

Matrix Simulations

- Single Spin
- RF rotation
- · Gradient- or off-resonance-induced rotation
- Relaxation

RelationsRF (x) Rotation: $\mathbf{M}' = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{M}$ •RF can rotate about any transverse axis•Rotations due to precession are just about zAny rotation is just a matrix multiplication

Jaynes 1955 "The Matrix Treatment of Nuclear Induction"

Magnetization Expressions

- Matrix expression for magnetization propagation: $\mathbf{M}_{k+1} = \mathbf{A}\mathbf{M}_{k} + \mathbf{B}$
- Steady state solution:

 $\mathbf{M}_{cc} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$

If we let $\Delta \mathbf{M}_k = \mathbf{M}_k - \mathbf{M}_{SS}$

then
$$\Delta \mathbf{M}_{k+1} = \mathbf{A} \times \Delta \mathbf{M}_k$$

Example: T1-Weighted Imaging			
α M ₁ M ₂	α M ₁ M ₂		
$M_2 = \begin{bmatrix} cos\alpha & 0\\ 0 & 1\\ -sin\alpha & 0 \end{bmatrix}$	$\begin{bmatrix} sin\alpha 0\\ 0\\ cos\alpha \end{bmatrix} M_1$		
$M_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & E_1 \end{bmatrix}$	$\left]M_2 + \begin{bmatrix}0\\0\\m_0(1- \\ \end{bmatrix}\right]$	$_{E_1})$	
$M_1 = E_1 \cos\alpha M_1 + m_0(1 - E_1)$			
$M_1 = \frac{m_0(1-E_1)}{1-E_1 \cos\alpha}$			

Comments

- 3x3 Matrix reduced to 1D
- Other examples reduce to 2D
- · Sometimes analytic solution is reasonable

Zur Y, Stokar S, Bendel P. An analysis of fast imaging sequences with steady-state transverse magnetization refocusing. Magn Reson Med 1988; 6:175–193.
 Sekihara K. Steady-state magnetizations in rapid NMR imaging using small flip angles and short repetition intervals. IEEE Trans Med Imaging 1987; 6:157–164.
 van der Meulen P, Groen JP, Tinus AMC, Bruntink G. Fast field echo imaging: An overview and contrast calculations. Magn Reson Imaging 1988; 6:355–368.
 Buxton RB, Fisel CR, Chien D, Brady TJ. Signal intensity in fast NMR imaging with short repetition times. J Magn Reson 1989; 83:576–585.

Matrix Calcs: Other Sequences

- Inversion Recovery
- Driven Equilibrium
- Fat-Saturation
- Transient magnetization preparation
- · Spin-echo trains

Matrix Simulation: Gradient Spoiling

- Signal is net-sum of different dephased spins
- Similar to crushers in spin echo
- Diffusion is an extension, but more spins!
- · Quickly these problems become intractable

Extended Phase Graphs

- Treat a group of spins under constant gradients
- Decompose spin system into "dephased states" – Transverse states F_k and F_{-k}
 - Longitudinal states Z_k (k>=0)

Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988; 78:397–407.
Weigel M, Schwenk S, Kiselev V, Scheffler K, Hennig J. Extended phase graphs with anisotropic diffusion. J Magn Reson 2010; 205:276–285.
Weigel M - ISMRM Educational Sessions 2010 and 2011
Miller KL - ISMRM Educational Sessions 2010 and 2011

Phase Graph Basic Definitions		
 Different "dephasing" states Each has transverse and longitudinal M 		•
 RF pulse (generally) for state k: Produces signal in longitudinal state k and transverse states k and -k. (180 pulses may be an exception) Gradient dephaser for state k: Moves transverse magnetization to k+1 Does not affect longitudinal magnetization 		•

Phase Graph "States"

- F+ and F- states for transverse magnetization: – Examples:
 - F2 state is 2nd order, positive
 - + F_{-1} state is 1st order, negative
 - F₀⁻ = conj(F₀⁺)
- Z states for longitudinal magnetization:
 Z₃ is 3rd order state
- Can represent as a matrix:

$$P = \begin{bmatrix} F_0 & F_1 & F_2 \\ F_0^* & F_{-1} & F_{-2} & \dots \\ Z_0 & Z_1 & Z_2 \end{bmatrix}$$

Phase Transitions: RF

- RF Pulses can invert state (e.g. F₃ to F₋₃) or can transfer between F and Z states.
- Simple pre-multiplication P' = RP
- Example 90y pulse:

$$R = \begin{bmatrix} 0.5 & -0.5 & 1\\ -0.5 & 0.5 & 1\\ -0.5 & -0.5 & 0 \end{bmatrix}$$

Phase Transitions: Gradient

- Increase number of states by 1
- Replace all F_k states with F_{k-1}
- (Replace F₀ in first row using F₀^{*} from second)
- Do not change Z states

$$P = \begin{bmatrix} F_0 & F_1 & F_2 & 0 \\ F_0 & F_{-1} & F_{-2} & \dots & 0 \\ Z_0 & Z_1 & Z_2 & 0 \end{bmatrix}$$

Phase Transitions: Relaxation

- Transverse:
 - All states attenuated by E2 = exp(-T/T2)
- Longitudinal:
 - All states attenuated by E1 = exp(-T/T1)
 - $-Z_0$ state **only** has recovery of $m_0(1-E1)$

Phase Transitions: Diffusion

- F and Z states "increase" diffusion attenuation exponentially with state number and time
- F state transition is adjusted to model diffusion during a gradient
- Basic story: You can model diffusion!
- Full story:

Weigel M, Schwenk S, Kiselev V, Scheffler K, Hennig J. Extended phase graphs with anisotropic diffusion. J Magn Reson 2010; 205:276–285.

Spin Echo Trains

• 90x 180v 180v 180v 180v	(CPMG)
• 90x 180x 180x 180x 180x 180x	(Non CPMG)
• 90x 150y 120y 120y 120y	(Prep CPMG)
• 90x 120y 120y 120y 120y	(Const CPMG)
• 90 _x 120 _x 120 _x 120 _x 120 _x	(Non CPMG)

Diffusion-Weighted Imaging

- Simple Spin Echo Sequence
- · Compare with theoretical diffusion attenuation

Steady-State EPG -- II

- Recall steady states: M' = AM + B
- Is there an EPG form?
 - Assuming a finite number (N) of states, yes!
 - Write each state as real + imaginary
 - Expand to vector of length 6N
 - RF rotations become block-diagonal matrices
 - Gradient transformation is mostly off-diagonal and diagonal 1's, except for F₀* to F₀ state (conjugate)

Other Comments

- Phase graphs work when gradient dephasing is in quantized units
- · Phase graphs do not really describe bSSFP
- Nicely show how RF spoiling works
- Excellent utility in understanding spin echoes with reduced flip angles

Resources

- ISMRM Lectures (taped or live)

 Karla Miller: Nice EPG description and how they are used for gradient echo sequences
 - Matthias Wiegel: EPG and diffusion
- Spin Simulations and EPG code: - bmr.stanford.edu (Software Link)