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Abstract

Designing a programmable molecular machine is a fundamental problem in nano-technology. DNA
is a good candidate for building these machines due to its small size and combinatorial nature. One
experimentally promising direction towards obtaining such machines is a DNA walker, which is a DNA
structure that moves along some pre-assembled substrate. A DNA walker can also be a useful tool for
controllable molecular transportation. In this paper, we propose and analyze DNA walkers that can sim-
ulate arbitrary Turing machines within expected linear (in the execution length of the Turing Machine)
time. We also develop a formal model and proof techniques for analyzing DNAwalkers. Specifically, we
define two classes of “safety properties”, and prove that a walker will operate correctly and efficiently,
even in the presence of adversarial operations which disrupt the system, as long as it satisfies these prop-
erties, which our walkers do. Our walker consumes much less energy than previous proposed designs
(linear as opposed to quadratic in the running time of the Turing machine being simulated), and is the
first that can directly simulate arbitrary Turing Machines and the first that satisfies the safety properties.
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1 Introduction

A programmable and scalable nano-machine can potentially have a tremendous impact on both engineer-
ing tasks and medical applications. DNA is a good candidate for building programmable nano-machines
due to its small size and “combinatorial” nature – you can change the sequence of a DNA molecule with-
out affecting its double helical structure. Many nano-machines based on DNA have been proposed and
demonstrated [16, 2, 6, 7, 10, 14, 13].

We believe theoretical techniques and algorithmic analysis can offer significant insight for the develop-
ment of these machines. Our goal in this paper is to take one class of molecular machines and formally show
how they can be used to perform programmable tasks. Before describing our results in more detail, we will
summarize some recent related research.

Recent related results: Several experimental molecular machines have been recently developed in a lab-
oratory setting. These machines are usually powered either by a natural phenomenon called strand invasion
(also known as branch migration) or by enzymes that can break the backbone of DNA at locations spec-
ified by the DNA sequence itself (restriction enzymes) and link two DNA backbones together (ligation
enzymes). Many of these machines are self-assembled and several of them move along a 1- or 2- dimen-
sional self-assembled substrate. In each of these designs, each machine is a single (or a small number of)
DNA molecule. Many copies of the machine are present in solution along with other enzymes or DNA
strands needed for the machine to function.

One important DNA nano-machine is the DNA tweezer developed by Yurke et al. [16]. It has two rigid
“arms” formed by double-stranded DNA helices connected by a short segment of single-stranded DNA. This
machine can switch between two states “open” and “close” controlled using the strand invasion mechanism.
This machine makes one state change every time a specific DNA strand is added. Later on, this construction
was modified by Bishop et al. [2] into a DNA tweezer powered by enzymes; the operation of the machine
consumes another type of DNA strand which they call fuel strand. This new tweezer switches between the
two states autonomously until all the fuel strands get used up. Conceptually, this makes it quite similar to
an engine, though of course such molecular machines can not yet be used to perform useful work.

There are several preliminary experiments for another DNA nano-machine called a DNA walker. A
DNA walker is a DNA structure that moves along some pre-assembled substrate. It can be a useful tool for
molecular transportation. Two proposed designs of such walkers are powered by strand invasion [6, 7]. In
these proposals, the movement of the walker can be controlled, but two strand additions must be performed
for each walker movement.

Yin et al. [15] proposed and implemented a DNA walker powered by enzymatic restrictions and liga-
tions; this is the DNA walker that is most directly relevant to our results. In this implementation, there is a
DNA substrate that acts as a “track” for the walker. There are several “anchorages” along the track. A dou-
ble stranded DNA sequence (with one strand slightly longer than the other) is attached at each anchorage;
thus at each anchorage, parts of the longer strand are exposed. The exposed part has a sequence which will
allow the walker to bind to the next anchorage using complementary base pairing. The walker is represented
by two DNA strands initially attached on top of the first anchorage. Again, one of the strands in the walker
is partially exposed, and this part allows the walker to also attach to the next anchorage so that there are no
exposed regions left at the original anchorage or the new anchorage. After the attachment, one enzyme lig-
ates (i.e. attaches) the two strands together, so that there is no “break” along the DNA sequences. A second
enzyme (a restriction enzyme) recognizes the newly formed continuous sequence, and makes a cut. After
the cutting, everything remains the same except the walker strands have now moved to the top of the sec-
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ond anchorage. This process can repeat by itself and the walker moves along the DNA track autonomously
until it reaches the end. This was the first walker that could move autonomously without any environmental
changes.

There are several important features of this design that deserve mention. The walker itself is only
about 2nm long. This is orders of magnitude smaller than machines which can be fabricated with current
technology, and even orders of magnitude smaller than simple organisms such as viruses. The movement
of the walker is powered by enzymatic activity. Since these enzymes occur naturally in biological cells,
they in turn can draw energy from well known bio-chemical processes (such as the ADP-ATP cycle) and
do not require the development of new techniques. Most excitingly, the basic steps are very algorithmic in
nature, raising the possibility that these steps may be strung together to perform complex operations in a
programmable fashion. Such programmable molecular machines will be a new and powerful engineering
primitive.

Tian et al. [10] also proposed a walker using DNAzymes. In this construction, the walker is a DNAzyme.
It attaches to single stranded DNAs anchored on the substrate, makes a cut and moves onto the next DNA
strand. Pei et al. [4] extended the DNAzyme walker to a 2-dimensional walker. In their design, the walker
has multiple DNAzymes that can attach to DNA strands anchored on a 2-dimensional substrate. These
DNAzymes can cleave the current DNA strand they bind to and non-deterministically move to the next one.

The walkers we have described so far are not programmable. These walkers just repeat the same reaction
until there are no more places to move to. On the other hand, there were many interesting chemical and
biological systems designed to simulate arbitrary Turing machines. Examples include self-assembly of
DNA tiles [11], Building automata using enzymatic restrictions [1, 9] and general chemical and biological
reaction networks [8, 3]. However, none of these systems can be easily adapted to program and control nano
machines that does active work.

There have also been interesting proposed experiments for programmable walkers, though to the best
of our knowledge, these experiments have not yet been conducted. Building upon the DNAzyme walker,
Reif et al. [5] proposed a walker that simulates a restricted class of finite automata. Their construction
encodes the finite automata on the substrate using different DNAzymes. The walker is a single stranded
DNA encoding the input string plus some protecting structures. The walker will attach to the DNAzymes
on the substrate. The DNAzyme can cleave the walker strand and this will reveal the next single-stranded
portion of the walker and allow the walker to attach to the next DNAzyme. In their proposal, the walker
moves on the substrate in a way corresponding to the computation made by the finite automata. The number
of DNAzymes required in the construction is proportional to the number of symbols in the input string.
Unfortunately, this design can only work when the transition table of the finite automaton can be laid out on
a planar structure.

Yin et al. [14, 13] designed a walker that simulates a 2-state 5-symbol universal Turing machine and
a walker that simulate a 2-state 2-symbol universal cellular automata. Both constructions use a constant
number of restriction enzymes (4 and 3, respectively). They have provided detailed sequence designs and
specified the enzymes they use. They also gave some preliminary evidence of the correctness of their scheme
by showing that no unexpected reactions can block the normal operations forever. However, the amount of
energy consumed by their walker is at least quadratic to the number of simulation steps due to reactions of
different fuel strands. Also, the time required for the machine to operate is undiscussed. Their construction
is tailored to a specific Turing machine. While that TM is universal, there is an extra layer of inefficiency
in simulating a general TM using a universal Turing machine. Our results can be viewed as an extension
of the same theme, where we develop a formal framework and proof techniques for proving correctness of
such walkers, and present (new) walker designs that are provably correct and can simulate arbitrary Turing
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Machines (TMs) or Deterministic Finite Automata (DFAs).

Our results: In this paper, we propose autonomous DNA walkers that can simulate arbitrary Turing ma-
chines within expected O(n) time, where n is the number of operations for the Turing machine. This shows
that our walker can do many interesting operations such as copying, counting, and pattern recognition. Our
proposal extends the walker proposed by Yin et al. [15] and provides a method for controlling the move-
ment of the walker and for the walker to take input from (and write output to) the substrate. Some of the
techniques we use are similar to the ones described in [13]. In our proposal, the substrate is a long 1-
dimensional track with many anchorages. Each symbol of the input string is encoded on the corresponding
anchorage on the substrate and the walker contains the internal state of the machine. The walker can move
forwards and backwards on the substrate autonomously and perform the computation done by the Turing
machine, leaving the correct output on the substrate at the end. Our construction only uses 2 restriction
enzymes to simulate arbitrary finite automata and 3 restriction enzymes to simulate arbitrary Turing ma-
chines1. The transition tables of the automata/Turing machines are encoded by DNA strands introduced in
solution, whereas the enzymes/substrate design do not depend on details of the specific automaton/Turing
machine being simulated.

Equally importantly, we develop a model and proof techniques to formally show the correctness of
our walkers. Under this model, we can show that our walker always completes correctly and the expected
computation time and energy consumption are both linear to the Turing machine steps. We first define the
basic operations of our model – complementary pairing, cleavage activity by restriction enzymes, joining
of two DNA strands using ligation enzymes, and the detachment of two DNA strands held together by
insufficient strength. We then define adversarial operations that are significantly more powerful than the
normal operations – for instance, strands which are permanently held together if only normal operations are
allowed may get detached under adversarial operations. The adversarial model is intended to model errors
or other unexpected phenomena; such errors have been known to plague DNA self-assembly systems [12].
We then define two classes of “safety properties”, and prove that these safety properties imply that the
walker will operate in linear time (if strong safety properties are satisfied) or eventually (if only weak safety
properties are satisfied), even in the presence of adversarial operations which disrupt the system. Finally,
we show that the walker designs we propose satisfy the strong safety properties, and hence, can operate
in expected time which is linear in the number of operations. In a walker system, each reaction takes a
certain amount of energy to complete and therefore we would like to minimize the number of reactions
required. For all of our walker constructions, we show that the expected number of reactions happening in
the system is proportional to the number of walker steps w whereas all previous constructions require at
leastO(w2) number of reactions2. We believe that our proof technique will be useful to other nano-machine
constructions.

We will define our walker model and the safety properties in section 2. Then, we will describe our
walker design that simulates DFAs and prove its correctness (section 3). We will do the same for TMs in
section 4. While the DFA walker is of course subsumed by the TM walker, we believe that seeing the DFA
walker first will help the reader build more intuition about the TM walker. Finally, we describe several
important open problems in section 6.

1The restriction enzymes we use in our paper are not actual known physical enzymes. Rather, they are reasonable abstractions
of known real restriction enzymes.

2If the walker can move w steps, then to ensure proper walker operation, the amount of fuel strand must be at least w times the
amount of machines. Therefore, if the fuel strands can react with each other, as in [14, 13], it will happen w times more frequently
than the operations which helps the walker move and the total number of reactions between fuel strands must be at least O(w2).
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2 Model

Our theoretical model extends the walker model proposed and implemented by Yin et al. [15].
In our model, there is a linear substrate acting as a track. There are some DNA molecules anchored to

this substrate with fixed spacings between them and some other DNA molecules floating in the solution. We
use the term anchorage to denote DNAmolecules anchored to this substrate. All DNAmolecules are duplex
DNA molecules with some single stranded regions that can be used to attach to molecules and hence we
can specify a molecule just by specifying its sequence. For the ease of description, we use abstract symbols
to denote the DNA sequences for the rest of the paper. All symbols represent a DNA sequence of length
L = O(log |S|), where |S| is the total number of strands. Functions φ and θ map states or symbols to
DNA sequences of length L. Every symbol represents a different DNA sequence and differ by at least L/2
bases unless otherwise specified. Adding the superscript r to a symbol denotes the reverse of the sequence
and adding the superscript c denotes the complement of the sequence. Characters with underlines and
overlines denote single stranded portions of a molecule; other characters denote double stranded regions.
The characters are listed from the 3’ end to the 5’ end. An example is shown in figure 1(a). It is worth
noticing that each molecule has two different ways of describing. For example, a molecule denoted by
A B C is exactly the same as a molecule denoted by Crc Brc Arc. In the rest of this paper, we will
describe the sequences of the anchorages starting from the anchored end and describe other DNA molecules
according to the direction of the molecule when they are about to attach to an anchorage.

su
bs
tra
te A B

C

D E

B DArc rc rc rc
ABCDE

Figure 1: (a) The anchored strand illustrated in this figure is denoted by ABCDE. Superscripts c and r denote the
complementary strand and the reversed strand respectively. (b)

Initially, the walker strand attaches on the first anchored strand. The walker is going to move au-
tonomously along this substrate and perform some computation. During the motion, some part of the walker
strand can get replaced by the strands floating in the solution in order to encode information for computa-
tional purposes. We only consider four types of reactions. The first one is hybridization, which is attachment
of two molecules having complementary single stranded regions of length at least c. We also consider the
reverse of this reaction which we call detachment. This corresponds to the falling apart of two DNA strands
which are held by at most c base pairs. The other two type of reaction are ligation and enzymatic restric-
tion. In an ligation reaction, DNA ligase links together DNA strands that has a break in both complementary
strands of DNA; in a enzymatic restriction, an enzyme recognizes a special double stranded sequence (called
restriction site) and makes two incisions, one through each of the sugar-phosphate backbones at some loca-
tion with a fixed distance to the restriction site. In our notation, when two molecules of the form AB and
BC attach (hybridize) together, ligation can link them into a single molecule ABC and restriction can cut
a molecule of the form ABC into AB and BC but can only make the cut at a fixed location with respect to
the restriction site. We also assume that the restriction site can be two regions separated by a fixed distance,
since this type of enzyme exists in nature and is used in previous constructions [14, 13] .

4



We define normal operations to be the set of all possible reactions of the above four type. We also define
a larger set of reactions called the adversary operations. The adversary operations are the same as the normal
operations except two DNA strands can hybridize when they have at least c/2 complementary base pairs and
two DNA strands can detach if they are held by less than 2c base pairs. For the normal walker operations, we
adjust the concentration of each molecule and the environment such that all four types of normal operations
happen at the same expected rate. Note that the adversary needs only half as much strength to attach two
molecules and can detach molecules held by twice as much strength comparing to normal operations. Since
the rate of the reaction depends exponentially on the energy change, we know that all reactions that are
not adversary operations happen with a much slower rate and in the rest of this paper, we assume that such
reactions do not take place. We also set the constant threshold c to be the length L, which is the length of a
sequence corresponding to every abstract symbol.

To show that a walker will perform a certain set of operations as designed, we need to define the follow-
ing terms to describe the state of a walker.

Definition 1 The configuration of a walker is defined by the sequence of all anchorages.

Definition 2 The c1-neighborhood of a configuration P is the set of all walker configurations from which
configuration P can be reached with at most c1 normal operations on each anchorage.

For our purposes, c1 will be a constant that will depend on the construction. We also ignore all configu-
rations that are not reachable from the initial configuration. To ensure that the walker can function in a way
we expect, we must define a series of desired walker configurations P1.P2, . . . , Pk. We describe two sets of
properties which we call safety and strong safety. We show that when all safety properties are satisfied, the
system will reach configuration Pk eventually and when all strong safety properties are satisfied, the sys-
tem will reach some configuration similar to Pk in O(kT ) time, where T is the expected time for a normal
operation to take place.

Definition 3 The following properties are called Safety properties.

1. configuration Pi can be reached from configuration Pi−1 with c2 operations where c2 is a constant.

2. Starting from configuration Pi, no matter how many adversary operations we do, the configuration of
the walker will be in the c1-neighborhood of state Pj for some j ≥ i, where c1 is a constant.

Intuitively, the first property guarantees the existence of a series of reaction that takes the walker from
the initial state to the desired final state. The second property guarantees that the current configuration of
the walker cannot be very different from a desired configuration and there is always a way to undo all the
unwanted reactions.

Definition 4 The following properties are called Strong safety properties.

1. All safety properties.

2. In all configurations reachable with adversary operations, when two molecules attach together, they
are held by at least c base pairs.

3. At any given configuration of the walker, the number of adversary operation that can be performed on
a specific anchorage is bounded by a constant, c3.
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4. From any configuration in the c1-neighborhood of Pi−1, the walker can reach a configuration in the
c1-neighborhood of Pi within c4 normal operations, where c4 is a constant.

In the rest of the section, We describe our main theoretical results on the correctness of walker designs.
First, we show that when all safety properties are satisfied, the configuration Pk can be reached eventually.

Theorem 1 After an adversary makes any number of adversary operations starting from configuration P1,
configuration Pk can be reached using only normal operations.

Proof: From the second property of safety, we know that any configuration reachable from P1 must be in the
c1-neighborhood of Pi for some i. Therefore, configuration Pi can be reached using only normal operations.
Using the first property of safety, configuration Pk can be reached from Pi using only normal operations. !

Next, we show that when all strong safety properties are satisfied, we can reach a configuration in
the neighborhood of Pk in O(k) time. We start by showing that we only need a small number of normal
operations to reach the neighborhood of Pk.

Theorem 2 When all strong safety properties are satisfied and the walker starts from any configuration
in the c1-neighborhood of Pi for some i, the walker will reach a configuration in the neighborhood of
configuration Pk within expected O(k) time.

Proof: From the fourth property of strong safety, we know that from any configuration in the c1-neighborhood
of Pj , we need at most c4 normal reactions to reach a configuration in the c1-neighborhood of Pj+1. There
are at most 2c4 anchorages involved in these c4 reactions. From the third property of strong safety, we know
that at most 2c3c4 possible adversary operations can happen to these anchorages at any given time. From
the second property of strong safety, we know that these c4 normal reactions happen with the highest rate
among all adversary operations. Therefore, when one of these c4 reactions is available, it will happen before
any other adversary operation on these anchorages with probability at least 1

2c3c4
. Hence, there is a constant

probability that these c4 reactions happen before any other reaction on these 2c4 anchorages. Notice that
there could be other adversary operations happening on other anchorages during this time.

If all c4 reactions happen before any other reactions on these anchorages, we can consider the config-
uration P ∗ of the walker right after all these reactions happen. Notice that there could be other adversary
operations happening on other anchorages during this time and therefore P ∗ is not necessarily in the c1-
neighborhood of Pj+1. However, since any other reactions doesn’t affect the c4 operations we consider,
we know that P∗ can be reached by performing those c4 operations first followed by all other adversary
operations. This shows that P∗ is reachable from some configuration in the c1-neighborhood of Pj+1 and
therefore must be in the c1-neighborhood of Pk for some k > j by the definition of “neighborhood” and the
second property of safety. From the above, we know that starting from any state in the c1-neighborhood of
Pj , we will be in the c1-neighborhood of Pk for some k > j with expected constant number of reactions
and this proves the theorem. !

3 Simulating Deterministic Finite Automata

In this section, we will present a walker system that simulates a finite automata. The input string is encoded
on the anchorages on the substrate. The i-th symbol is encoded on the i-th anchorage by adding a restriction
site at a specific location. The walker encodes the current state of the automata by encoding a transition table
from the current state to the next. In each cycle of the operation, a “read” is performed by an enzyme which
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recognizes the restriction site and reveals a subsequence of the walker that encodes the next state. Several
reactions happen according to the sequence revealed. After these reactions, a walker strand encoding the
next state will be attached to the next anchorage which completes a cycle. This walker uses only three
enzymes, including one enzyme that does ligation.

3.1 System Description

For any given finite state automaton with state space S = {S0, S1, S2, · · · , Sk} and symbol space Σ =
{σ1, σ2, · · · , σt}. Let the input string be a1a2 · · · an, and initial state be S0. Also, we use NSi(j) to denote
the next state of the walker if the current state is Sj and input symbol is σi. For the ease of description, we
use !j to denote JJ · · · J

︸ ︷︷ ︸

j−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−j

for the rest of this section.

The substrate has n + 1 anchorages on it with equal spacing between every two adjacent strands. For
every location u > 1, let au = σj . Then anchorage at location u of the substrate is !jA. The n + 1-th
anchorage is JJ · · ·J

︸ ︷︷ ︸

t

A. Let the first symbol be σi. The first strand (corresponding to the anchorage at the

initial position of the head and the walker with state S0) is
!i A θ(S0)rc φ1(NS1(0)) φ2(NS2(0)) · · · φt(NSt(0)) JJ · · ·J

︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

t+2

.

We also add the following four types of DNA molecules in the solution:
C JJ · · · J

︸ ︷︷ ︸

t+1

Rrc
1 .

φi(Sj) JJ · · ·J
︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj) Arc K JJ · · ·J

︸ ︷︷ ︸

t−1

D1 D2 · · · Dt J J , for every symbol σi and state Sj .

Dj Dj+1 · · · Dt JJ · · ·J
︸ ︷︷ ︸

t+4

Rrc
1 , for every 1 ≤ j ≤ t.

θ(Sj)rc φ1(NS1(j)) φ2(NS2(j)) · · · φt(NSt(j)) JJ · · ·J
︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

t+2

, for every state Sj .

There are three enzymes in this system. Each of these enzymes has a specific restriction site and makes
one cleave on each of the two DNA strands. There first enzyme E1 recognizes a double stranded region R1.
The cleavage on the strand with sequenceR1 is (3t+5)L bases from the restriction site R1 and the cleavage
on the complementary strand is (3t + 4)L bases away from the restriction site Rrc

1 . The second enzyme
E2 recognizes Rrc

2 X ArcJrc, where X is any sequence of length L. This enzyme cuts the double stranded
region into Rrc

2 X and XArcJrc. We also have an enzyme which does ligation.

3.2 Desired Sequence of Reactions

We now describe how this walker moves and simulates any given automata.

Step 1:
In the initial configuration, enzyme E1 can recognize R1 on the first anchorage

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φt(NSt(0)) JJ · · ·J

︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

t+2

and make a cleavage. After this, only the bottom part of this anchorage
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!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φt(NSt(0)) JJ · · ·J

︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

i−1

C

is anchored. The other part can detach and drift away.

Step 2:
The strand C JJ · · ·J

︸ ︷︷ ︸

t+1

Rrc
1 can now attach using the complementary sequence C and C and be ligated

to the anchored strand. After the ligation, we have

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φt(NSt(0)) JJ · · ·J

︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

i−1

C JJ · · ·J
︸ ︷︷ ︸

t+1

Rrc
1

The enzyme E1 can now recognize either R1 or Rrc
1 in this anchored DNA sequence. If it recognizes

R1 and makes the cleavage first, the configuration goes back to the end of Step 1. If it recognizes Rrc
1 , the

anchorage will become

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0))

Step 3:
Notice that NSi(0) is the next state of the walker. We assume that NSi(0) = Sj for j ∈ {1, 2, · · · , k}.
The strand φi(Sj) JJ · · ·J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj) Arc K JJ · · · J

︸ ︷︷ ︸

t−1

D1 D2 · · · Dt J J can attach to the anchored

strand produced by step 2. After this strand attaches and gets ligated, enzyme E1 can function again and
produce the following anchorage.

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0)) JJ · · · J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj) Arc K JJ · · · J

︸ ︷︷ ︸

t−1

D1 D2 · · · Di−1 Di

Step 4:
The strand Dj Dj+1 · · · Dt JJ · · ·J

︸ ︷︷ ︸

t+4

Rrc
1 can attach to the anchorage produced by step 3 and, similar

to step 2, the enzyme E1 can recognize either R1 or Rrc
1 . If R1 is recognized, the configuration goes back

to the end of step 3. If Rrc
1 is recognized, then the current anchorage become

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0)) JJ · · ·J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj) Arc

Step 5:
Now, the current anchorage can attach to the next anchorage on the substrate using complementary

sequences A and Arc. We get (assuming the next input symbol is σu)
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!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0))JJ · · ·J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj) Arc

!
rc
u

Both ends of this double stranded sequence are anchored on the substrate. After the attachment, enzyme
E2 will function and split this DNA sequence into the following two anchorages.

!i A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0))JJ · · ·J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj)

and

!u A θ(Sj)rc

The strand θ(Sj)rc φ1(NS1(j)) φ2(NS2(j)) · · · φt(NSt(j)) JJ · · ·J
︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

t+2

can now attach to the

second anchorage. This completes one cycle of the walker operation which corresponds to one step of the
automate we want to simulate.

The following strands will be generated during the walker operations:
Step 1:

C CC · · ·C
︸ ︷︷ ︸

i

, 2 ≤ i ≤ t + 1

Step 2:

φi(NSi(j)) φi+1(NSi+1(j)) · · · φt(NSt(j)) CC · · ·C
︸ ︷︷ ︸

i−1

C JJ · · ·J
︸ ︷︷ ︸

t+1

Rrc
1 , 1 ≤ i ≤ t, Sj is a state of the automata

Step 3:
Di Di+1 · · · Dt J J, 1 ≤ i ≤ t

Step 4:

Arc K JJ · · ·J
︸ ︷︷ ︸

t−1

D1 D2 · · · Dt JJ · · ·J
︸ ︷︷ ︸

t+4

Rrc
1

This walker satisfies all safety property mentioned in section 2. The detailed proof is in the appendix
due to space constraint.

As mentioned previously, this walker has another important feature - low energy consumption. The ex-
pected amount of reactions is proportional to the number of operations of the Turing machine simulated. To
show this, first notice that no twomolecules in the solution share common sticky ends. Therefore, no reaction
is going to happen between molecules in the solution. Second, when the walker is on anchorage x, all an-
chorages y, y < x have the form!i A θ(S0)rc φ1(NS1(0)) φ2(NS2(0)) · · · φi(NSi(0))JJ · · ·J

︸ ︷︷ ︸

t−i

Rrc
2 θ(Sj)

and all anchorages y, y > x have the form !jA. These anchorages don’t react with any molecule in the
solution. Therefore, all reactions must involve the anchorage with the walker and thus there are only a con-
stant number of operations that can happen in the whole system at any given time. From the safety proofs,
we know that the system finishes in expected O(n) time where n is the number of operations of the Turing
machine. Therefore, the expected total number of reactions is O(nN) where N is the number of walkers
we have in the experiment.
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4 Turing Machine

In this section, we will present a walker that simulates a Turing machine. The input string is encoded on the
anchorages on the substrate. The i-th symbol is encoded on the i-th anchorage by adding a restriction site
at a specific location. The walker encodes the current state of the Turing machine by encoding a transition
table from the current state to the next. In each cycle of the operation, a “read” is performed by an enzyme
which recognizes the restriction site and reveals a subsequence of the walker that encodes the next state.
Several reactions happen according to the sequence revealed. These reactions will move the walker to an
adjacent anchorage (corresponding to a head move) and change the sequence of the leftover portion of the
anchorage(corresponding to a “write” operation). The walker described in this section only uses 3 restriction
enzymes. Figure 2 illustrates the idea of how the walker operates. The detailed construction of the walker
and the proof of safety properties are in the appendix due to space constraints. In this construction, the
expected number of operations is also linear to the number of operations for the Turing machine.

Figure 2: (a) The starting state. Red strands denote the DNA walker. (b) An enzyme cleaves the walker and reveals
a sequence corresponding to the next state Sj . This corresponds to a “read” operation. (c) A sequence of reactions
happen which allow the walker to bind to an adjacent anchorage B. (d) After the two anchorages A and B binds
together, two enzymes can function and make cuts on both of the two anchorages. (e) One molecule encoding the
next state can attach to anchorage B. (f) A series of reactions happen to anchorage A and changes the location of one
special restriction site. This corresponds to a “write” operation.

10



5 Conclusion

In this paper, we show that we can extend the walker by Yin et al. [15] to simulate arbitrary finite automata
and Turing machines. Our construction only uses 2 restriction enzymes for simulating finite automata and 3
restriction enzymes for simulating Turing machines. The specification of the Turing machine goes into the
strands in the solution and anchored on the substrate. We also show that the walker can operate correctly
unless some low-probability catastrophic event happens. However, our construction requires an enzyme that
can countO(|Σ|(log |S| + log |Σ|) bases, where Σ is the symbol space and S is the state space of the Turing
machine we want to simulate. This could be very hard to implement if we want to simulate complicated
Turing machines. It is an interesting open problem to construct controllable walkers using enzymes which
count for shorter distances.

6 Open problems

There are several open problems which directly relate to our paper: Can we reduce the number of enzymes?
Are there designs that are robust against stronger adversaries? Can we reduce the length of sequences
over which the restriction enzymes in our designs must count? And most importantly (though perhaps not
of direct interest to the theory community), can these designs be verified experimentally?. We believe that
these are all very important open problems deserving further study. However, we would also like to pose
two other problems which are less directly related to the results of our paper but are of significant interest
for molecular machines in general:

1. Earlier in this paper, we mentioned results [16, 6, 7] where strand invasion was used to perform
operations that could also be done using restriction enzymes. This leads to the following natural
question: Can strand invasion be used to simulate general restriction and ligation enzymes?

2. We need several restriction enzymes in our walkers, and these restriction enzymes need to count over
long sequences. It is not immediately obvious that such enzymes occur in nature and can co-exist
under the same experimental conditions. Is there some way of simulating general restriction enzymes
using a small number of simple restriction enzymes, perhaps in conjunction with strand invasion?

All the above problems have a very algorithmic/computational flavor. We expect that any theoretical
techniques developed for their solution will have direct impact on experimental capability.
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A Safety Properties for Finite Automata Simulation

Safety:
Ideally, we would like the walker to repeat the cycle mentioned in section 3.2 n times and stop. The

walker with the final state encoded on it will be attached on top of the n + 1-th anchorage. In the rest of
this section, we show that the walker will perform all these desired operations by showing that all safety
properties hold. We define configuration Pi to be the configuration at the beginning of the i-th cycle for
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1 ≤ i ≤ n and define Pn+1 to be the desired final configuration. When the walker is at configuration Pi,
then configuration Pi+1 can be reached using one cycle. Therefore, the first property of safety is true.

To prove the system satisfies the second property of safety, first, it is easy to see that for all double-
stranded molecules in this system, the two strands are held by more than 2L base pairs. Hence, the adversary
cannot break any of them to generate new sequences. Also, by our initial specification of the sequences,
we know that any two non-complementary strand can only have less than L/2 complementary base pairs.
Hence, the set of adversary operations and normal operations are exactly the same. The following lemma
shows that the walker satisfies the second property of safety.

Lemma 3 Starting from configurationPi, the configuration of the walker will remain in the 10-neighborhood
of Pi until reaching configuration Pi+1.

Proof: We know that the configuration Pi and Pi+1 only differs on the i-th and the i + 1-th anchorages.
In these two configurations, the first i− 1 anchorages are of the form (without loss of generality, we call the
current state S0)

!u A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φu(NSu(0)) JJ · · ·J

︸ ︷︷ ︸

t−u

Rrc
2 θ(Sv)

for some u, v and anchorages i + 2 to n are of the form

!u A

It is easy to see that no molecules floating in the solution can attach to any of these anchorages and
therefore all these anchorages will remain unchanged unless they can bind to the i-th or i + 1-th anchorage.

Hence, to prove the lemma, we only need to show in the reaction cycle described in section 3, all other
possible reactions are reversible and cannot change the configuration too much.

Starting from configuration Pi, the only reaction that can happen is the enzymatic restriction described.
Therefore, anchorage i can only change to

!u A θ(S0)
rc φ1(NS1(0)) φ2(NS2(0)) · · · φt(NSt(0)) JJ · · ·J

︸ ︷︷ ︸

t+3

CC · · ·C
︸ ︷︷ ︸

u−1

C

From this configuration, the only two sets of molecules that can attach are

C JJ · · · J
︸ ︷︷ ︸

t+1

Rrc
1

and

C CC · · ·C
︸ ︷︷ ︸

i

, 2 ≤ i ≤ t + 1

As described in the step 2 of the walker cycle, if the first strand attaches, the configuration of the
anchorage with walker can only change to the configuration described at the end of step 2 or remain at
the configuration mentioned at then end of step 1. On the other hand, if the second strand attaches, no
further reactions can happen until it gets cleaved by enzyme E1 again and goes back to the situation at the
end of step 1.

The situation for all other steps is the same. The adversary can attach and ligate one unexpected molecule
to the anchorage with the walker at any time, but no further reaction can happen except the attached molecule
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falling off (due to an enzymatic cleavage). Therefore, before the walker reaches configuration Pi+1, at most
10 normal operations are required to change the anchorage i to back to the sequence described by Pi and all
other anchorages are identical to the one described by Pi. Therefore, we only need to show that from any of
these configurations, Pi−1 cannot be reached using any number of adversary operations.

From the above discussion, we know that the first i− 1 anchorages remain unchanged during the whole
cycle no matter which adversary operations has happened. Using this argument on all other cycles, we
know that the sequence of the i-th anchorage will never be changed again after reaching configuration Pi+1.
Also, notice that for all configurations described in the cycle, the i-th anchorage always starts with sequence
!u A θ(S0)rc. Therefore, starting from the configuration Pi, anchorage i will always contain the sequence
!u A θ(S0)rc no matter how many adversary operations happen and the configuration will never reach Pj

for any j < i. !

Strong safety:
The second property of strong safety follows from the fact that all adversary operations are normal

operations. From lemma 3, we know that for every configuration of the walker, there are at most two
adversary operations that can happen. We also know that for any configuration in the 10-neighborhood of
Pi, all anchorages other than i and i + 1 have sequences identical to the sequence described in Pi+1 and
from the description of the walker cycle, we know that configuration Pi+1, which is in the neighborhood of
Pi+1, can be reached in 10 operations simply by following the walker cycle described above. This shows
the last property for strong safety is satisfied.

From the above discussion, we know that the walker we constructed can simulate any given finite au-
tomata and it only takes expected O(n) reactions to simulate an automata with input length n.

B Details on Simulating Turing Machines

In this section, we will present a walker that simulates a Turing machine. The input string is encoded on the
anchorages on the substrate. The i-th symbol is encoded on the i-th anchorage by adding a restriction site
at a specific location. The walker encodes the current state of the Turing machine by encoding a transition
table from the current state to the next. In each cycle of the operation, a “read” is performed by an enzyme
which recognizes the restriction site and reveals a subsequence of the walker that encodes the next state.
Several reactions happen according to the sequence revealed. These reactions will move the walker to an
adjacent anchorage (corresponding to a head move) and change the sequence of the leftover portion of the
anchorage(corresponding to a “write” operation).

B.1 System Description

For any given Turing machine, we define a new state space such that each state Si consists of a four tuple
(Turing machine state, symbol that should be written on current head position, direction of head movement,
residue of current position to base 3). Let the new state space S = {S1, S2, · · · , Sk} and the new symbol
space Σ = {σ1, σ2, · · · , σt}. Let the initial symbols on the tape be a1a2 · · · an · · · , initial head position be
1 and current state be Sini. Also, we use NSi(j) to denote the next state of the walker if the current state is
Sj and input symbol is σi. We also assume k > j for the rest of the section.

The substrate has n anchorages on it with equal spacing between every two adjacent strands. For every
location u > 1, let au = σj and w be the residue of u to base 3. Then anchorage at location u of the
substrate is !w,jAw, where
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!w,j = φ1w(σ1) φ1w(σ2) · · · φ1w(σt) JJ · · ·J
︸ ︷︷ ︸

j−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−j

φ2(Sk) φ2(Sk−1) · · · φ2(S1) B

All sequences of the form φ1x(σy), x ∈ {1, 2, 3} and 1 ≤ y ≤ t end with a short sequence K, but any
two of them still differs by at least L/2 bases, as previously stated. The first strand (corresponding to the
anchorage at the initial position of the head and the walker with initial state S1) is

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θt(NSt(1)) JJ · · · J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

t+2

(assuming a1 = σi)
The following strands are floating in the solution:

C JJ · · ·J
︸ ︷︷ ︸

t+k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

.

θi(Sj) JJ · · ·J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj) JJ · · ·J
︸ ︷︷ ︸

10k+i−j−2

Cij , 1 ≤ i ≤ t, 1 ≤ j ≤ k

.

Cij JJ · · · J
︸ ︷︷ ︸

2t+k−i+j+2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc, 1 ≤ i ≤ t, 1 ≤ j ≤ k

.

φ4i(Sj) R2 JJ · · ·J
︸ ︷︷ ︸

k−j−1

R3 Arc
m J D1 D2 · · · Dj , 1 ≤ i ≤ t, 1 ≤ j ≤ k

(The value of m depends on the state Sj and will determine the direction which the walker moves. For
example, if Sj indicates that the walker is currently on the 3u + 1-th anchored strand and should move
towards right, thenm = 2.)

Dj Dj+1 · · · Dk Rrc
2 φ4j(Sj)rc, 1 ≤ j ≤ k

.

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

10k−t+v−2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc, 1 ≤ j ≤ k

(Assuming that the state Sj wants to write σv at the current head position)

φ1x(σi) φ1x(σi+1) · · · φ1x(σt) JJ · · ·J
︸ ︷︷ ︸

i−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−i

φ2(Sk) φ2(Sk−1) · · · φ2(S1)

B Ax JJ · · ·J
︸ ︷︷ ︸

t+10k

F1 F2 · · · Fi, 1 ≤ i ≤ t, 1 ≤ j ≤ k

.

Fi Fi+1 · · · Ft JJ · · ·J
︸ ︷︷ ︸

k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc, 1 ≤ i ≤ t
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.

φ2(Sj) φ2(Sj−1) · · · φ2(S1) B Am θ1(NS1(j)) θ2(NS2(j)) · · · θt(NSt(j))

JJ · · ·J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

t+2

, 1 ≤ j ≤ k

(The value ofm is determined by Sj .)
There are 3 restriction enzymes in this system. The first enzyme E1 recognizes a double stranded region

KXR1, whereK is the common short sequence shared by all sequences of the form φ1x(σy),X can be any
sequence of length tL and R1 is a special sequence of length L. The cleavage on the strand with sequence
KXR1 is (11k + 2t + 2)L bases from the restriction site R1 and the cleavage on the complementary strand
is (11k + 2t + 1)L bases away from the restriction site KXR1

rc. For the ease of explanation, when we
describe the sequence E1 recognizes, we only describe the location of sequence R1 (or, equivalently, Rrc

1 ).
Next, we let all sequences of the form φ4i(Sj) have the same subsequence R4 with O(1) length in the end.
The second enzyme E2 recognizes R4R2. The cleavage on the strand with sequence R4R2 is (k + 1)L
bases away from the restriction site and the cleavage on the complementary strand is kL bases away from
the restriction site. The last three enzymes recognizes BY Rrc

3 for any sequence Y with length L. This
enzyme makes a cleavage (k +1)L bases away from the restriction site on the strand with sequence BY Rrc

3

and make the other cleavage kL bases away from the restriction site on the complementary strand.
To test progressiveness and safety, we need to define a series of walker configurations Pi. We let Pi

denote the configuration where the walker just simulates i steps of the Turing machine and all the “write”
operation has been performed. We now explain how this walker is designed to operate and verify the safety
properties for our walker proposal:

B.2 The First Property of Safety

We now describe how this walker moves and simulates the given Turing machine.

Step 1:
In the initial configuration, enzyme E1 can recognize R1 on the first DNA strand

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θt(NSt(1)) JJ · · · J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

t+2

and makes a cleavage. After this, only the bottom part of this strand

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θt(NSt(1)) JJ · · ·J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

i−1

C

is anchored. The top part can float away.

Step 2:
The strand C JJ · · ·J

︸ ︷︷ ︸

t+k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc can now attach using the complementary sequence C and

C and we have
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!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θt(NSt(1)) JJ · · ·J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

i−1

C JJ · · ·J
︸ ︷︷ ︸

t+k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

The enzyme E1 can now recognize either R1 or Rrc
1 . If it recognizes R1 first, the configuration goes

back to the end of Step 1. If it recognizes Rrc
1 , the strand will become

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1))

Step 3:
Notice that NSi(1) is the next state of the walker. We assume that NSi(1) = Sj for j ∈ {1, 2, · · · , k}.
The strand θi(Sj) JJ · · ·J

︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj) JJ · · ·J
︸ ︷︷ ︸

10k+i−j−2

Cij can attach to the anchored strand

produced by step 2. After the attachment, then enzyme E1 can function again and cleave the double stranded
region Cij to get Cij .

Step 4:
The strand Cij JJ · · ·J

︸ ︷︷ ︸

2t+k−i+j+2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc can attach to the anchored strand described in step 3

and we get

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · ·J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj)

JJ · · ·J
︸ ︷︷ ︸

10k+i−j−2

Cij JJ · · ·J
︸ ︷︷ ︸

2t+k−i+j+2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

Next, the enzyme E1 can recognize R1 and Rrc
1 . If the enzyme recognizes R1 first, then situation goes

back to the end of step 3. If the enzyme recognizes Rrc
1 first, then we have

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · ·J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj)

Step 5:
The strand φ4i(Sj) R2 JJ · · ·J

︸ ︷︷ ︸

k−j−1

R3 Arc
m J D1 D2 · · · Dj can now attach and enzyme E2 can function,

resulting in

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · · J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj) R2

JJ · · ·J
︸ ︷︷ ︸

k−j−1

R3 Arc
m J D1 D2 · · · Dj

Step 6:
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The strandDj Dj+1 · · · Dk Rrc
2 φ4j(Sj)rc can attach to the anchored strand produced by step 5 and the

enzymeE2 can recognize either φ4i(Sj) R2 orRrc
2 φ4j(Sj)rc. If φ4i(Sj) R2 is recognized, the configuration

goes back to the end of step 5. If Rrc
2 φ4j(Sj)rc is recognized, then the strands become

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · · J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj) R2

JJ · · ·J
︸ ︷︷ ︸

k−j−1

R3 Arc
m

Step 7:
Now, the current strand (which is the first strand anchored on the substrate) can attach to the next

anchorage on the substrate using complementary sequences Am and Arc
m. We get (assuming the next input

symbol is σu)

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · · J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

j−1

φ4i(Sj) R2

JJ · · ·J
︸ ︷︷ ︸

k−j−1

R3 Arc
m !

rc
m,u

Now, enzymes E2 and E3 can both function and we will get the following two anchored strands regard-
less of the order of those two enzymes functioning:

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · ·J
︸ ︷︷ ︸

t−i

φ3(Sj)

φ1m(σ1) φ1m(σ2) · · · φ1m(σt) JJ · · ·J
︸ ︷︷ ︸

v−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−v

φ2(Sk) φ2(Sk−1) · · · φ2(Sj)

Originally, the walker attached on top of the first strand. After the step, the walker moves to the second
strand and the symbol σv corresponding to state Sj will be written on the first strand. Steps 8-10 describe
the reactions happening on the first strand and step 11 describes the attachment of the new walker.

Step 8:
Strand φ3(Sj) JJ · · ·J

︸ ︷︷ ︸

10k−t+v−2

{R1 JJ · · · J
︸ ︷︷ ︸

t

K}rc can attach to the first product strand mentioned in step 7.

After the attachment, enzyme E1 can recognize {R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc and cleaves the strand. Hence, we get

φ11(σ1) φ11(σ2) · · · φ11(σv)

Step 9:
The strand

φ11(σv) φ11(σv+1) · · · φ11(σt) JJ · · ·J
︸ ︷︷ ︸

v−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−v

φ2(Sk) φ2(Sk−1) · · · φ2(S1) B A1

JJ · · ·J
︸ ︷︷ ︸

t+10k

F1 F2 · · · Fv
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can now attach to the anchored strand produced by step 8 and enzyme E1 can function again to cleave Fv.

Step 10:
The strand Fv Fv+1 · · · Ft JJ · · ·J

︸ ︷︷ ︸

k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc can attach to the anchored strand on step 9.

After the attachment, the enzyme E1 can recognize either R1 or Rrc
1 . Similar to the previous cases, if the

enzyme recognizes R1, the situation goes back to the end of step 9. If the enzyme recognizes Rrc
1 , then this

strand become

φ11(σ1) φ11(σ2) · · · φ11(σt) JJ · · ·J
︸ ︷︷ ︸

v−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−v

φ2(Sk) φ2(Sk−1) · · · φ2(S1) B A1

which is just

!1, v A1

This shows that the walker has been removed from the first strand and the next symbol σv has been
written on the first strand.

Step 11:
The strand

φ2(Sj) φ2(Sj−1) · · · φ2(S1) B Am θ1(NS1(j)) θ2(NS2(j)) · · · θt(NSt(j)) JJ · · · J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

t+2

can attach to the second strand described in step 7. After this attachment, the walker with the transition
table corresponding to the state Sj is attached on the next strand, thus completes one cycle of the walker
movement.

The above process will repeat autonomously and the walker will move on the substrate in the same way
as the Turing machine head moves.

The following strands will be generated during the walker operations:
Step 1:

C CC · · ·C
︸ ︷︷ ︸

i

, 2 ≤ i ≤ t + 1

Step 2:

θi(NS(i)) θi+1(NS(i + 1)) · · · θt(NS(t)) JJ · · · J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

i

JJ · · ·J
︸ ︷︷ ︸

t+k+1

{R1 JJ · · · J
︸ ︷︷ ︸

t

K}rc, 1 ≤ i ≤ t

Step 3:
Cij , 1 ≤ i ≤ t, 1 ≤ j ≤ k

Step 4:

φ4i(Sj) JJ · · ·J
︸ ︷︷ ︸

10k+i−j−2

Cij JJ · · ·J
︸ ︷︷ ︸

2t+k−i+j+2

{R1 JJ · · · J
︸ ︷︷ ︸

t

K}rc, 1 ≤ i ≤ t, 1 ≤ j ≤ k
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Step 5:
Dj , 1 ≤ j ≤ k

Step 6:
Arc

m J D1 D2 · · · Dk Rrc
2 φ4j(Sj), 1 ≤ j ≤ k

Step 7:
φ3(Sj) JJ · · ·J

︸ ︷︷ ︸

j−1

φ4(Sj) R2 JJ · · · J
︸ ︷︷ ︸

k−j−1

R3 Arc
m Brc

φ2(S1)rc φ2(S2)rc · · · φ2(Sj)rc, 1 ≤ j ≤ k

Step 8:

φ1x(σv) φ1x(σv+1) · · · φ1x(σt) JJ · · ·J
︸ ︷︷ ︸

u−1

R1 JJ · · ·J
︸ ︷︷ ︸

t−u

φ2(Sk) φ2(Sk−1) · · · φ2(S1)

B Ax θ1(NS1(1)) θ2(NS2(1)) · · · θi(NSi(1)) JJ · · ·J
︸ ︷︷ ︸

t−i

φ3(Sj) JJ · · ·J
︸ ︷︷ ︸

10k−t+v−2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc,

1 ≤ j ≤ k,machine writes symbol σv at state Sj , x ∈ {1, 2, 3}

Step 9:
Fi, 1 ≤ i ≤ t

Step 10:
Am JJ · · ·J

︸ ︷︷ ︸

t+10k

F1 F2 · · · Ft JJ · · ·J
︸ ︷︷ ︸

k−2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

B.3 The Second Property for Safety

It is easy to see that in all molecules that have two complementary strands, those two strands are held
by more than 2L base pairs. Hence, the adversary cannot break any of them to generate new sequences.
Also, by our initial specification of the sequences, we know the adversary cannot stick two different strands
together. Hence, the adversary can only perform the operations that can normally happen. We only need
to check that in each step of the walker operation, the adversary cannot attach some unwanted sequence
and block the normal walker operation forever. For this purpose, we check the walker strand and the idling
strand (the anchored strands which do not have the walker on top) separately.

For an idling strand

!w, j Aw

,
the adversary can only attach the molecule generated by step 10

Aw JJ · · · J
︸ ︷︷ ︸

t+10k

F1 F2 · · · Ft JJ · · ·J
︸ ︷︷ ︸

k−2

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

.
After the attachment, the enzyme E1 can recognize both R1 inside !w, j or Rrc

1 . If the enzyme rec-
ognizes Rrc

1 , the strand goes back to its normal form. if the enzyme recognizes R1, then it will cleave the
double stranded region Fj and reveal Fj . The configuration is now identical to the configuration at the end
of step 9 and no other reactions can happen except the strand just got removed attach back (notice that there
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are many copies of that strand in the solution). Therefore, no matter which reactions the adversary specifies,
the strand can always go back to its original configuration using at most 2 normal reactions.

For the walker strand, we need to verify that the adversary cannot do unexpected movements at any step.
We first verify this statement for the state at the end of step 1.

At the end of step 1, we have the strand

!1,i A1 θ1(NS1(1)) θ2(NS2(1)) · · · θt(NSt(1)) JJ · · ·J
︸ ︷︷ ︸

10k

CC · · ·C
︸ ︷︷ ︸

i−1

C

anchored on the substrate.
We want to attach the strand

C JJ · · ·J
︸ ︷︷ ︸

t+k+1

{R1 JJ · · ·J
︸ ︷︷ ︸

t

K}rc

.
to it, but the adversary can attach any strand in the following group

C CC · · ·C
︸ ︷︷ ︸

i

, 2 ≤ i ≤ t + 1

However, after one of these strands attaches, no further reactions can happen until it gets cleaved by the
enzyme again and goes back to the situation at the end of step 1.

The situation for all other steps are the same. Starting from the end of step i, the adversary can only
bring the configuration back to the beginning of step i. The walker strand can always go back to the normal
state after 2 reactions.

Therefore, we know that no matter what the adversary does, the walker strand and the two adjacent
anchored strands can go back to their desired state after a constant number of operations. All other strands
can also go back to their normal configuration within a constant number of normal operations. This shows
the second property for safety is satisfied.

B.4 Strong Safety

For strong safety, first notice that in this construction, any adversary operation must also be a normal opera-
tion and when an enzyme makes a cut, the total length of the sticky ends is exactly c. Therefore, the second
property for strong safety is true. Second, at each anchorage, it is easy to see that only a constant number
of each type of adversary operations are available, hence the third property is also true. Finally the ligation
in step 11 is irreversible with adversary operations. From the above discussion, we conclude that the walker
will perform the designed operation unless some very rare event happens.

B.5 Low Energy Consumption

Similar to our DFA walker construction, we can see that no two molecules in the solution can react with each
other. Since anchorages of the form !w,jAw do not react with any molecule in the solution, we know that all
of the reactions either happen at the anchorage with the walker on top or is doing the “write” operation (steps
8-10 in the walker cycle). Also, when the walker moves from anchorage i to i + 1, we know that the i-th
anchorage will go back to the form !w,jAw within an expected constant number of reactions in the safety
proof. Therefore, the total number of operations in the “write” operation is linear in the Turing machine
steps. On the other hand, at any given time, the number of operations that can happen on the anchorage with
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the walker on top is at most a constant. Therefore, the number of reactions that happens on the walker is
also linear in the number of operations for the Turing machine simulated. Combine the above two, we know
that the total amount of energy required is linear in the number of Turing machine steps simulated.
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