Natural logic: Sánches

Typed lambda calculus Types Lambek terms Lambek Grammar Polarity Semantics Fregean Universe Ordering of denotations Model Monotonicity

Types

The set of types consists of e, p, and t if α and β are types, so is $\alpha \rightarrow \beta$. Any variable X_{α}^{n} is a type

Application:

If N_{α} and M_{$\alpha \rightarrow \beta$} are types then also (M_{$\alpha \rightarrow \beta$}N_{α}).

Abstraction:

 M_{β} is a type and X_{α} is a variable then also $[\lambda X_{\alpha}M_{\beta}]$.

Free Variables

The set of free variables in N_{α} is given by FV(X) = X FV(MN) = FV(M) \cup FV(N) FV(λ X.M) = FV(M) - {X}

Substitution

If N is a term and X is a variable of the same type as M, then the result of substituting M for the free occurrences of X in N (Notation: N[X:=M]) is given by $X[X:=M] \equiv N$ $Y[X:=M] \equiv Y$, if $Y \neq X$ $(NP)[X:=M] \equiv N[X:=M] P[X:=M]$

$$(\lambda Y_N)[X:=M] = \lambda Y_N[X:=M]$$

Lambek Term

The set of Lambek Terms (LT) is the set of all the terms P which satisfy:

P is a variable

 $P = M_{\alpha \rightarrow \beta} N_{\alpha}$ is in LT iff $FV(M) \cap FV(N) = \emptyset$

 $\mathsf{P} = \lambda \mathsf{X}_{\alpha} \mathsf{N} \text{ is in LT iff } \mathsf{X}_{\alpha} \epsilon \mathsf{FV}(\mathsf{N}), \mathsf{FV}(\mathsf{N}) - \{\mathsf{X}\} \neq \emptyset$

(The last condition entails that a Lambek term has at least one free variable. Why?)

β-Reduction

$[\lambda X_{\alpha}N] M_{\alpha}$ contracts to N[X:=M]

Lambek Grammar

Lambek Grammar is a proof system where a conclusion β is derived from some set of "open assumptions" [α ⁿ] by rules of deduction.

There are two rules of inference, *Elimination* and *Introduction*, corresponding to Application and Abstraction in the derivation of Lambek terms. The open assumptions are uniquely indexed by numbers (or by lexical items, as we will see shortly).

Elimination

Elimination does not consume any assumptions. The set of open assumption of the new derivation is A \cup B

Introduction

Introduction consumes one assumption. The introduction step is marked with the index of the assumption that is "discharged."

Example 1

This is a derivation of Type Raising from two open assumptions of which one, $e \rightarrow t$, is discharged, leaving e as the remaining open assumption.

This is a derivation of Division ("Geach Rule") from three open assumptions of which one remains open.

Derivations and Lambek terms

For each derivation in Lambek Grammar there is a correspoding Lambek Term and vice versa

Lexical Indices

Lexical items enter proofs as open assumptions but they are never discharged.

"...lexical assumptions are never eliminated. On the other hand, numerical assumptions are not present in the *analyses*. Numerical assumptions may be seen as empty elements, not realized phonetically." Sánches, p. 90.

Polarity and Monotonicity

Pierce (1885) came up with the idea that we can compute whether a term in a formula is positive or negative and use that as a basis for monotonicity reasoning. Pierce's *System of Existential Graphs* notation is the starting point for Sánches. Pierce's original formulation covers only a subset of cases treated by Sánches.

Polarity for FOL

Definition:

- (i) R occurs positively in $R(t_1, t_2, ..., t_n)$.
- (ii) If R occurs positively (negatively) in ϕ , then R occurs positively (negatively) in $\phi \land \psi$, $\phi \lor \psi$, $\psi \rightarrow \phi$, $\forall \phi$, $\exists \phi$.
- (iii) If R occurs positively (negatively) in ϕ , then R occurs negatively (positively) in $\neg \phi$, $\phi \rightarrow \psi$.

Polarity generalized

If a is a formula and $A(\phi)$ and $B(\phi)$ are formulas where A denotes an upward monotone function and B denotes a downward monotone function, then

(i) ϕ is positive in ϕ .

(ii) If ϕ is positive in F(ϕ), then it is positive in A(F(ϕ)) and negative in B(F(ϕ)), (iii) If ϕ is negative in F(ϕ), then it is negative

in A(F(ϕ)) and positive in B(F(ϕ)).

This incorporates Pierce's observation that two negations yield a positive polarity,

Fregean Universe

Let D be a non-empty set. Then D_{α} is given for all types of α by the following recursion:

(i)
$$D_e = D$$

(ii) $D_t = \{0, 1\}$
(iii) $D_{\alpha \rightarrow \beta} = D_{\beta}^{D_{\alpha}}$, the set of set theoretic functions from D_{α} to D_{β} .

 $\mathsf{D} = \{j, b, m\}$

Ordering

We partially order the sets D_α of the Fregean universe by a relation ≤_α as follows:
(i) If c, d ε D_e then c ≤_α d iff c = d.
(ii) If c, d ε D_t then c ≤_t d iff c = 0 or d = 1.
(iii) If c, d ε D_{α→β} then c ≤_{α→β} d iff for each a ε D_α c(a) ≤_β d(a).

Next to Come

Interpretation of a typed language.

Using syntactic types for polarity marking

Sánchez' system of Natural logic (ChapterVI).

Dowty's take on Sánchez

Moss' take on Dowty