– Matthias Wiegel:  EPG and diffusion

• Spin Simulations and EPG code:
– bmr.stanford.edu   (Software Link)


