
MS&E 336/CS 366: Computational Social Choice. Win 2023-24

Course URL: http://www.stanford.edu/~ashishg/msande336/index.html.

Instructor: Ashish Goel, Stanford University.

Lecture 6, 1/25/2024. Scribed by Orrie B. Page.

7 Random Dictator Distortion Bounds

7.1 Upper Bound

In this section we prove the upper bound on metric distortion of a random dictator social choice

function is 2 when the bliss point assumption is in place.

First we will need to define variables. Let there be N voters (vi for i ∈ {1, . . . , N}) who submit

strict rankings over M candidates (ci for i ∈ {1, . . . ,M}). Call this submitted set of voter rankings

S and let the distortion of a chosen candidate c be D(c, S), let the cost to any voter vi of candidate

cj be d(vi, cj). For notational convenience we will say that d ∈ S if d(·, ·) is consistent with voter

submission S. We define the distortion D(c, S) as follows:

D(c, S) = max
d∈S

∑N
i=1 d(vi, c)

minj∈{1,...,M}
∑N

i=1 d(vi, cj)

Next we need to define the concept of a bliss point. Let J(i) be the favorite candidate of voter

vi, meaning the candidate they chose first. The bliss point assumption states that d(vi, J(i)) =

0 ∀ i ∈ {1, . . . , N}, or in words, that every voter is perfectly ”in bliss” when their top choice is

picked. We will be using this assumption for the rest of this proof.

Now consider the random dictator social choice function. Assume without loss that the true

optimal candidate under d is J∗. The expected total cost can be written as follows:

CostRD =
1

N

N∑
i=1

N∑
j=1

d(vj , J(i)),

≤ 1

N

N∑
i=1

N∑
j=1

d(vj , J
∗) + d(vi, J

∗) + d(vi, J(i)),

≤ 1

N

N∑
i=1

N∑
j=1

d(vj , J
∗) +

1

N

N∑
i=1

N∑
j=1

d(vi, J
∗),

≤
N∑
j=1

d(vj , J
∗) +

N∑
i=1

d(vi, J
∗) = 2× the optimal total cost.

This concludes our proof that the upper bound of the metric distortion from the random dictator

social choice function is 2 when the bliss point assumption is used.
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7.2 Lower Bound

Next we will demonstrate that a random dictator social choice function cannot achieve a distortion

lower than 2, even with the bliss point assumption. To see that imagine n+1 voters arranged in a

star with the (n+1)th voter at the center and the other n voters all shooting off from that center.

We then say that each of the candidates is exactly on top of each of our voters in our metric space

and define our distance function as follows:

d(vi, cj) =


0, if i = j

1, if i ̸= n+ 1, j = n+ 1

2, if j ̸= n+ 1, i ̸= j

In this setting the expected total cost can be written as follows:

CostRD =
1

n+ 1

n+1∑
i=1

n+1∑
j=1

d(vj , J(i)),

=
1

n+ 1
(n+ n(1 + 2(n− 1))),

=
1

n+ 1
(n+ n+ 2n2 − 2n)),

=
2n2

n+ 1

Note that in the optimal case we choose the center candidate (cn+1) corresponding to a total

cost of m. Since the distortion is the realized cost divided by the optimal cost the distortion is

2n/(n+ 1) which in the limit as n → ∞ approaches 2.

This concludes our proof that the random dictator social choice function cannot achieve a

distortion lower than 2, even with the bliss point assumption.

8 Existence is all we Need

In this section we show that if all we care about is minimizing the metric distortion, we don’t need

to know the social choice rule that does so. Here we will define the distortion of a candidate c1 with

respect to another candidate c2 as if c2 had been the optimal candidate. We will call this D(c1, c2)

and define it as follows:

D(c1, c2) =

∑N
i=1 d(vi, c1)∑N
i=1 d(vi, c2)
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Where all variables other than D(·, ·) are defined as in section 7.1. Our aim is to choose some

c∗ such that the following is true:

c∗ = argmin
c1

max
c2

D(c1, c2)

Next we will set this up as a linear program with a constraint that ∀ (i, i′, j, j′) dij ≤ dij′ +

di′j′+di′j , where dij represents d(vi, cj). We will also add constraints to ensure that dij ≥ 0 ∀ (i, j).

For our optimization function we can simply divide out the numerator of our D(c1, c2) function

to linearize it. Solve this linear program for every pair of candidates will then allow us to easily

identify a c∗ such that c∗ = argminc1 maxc2 D(c1, c2).

Hence, we did not need any social choice function to identify the candidate that minimizes

metric distortion, we can simply use the above linear program.

9 Sequential Deliberation

9.1 The General Problem

In this section we cover an infinite horizon game that is set up as follows. There are N agents,

each with some preference over all possible solutions s in some solution space S. There is also some

predetermined initial solution s0. The game then proceeds as follows in every round t:

1. Two agents are drawn uniformly–with replacement–from the pool of all agents. Denote these

two agents ut and vt.

2. The two agents attempt to agree on a new solution s. If they can agree st = s, if not the

outside option is the former solution, so st = st−1.

An important property of these games is that as the game continues and t → ∞ it is guaranteed

to converge to a distribution δ over the solution space S.

9.2 An Explicit Example

In this section we look at a specific variant of the general game format described in section 9.1. We

will again assume there are n agents but we will now assume that each agent i is placed on a line

at a position such that xi = i, so agent 1 is at 1, agent 2 is at 2, and so on. We will also assume

that agents preferences are defined strictly by the proximity of the solution to their position, where

the solution must be a point in R1.
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The first thing to notice in this game is that thanks to Nash Bargaining (which we discussed

briefly in class) for any ut, vt and st−1, the chosen solution will be st = median{ut, vt, st−1}. Note
that because of this, in any long run we will have that all solutions are one of the digits 1,...,n.

We can then solve for the convergent distribution as follows. Define pi as pi = limt→∞ P (st = i)

and define Ci as Ci =
∑i

j=1 pj . Note that there are two ways in which st can be less than or equal

to i:

- EITHER: st−1 ≤ i and min{ut, vt} ≤ i (case 1)

- OR: st−1 > i and max{ut, vt} ≤ i (case 2)

Since Ci represents the probability that st ≤ i, we can solve for it by summing over the

probability of the above two cases occurring. We know already that in the long run the probability

that st ≤ i is going to be whatever Ci is so we can use that fact to solve as follows:

Ci = Ci

(
1−

(
n− i

n

)2
)

+ (1− Ci)

(
i

n

)2

,

Ci = Ci −
Ci(n− i)2

n2
+

i2

n2
− i2Ci

n2
,

Ci = Ci

[
1− (n− i)2

n2
− i2

n2

]
+

i2

n2
,

Cin
2 = Ci[n

2 − (n− i)2 − i2] + i2,

Ci[(n− i)2 + i2] = i2.

Which simplifies to our final identity of:

Ci =
i2

i2 + (n− i)2
.
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