Markets for Public Decision-making

Ashish Goel Stanford University

October 6, 2021

joint work with Nikhil Garg and Ben Plaut

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Public decision-making

Utility Model

- ► User *i* has binary preferences over the issues, and a weight w_{iℓ} > 0 for issue ℓ. The decision z_ℓ on issue ℓ lies in [0, 1].
- Utility of user *i* is given by $u_i(z) = \sum_{\ell} w_{i\ell} x_i^{(\ell)}$ where $x_i^{(\ell)} = z_{\ell}$ if user *i* prefers side 0 on issue ℓ and $1 z_{\ell}$ otherwise.

"One person one vote"

 Give each person a single vote on each issue and select the outcomes which receive the most votes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Fair in some sense
- Lacks expressiveness
- Can lead to very suboptimal outcomes

Markets

Markets

 Each player has a budget they wish to spend, and has no value for leftover money

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Goods are divisible
- "Fisher market" (Irving Fisher)
- "private goods"

Market equilibrium

- Each good has a price
- Each player buys her favorite affordable bundle
- An equilibrium always exists! [Arrow and Debreu, 1954]
 - Demand meets supply
 - The equilibrium maximizes Nash welfare [Eisenberg and Gale, 1959]:

$$\sum_i \log u_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where u_i is the utility for player i

 Maximizing Nash welfare is often used as an approach to obtain "fair" allocations

Our goal

Design a mechanism for public decision-making based on private goods markets.

- More expressive than "one person one vote"
- Markets in general have nice properties
- Prices can be computed in an iterative and natural way

Citizens purchasing political influence? capitalism democracy

Our goal

Design a mechanism for public decision-making based on private goods markets.

- More expressive than "one person one vote"
- Markets in general have nice properties
- Prices can be computed in an iterative and natural way
- Each person gets equal endowment of "voting Dollars"

Citizens purchasing political influence? capitalism democracy

A first attempt

- Assume issues are divisible/randomized
- Each issue has a price (this is the only thing that will change in our other model)
- Each player uses her budget to "buy probability" (ignoring supply)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PRICE

Identical (symmetry)

EQUILIBRIUM 100% Side 2

WELFARE Everyone is 45% worse Extends to factor N

Context on the simple market

- Similar to the "free rider" problem
- Observed in the classical literature before (e.g., [Danziger 1976])
- The same counter-example extends to several variants, e.g., Quadratic Voting [Lalley, Weyl 2014] and Trading Post [Shapley, Shubik 1977, Branzei et al 2016]
- Arbitrary per-player prices can implement the Nash-welfare solution (in fact any Pareto-optimal solution) via Lindahl equilibria [Foley 1979]
 - Lindahl prices are complex, and we would like a simple Fisher-like market, or a simple generative explanation
 - ► A simple market might lead to an implementable protocol

Reduction via Pairwise Expansion

- For any public decision-making instance, we create a private goods instance as follows
- Same set of players
- For each every issue, we create a good for each pair of players who disagree on that issue

"pairwise issue expansion"

Reduction via Pairwise Expansion

- Let u_i be the utility of player i in the private market
- One issue: x_{ij} is what player i buys of good j. Define u_i = min x_{ij} x_{ij} (Leontief)
- Many issues: $u_i = \sum_{\text{issues } \ell} w_{i\ell} \left(\min_{\substack{\text{her pairwise goods } j \\ \text{on issue } \ell}} x_{ij}^{(\ell)} \right)$
- Key insight: For each issue, each player *i* is in direct competition with everyone she disagrees with, and with no one she agrees with

PAIRWISE EXPANDED MARKET

PAIRWISE EXPANDED MARKET

Our main result

Theorem

Equilibria in the constructed private goods market correspond to valid solutions in the original public decisions instance.

- This will give us the nice private goods market equilibrium properties!
- Maximum Nash welfare

The mechanism:

- Players never see the constructed private goods market
- Compute equilibrium prices
- Reduction turns these into per-player prices in the public decisions instance
- These per-player prices give an equilibrium in the public decisions instance that maximizes Nash welfare.

Conclusion

- Markets have been well-studied for private goods, lots of nice properties
- Can use these concepts to design mechanisms for "fair" public decision-making in an epistemic sense
- Can lift private goods results to public decisions setting

Future work:

- More practical mechanisms (iterative? deterministic?)
- Scalability
- The cognitive load of complex mechanisms can itself can be a deterrent and lead to "unfairness". Simpler approaches?
- Need for more affirmative normative guidance