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4.1 Participatory Budgeting

One application of computational social choice is participatory budgeting. In participatory budgeting, mem-
bers of a community contribute to the construction of a budget by directly voting (or otherwise expressing
their preferences) on how public money should be spent. This stands in contrast with traditional budgeting
processes where bureaucrats or elected representatives decide the use of public funds without direct input
from constituents. Participatory budgeting schemes have quickly increased in popularity since their intro-
duction in Brazil in 1988 [Wampler, 2000]. Today, participatory budgeting schemes are used in over 7,000
municipalities across the world.1 2

But how exactly do citizens express their budgeting preferences, and how should these preferences be aggre-
gated to produce a budget? In this lecture, we build a framework that will allow us to study these questions
mathematically. We discuss a social choice rule, knapsack voting, that is strategy-proof for the participatory
budgeting problem (under certain assumptions). We also describe a linear programming formulation of the
participatory budgeting problem. We conclude by outlining some potential fairness issues with participatory
budgeting.

4.2 A Mathematical Framework for Participatory Budgeting

Suppose that we have a set of N voters, who must decide how a budget of size B > 0 is allocated across M
expense items. Each expense item j has a fixed cost of cj ≥ 0, for j = 1, . . . ,M . Our goal is to produce an
allocation x = (x1, . . . , xM ), that assigns funds xj to expense item j. We say that an allocation x ∈ RM is
feasible if it satisfies the following criteria:

1. x ≥ 0

2. xj ≤ cj for all j = 1, . . . ,M

3.
∑M

j=1 xj ≤ B

In other words, an allocation is feasible if it assigns a non-negative amount of money to each expense item,
without exceeding the total budget or over-funding any individual expense item.

However, we still need methods to elicit voter preferences and aggregate them. There are many ways to do
this, each with its own benefits and drawbacks. The process of elicitation and aggregation is a choice that
depends on what qualities we would like the social choice function to have. A comprehensive discussion of
approaches to this problem can be found in Aziz and Shah [2021].

1I thank the UC Berkeley EECS Department for their lecture notes template.
2See https://www.participatorybudgeting.org/about-pb/
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One potential elicitation method is as follows. Suppose each voter i has an ideal budget z(i) ∈ RM , such
that 0 ≤ z

(i)
j ≤ cj for all j = 1, . . . ,M and

∑M
j=1 z

(i)
j = B. We now discuss an aggregation method called

knapsack voting.

4.3 Knapsack Voting

Suppose that the cost cj of each expense item is an integer, and that each voter i’s ideal budget allocations
z
(i)
j are all also integers, as is the budget B. We divide the cost cj of each item into cj dollars, which

we denote D
(j)
1 , . . . , D

(j)
cj . Then given an ideal allocation z(i), we define a voter’s approval set as Si ≡⋃M

j=1{D
(j)
1 , . . . , D

(j)

z
(j)
j

}. In other words, if voter i wants z
(i)
j dollars allocated to expense item j, we say i

approves of “candidates” D
(j)
1 through D

(j)

z
(i)
j

. We define the full set of dollars as P.

Example
Suppose we have a total budget B = 10, M = 3 expense items, and a cost vector c = (2, 5, 7). The
ideal allocation of voter i is given by z(i) = (2, 3, 5). Then voter i’s approval set is given by

Si = {D(1)
1 , D

(1)
2 , D

(2)
1 , D

(2)
2 , D

(2)
3 , D

(3)
1 , D

(3)
2 , D

(3)
3 , D

(3)
4 , D

(3)
5 }

Given this setup, we define the knapsack voting social choice function as follows.

Definition 4.1 (Knapsack Voting) From Goel et al. [2019]

• Each voter i submits a subset Si ⊂ P such that |Si| = B.

• The winning set is given by argmaxS:|S|=B

∑
y∈S score(y), using a consistent deterministic tiebreaking

rule.

where score(y) = |i ∈ {1, . . . , N} : y ∈ Si|.

Knapsack voting will select the B dollars that receive the most approvals. Note the key fact that a voter
who votes for D

(j)
k+1 must also have voted for D

(j)
k .

To show strategy-proofness, we require a utility model, which will tell us how much a given voter benefits
from a budget allocation x. For this we introduce the L1-distance cost function.

Definition 4.2 (L1-distance Utility) The utility a voter i with ideal allocation z(i) obtains from an allo-
cation x is given by

ui(x) = −∥z(i) − x∥1 = −
M∑
j=1

∣∣∣z(i)j − xj

∣∣∣
The L1-distance utility function has the appealing interpretation that the (dis-)utility of a voter is given by
the total amount of “mis-allocated” money. Goel et al. [2019] show that under the L1-distance utility model,
knapsack voting is strategy proof,
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4.4 Other Utility Models

Some other possible voter utility functions we can impose include

• Linear utility: ui(x) =
∑M

j=1 u
(i)
j xj . Voter i gets utility u

(i)
j for each additional dollar spent on

budget item j.

• Overlap utility: ui(x) =
∑M

j=1 min(xj , z
(i)
j ). Voter i has ideal budget zi = (z

(i)
1 , . . . , z

(i)
M ), and gets

utility from budget spending on item j up to ideal value z(i)j but no utility from any additional spending.

The overlap utility is closely connected to the L1-distance utility we proposed earlier. In fact, we can show
that under the additional assumption that

∑M
j=1 xj = B (the budget uses all available funds), then the

overlap utility function is an affine transformation of the L1-distance utility function.

Claim 4.3 If
∑M

j=1 xj = B, then

M∑
j=1

min(xj , z
(i)
j ) = B − 1

2
∥z(i) − x∥1

where B is the total budget.

Proof: Assume without loss of generality that xj ≥ z
(i)
j for j = 1, . . . , k and xj ≤ z

(i)
j for j = k + 1, . . . ,M .

First observe that

∥z(i) − x∥1 =

k∑
j=1

(xj − z
(i)
j ) +

M∑
j=k+1

(z
(i)
j − xj) ⇐⇒

∥z(i) − x∥1 =

B −
M∑

j=k+1

xj

−

B −
M∑

j=k+1

z
(i)
j

+

M∑
j=k+1

(z
(i)
j − xj) ⇐⇒

1

2
∥z(i) − x∥1 =

M∑
j=k+1

(z
(i)
j − xj)

Using this, we can conclude that

M∑
j=1

min(z
(i)
j , xj) =

k∑
j=1

z
(i)
j +

M∑
j=k+1

xj

= B −
M∑

j=k+1

(z
(i)
j − xj)

= B − 1

2
∥z(i) − x∥1

This result is important because it means that an optimal solution to the participatory budgeting problem
for the L1 distance utility function will be an optimal solution for the problem using the overlap utility
function. This will allow us to pose the participatory budgeting problem as a linear programming problem.
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4.5 Linear Programming Formulation

If our objective to maximize the sum of all individual voter utilities, then our participatory budgeting/k-
napsack voting problem is

max

N∑
i=1

M∑
j=1

min(z
(i)
j , xj)

subject to
M∑
j=1

xj = B

xj ≤ cj (∀j)
xj ≥ 0 (∀j)

The program as formulated above is not linear due to the min(·) functions. To address this, we introduce
MN new decision variables denoted µ

(i)
j and impose the constraints µ

(i)
j ≤ xj and µ

(i)
j ≤ z

(i)
j . We then

replace the min(z
(i)
j , xj) terms in the objective with µ

(i)
j . Since the linear programming is maximizing the

µ
(i)
j , at the optimal solution, each µ

(i)
j will be equal to min(z

(i)
j , xj). Therefore, we have the linear program

max

N∑
i=1

M∑
j=1

µ
(i)
j

subject to
M∑
j=1

xj = B

xj ≤ cj (∀j)

µ
(i)
j ≤ xj (∀i, j)

µ
(i)
j ≤ z

(i)
j (∀i, j)

xj ≥ 0 (∀j)

µ
(i)
j ≥ 0 (∀i, j)

This is polynomial-sized linear program with MN + M decision variables and 2MN + M + 1 constraints
(excluding non-negativity constraints). The dual of this linear program will be significant in future lectures.

4.6 Problems with Knapsack Voting

Although the knapsack voting framework described the in previous sections has the advantage of being both
strategy-proof and having low computational demands, it faces several issues that are not apparent in the
mathematical formulation. One issue in particular is voter engagement with the participatory budgeting
scheme. Those with low civic engagement may not vote, or in other cases a group of people may mobilize
over a particular issue. Another issue is that the expense items may still be decided by bureaucrats, and
may not be considered salient issues by voters.

Still a further issue is that a minority of voters may strongly value some project that is opposed by the
majority. These voters might argue that a more fair result could be obtained if part of the budget proportional
to the size of the majority is split off and given to the minority to manage. We might hope that our social
function produces a budget that avoids this complaint. Such budgets are said to be in the “core,” an idea
central to a mathematical definition of fairness. For an in-depth discussion, see Fain et al. [2016] and Peters
et al..
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