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A Quick Recap of Participatory Budgeting: We write x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
N ) for the ideal

budget of the i-th user, z = (z1, z2, . . . , zn) for the aggregated budget, and B for the cap on the sum

of both the user budget and any chosen budget. There are several reasonable ways of modelling an

individual’s utility from an aggregated budget z, but we looked in particular at the overlap utility,

defined by ui(z) =
∑N

j=1min{zj , x(i)j }, which is equivalent to using the L1 norm between x(i) and

z, di(z) = ||x(i), z||1. The problem of maximizing the sum of individual utilities can be set up

as a linear program, or solved by way of the water-filling algorithm we saw on the participatory

budgeting site.

From Ordinal to Cardinal Social Choice

We return to the original problem posed in the first lecture – voters provide a ranking of alternatives,

and a social choice function selects a societal winner. Up until now, the rankings provided were

purely ordinal – it only matters in which order voters rank preferences. But now, we would like to

measure the quality of our aggregation, in which case it would be nice to be able to refer to some

(hidden) notion of utility or cost that induce each voter’s ordinal preferences, even if those utilities

and/or costs are not known to the social planner.

We already saw an example of this – when costs are distances on a line, we select the median

vote because it is the Condorcet winner, hence the Copeland winner, and also the choice that

minimizes total cost to voters. The reasonable assumption was that voters prefer candidates in

decreasing order of distance. Even when we do not know the actual distances between candidates,

the rank list suffices to find a Condorcet winner, who will sit at the median.

How, then, will we evaluate a social choice function? We will do it on the basis of distortion,

a measure which quantifies the worst-case ratio between the total cost/utility to society of the

alternative selected by the SCF, and the total cost/utility to society of the optimal choice.

5.1 Distortion and its Bounds

Suppose there are M candidates labelled c1, c2, . . . , cM , and N voters, labelled v1, v2, . . . , vN . Voter

i provides a strict ranking of candidates ≻i. Assume further that there is a hidden1 cost d(vi, cj) =

di(cj) that denotes the unhappiness (or cost) vi experiences with the outcome cj . Alternatively,

there is a hidden utility u(vi, cj) = ui(cj) that vi derives from outcome cj .

1This means the mechanism designer only knows M , N , and ≻i for each i.
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Assumption 5.1 Preferences are consistent with hidden costs/utilities. That is, voter i ranks cj
over cj′ only if di(cj) ≤ di(cj′), or equivalently ui(cj) ≥ ui(cj′).

The total cost associated with candidate cj with hidden cost functions di is TCd(cj) =
∑N

i=1 d(vi, cj),

and the total utility with hidden utility functions ui is TUu(cj) =
∑N

i=1 u(vi, cj).

Definition 5.1 The distortion of cj given hidden cost functions di satisfying assumption 5.1 is

defined as

D(cj) = max
c∈{c1,...,cM}

TCd(cj)

TCd(c)
= max

c∈{c1,...,cM}

∑N
i=1 di(cj)∑N
i=1 di(c)

=

∑N
i=1 di(cj)

minc
∑N

i=1 di(c)

Equivalently, we can define distortion for hidden utility functions ui by

D(cj) = max
c∈{c1,...,cM}

TUu(c)

TUu(cj)
= max

c∈{c1,...,cM}

∑N
i=1 ui(c)∑N
i=1 ui(cj)

=
maxc

∑N
i=1 ui(c)∑N

i=1 ui(cj)

The distortion of a social choice function is thus the expected distortion as computed over candidates

it selects with positive probability.

The question we will ask is, what are the maximum and minimum (expected) distortion that

a social choice function might achieve, where the optimization is taken over all possible hidden

cost/utility functions (and thus over all preference orderings)?

Proposition 5.2 (Impossibility Theorem) Suppose voters have either hidden cost functions ci
or hidden utility functions ui which induce their preferences on outcomes. Then:

• In a world of utility, no deterministic SCF has a finite lower bound on distortion, and no

randomized SCF has a lower bound below M .

• In a world of cost, no deterministic or randomized algorithm has a finite lower bound on

distortion.

For example, consider the following voter profile, and family of utility profiles representing ordinal

preferences for ϵ > 0:

v1 v2

c1 c2
c2 c1

v1 v2

c1 ϵ 0

c2 0 1/ϵ

A deterministic SCF, without loss of generality, selects c1 with certainty. Then the distortion of

this SCF is the distortion of c1 which is ϵ
1/ϵ = ϵ2 → ∞ as ϵ goes to infinity. As another example,

consider instead the following voter profile:

v1 v2 · · · vM

c1 c2 · · · cM
? ? · · · ?
...

... · · ·
...

? ? · · · ?
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Without loss of generality, suppose a randomized algorithm chooses c1 with probability at most

1/M . Then we can consider the following utility function: u(v1, c1) = 1, and u(vi, cj) = 0 for all

other (i, j). Hence the expected total utility of this randomized algorithm is at most 1/M , while

the optimal total utility is 1, achieved when c1 is selected, leading to a distortion of at least M .

Finally, consider the following voter and cost profiles for ϵ > 0:

v1 v2

c1 c2
c2 c1

v1 v2

c1 0 1

c2 0 0

The deterministic algorithm which picks c1 with certainty has infinite distortion, and we can find

another representative utility profile so that the algorithm picking c2 with certainty also has infinite

distortion.

5.2 So What Can We Do?

So we have two sides of the spectrum. If we restrict preferences to lie on a line, then we can select

the median voter and do reasonably well. In general, however, the level of distortion cannot be

limited. Can we achieve an intermediate result with a reasonable restriction on utilities and costs?

It turns out we can, to an extent.

Assumption 5.3 The sum of utilities must be 1 for any voter. Alternatively, assume voters and

candidates lie in a metric space, and the cost of a voter for a candidate is exactly the distance

between them in this metric space.2

Proposition 5.4 Suppose assumption 5.3 holds. Then:

• In a world of utilities, a deterministic SCF still has a lower bound of M on distortion, while

a randomized algorithm has both lower and upper bounds on the order of
√
M .

• In a world of costs, deterministic SCFs have a distortion of at most 3, and randomized SCFs

have both an upper bound of 3 and a lower bound of 2.

The result pertaining to deterministic SCFs in a world of metric costs is especially striking, but

it is among several results with fairly accessible proofs. For example:

Theorem 5.5 Suppose there are two voters and two candidates, and that costs for both voters are

represented by distance on a line. Then the distortion of a deterministic algorithm is at most 3.

Proof: Consider the usual voting profile below, and a deterministic algorithm that, without loss

of generality, chooses c2.

2For those who have not come across metric spaces before, the important characteristic is a “distance function”

on a set which satisfies the triangle inequality:

d(vi, cj) ≤ d(vi, cj′) + d(vi′ , cj′) + d(vi′ , cj)

for all vi, vi′ , cj , cj′ .
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v1 v2

c1 c2
c2 c1

These preferences are induced by a some unknown metric. Without loss of generality, suppose that

metric has d(v1, c1) = 0, and d(v1, c2) = 2, so the space under consideration is a line with endpoints

0 and 2 at which are positioned v1, c1, and c2 respectively:

0 2

c1 c2

v1 v2
1 + ϵ 1− ϵ

The voter v2 lies in the middle at distance 1+ϵ from c1 and 1−ϵ from c2. Then the total cost of

our deterministic social choice function is 2+(1− ϵ) = 3− ϵ while the optimal total cost is obtained

from selecting c1 and is 0 + (1 + ϵ) = 1 + ϵ. The distortion is therefore 3−ϵ
1+ϵ which approaches 3 in

the limit as ϵ goes to zero. We could repeat this analysis for a deterministic function choosing c1,

producing representative utility functions which give a distortion of at most 3.

We can prove another remarkable result pertaining to one of our tried and true Condorcet

consistent voting rules:

Theorem 5.6 The Copeland rule has a distortion of at most 9.3

We prove this by way of two lemmas:

Lemma 5.7 If C is the Copeland winner, then for any other candidate C ′, either C beats C ′ in

a pairwise election, or there exists C ′′ such that C beats C ′′ and C ′′ beats C ′, each in a pairwise

election.

Proof: Suppose for the sake of contradiction that neither is true. That is, C ′ beats C in a pairwise

election, and no C ′′ as described exists. Hence for every C ′′ which is beaten by C, it is also beaten

by C ′. Then C ′ beats more alternatives in pairwise elections than does C, so C cannot be a

Copeland winner.

Lemma 5.8 If C beats C ′ in a pairwise election, then the total cost of C under any metric is at

most 3 times the total cost of C ′ under that same metric.

Proof: Let C beat C ′ in a pairwise election. Define the set S1 = {vi : C ≻i C
′}, and S2 = V \S1 =

{vi : C ≺i C
′}. For every voter v ∈ S2, assign a unique match m(v) ∈ S1. This is possible since C

beating C ′ in a pairwise election implies |S1| > |S2|. Fix any metric d. The total cost of alternative

C is thus

TC(C) =
∑
v∈S1

d(v, C) +
∑
v∈S2

d(v, C)

3The literature actually proves a bound of 5, see [1], but this bound is much more accessible.
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Voters in S1 prefer C to C ′, so their distance to C cannot be any less than their distance to C ′.

Thus

TC(C) ≤
∑
v∈S1

d(v, C ′) +
∑
v∈S2

d(v, C)

Furthermore, the triangle inequality applied to v ∈ S2, m(v), C, and C ′ gives

TC(C) ≤
∑
v∈S1

d(v, C ′) +
∑
v∈S2

(
d(v, C ′) + d(m(v), C ′) + d(m(v), C)

)
Again, m(v) ∈ S1 implies their distance from C is no move than their distance from C ′, so

TC(C) ≤
∑
v∈S1

d(v, C ′) +
∑
v∈S2

(
d(v, C ′) + d(m(v), C ′) + d(m(v), C ′)

)
Restating the sum over S2 of m(v) as a sum over S1 of v (noting that the second set is bigger so

we again increase the size of the sum), we have

TC(C) ≤ 3
∑
v∈S1

d(v, C ′) +
∑
v∈S2

d(v, C ′) ≤ 3
∑

v∈S1∪S2

d(v, C ′) = 3TC(C ′)

Proof of Theorem 5.6: Suppose C is the Copeland winner, and C ′ is the optimal candidate as

measured by total cost. By Lemma 5.8, either C beats C ′ in a pairwise election, or there exists C ′′

such that C beats C ′′ and C ′′ beats C ′. In the first case, Lemma 5.9 gives us that TC(C) ≤ 3TC(C ′).

In the second case, applying Lemma 5.9 twice gives TC(C) ≤ 3TC(C ′′) ≤ 9TC(C ′). Hence, in the

worst case scenario, the Copeland rule picks a candidate with total cost 9 times that of the optimal

candidate, and thus the distortion of the Copeland rule is at most 9.

Remaining results will be covered next lecture.
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