Voting in Metric Spaces

Prasanna Ramakrishnan
Stanford University

Moses Charikar Stanford University

Kangning Wang
Stanford University

Hongxun Wu
UC Berkeley

Elections and Voting

- Voters choose from candidates
- Voters express preferences over candidates
- Preferences are aggregated, winner is chosen
- Often studied: ranked preference lists
- Voting rule: algorithm that maps ranked preferences to winning candidate

A central question in Social Choice Theory:
Can we design effective voting rules?

Elections can model...

Voters choosing
a representative

Community members choosing a location for a public facility

An organization deciding who to hire

Friends deciding where to eat

Friends deciding what to play

Emerging applications?

Evaluating Agents using Social Choice Theory

Marc Lanctot ${ }^{1}$, Kate Larson ${ }^{1,2}$, Yoram Bachrach ${ }^{1}$, Luke Marris ${ }^{1}$, Zun] Anthony ${ }^{1}$, Brian Tanner ${ }^{4}$ and Anna Koop ${ }^{1}$
${ }^{1}$ Google DeepMind, ${ }^{2}$ University of Waterloo, ${ }^{3}$ University of Michigan, ${ }^{4}$ Artificial.Ag

We argue that many general evaluation problems can be viewe task is interpreted as a separate voter which requires only or of agents to produce an overall evaluation. By viewing the agd

Each isons n, we with
Tasks = Voters, Agents = Candidates

What's the best voting rule?

Early Social Choice Theory

- From the middle ages through the $19^{\text {th }}$ century:
- Llull (c.1235-1315)
- Cusanus (1401-1464)
- von Pufendorf (1632-1694)
- Borda (1733-1799)
- Condorcet (1743-1794)
- Dodgson (1832-1898)

Can we design effective voting rules?
Majority support
Copeland Rule (Llull 1299)
Winner of most pairwise majority votes

Ramon Llull

Early Social Choice Theory

- From the middle ages through the $19^{\text {th }}$ century:
- Llull (c.1235-1315)
- Cusanus (1401-1464)
- von Pufendorf (1632-1694)
- Borda (1733-1799)
- Condorcet (1743-1794)
- Dodgson (1832-1898)

Voter	Ranking
1	$A B C$
2	$C A B$
3	$B C A$

Nicholas de Condorcet

The Prominent "Axiomatic" Approach

- Black (1948), Arrow (1950): define necessary properties (axioms), find rules satisfying them

Can we design effective voting rules?

Arrow, Gibbard-Satterthwaite

No rules simultaneously satisfy basic axioms

- Unfortunate downsides
- Little practical guidance on what rules to use

Comparison of preferential electoral systems [hide]																
System *	Monotonic *	Condorcet winner	Majority *	Condorcet loser	Majority loser	Mutual majority	Smith *	ISDA *	LIIA *	Independence of clones	Reversal symmetry	Participation, consistency	Later- noharm	Later- nohelp	Polynomial time	Resolvability *
Schulze	Yes	No	Yes	Yes	No	No	No	Yes	Yes							
Ranked pairs	Yes	No	No	No	Yes	Yes										
Tideman's Alternative	No	Yes	No	Yes	No	No	No	No	Yes	Yes						
KemenyYoung	Yes	No	Yes	No	No	No	No	Yes								
Copeland	Yes	No	No	Yes	No	No	No	Yes	No							
Nanson	No	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	No	No	Yes	Yes
Black	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes
Instant-runoff voting	No	No	Yes	Yes	Yes	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes	Yes
Smith/RV	No	Yes	No	Yes	No	No	No	No	Yes	Yes						
Borda	Yes	No	No	Yes	Yes	No	No	No	No	No	Yes	Yes	No	Yes	Yes	Yes
Baldwin	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes						
Bucklin	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	Yes						
Plurality	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes							
Contingent voting	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes						
Coombs ${ }^{[37]}$	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes							
MiniMax ${ }^{[s p e c i f y]}$	Yes	Yes	Yes	No	Yes	Yes										
Antiplurality ${ }^{[37]}$	Yes	No	No	No	Yes	No	No	No	No	No	No	Yes	No	No	Yes	Yes
Sri Lankan contingent voting	No	No	Yes	No	Yes	Yes	Yes	Yes								
Supplementary voting	No	No	Yes	No	Yes	Yes	Yes	Yes								
Dodgeon ${ }^{(37]}$	No	Yes	Yes	No	Yes											

The Adoption of Ranked Choice Voting Raised Turnout 10 Points

An expansive new study by University of Missouri-St. Louis Professor, David Kimball, and Ph.D. candidate, Joseph Anthony, examines the impact of ranked choice voting (RCV) on voter turnout in 26 American cities across 79 elections.

MINIMIZES STRATEGIC VOTING

Ideally, votens vote for candidates they support, not against those they oppose most. In most cases with our curnent election system, voters often feel the need to vote for the "lesser of two evils" because they believe thein favorite candidate is less likely to win.

The Prominent "Axiomatic" Approach

- Black (1948), Arrow (1950): define necessary properties (axioms), find rules satisfying them

Can we design effective voting rules?

Arrow, Gibbard-Satterthwaite

No rules simultaneously satisfy basic axioms

- Unfortunate downsides
- Little practical guidance on what rules to use
- Weak motivation for new rules

Alternative: quantitative approach, leverage spatial structure

The "Political Spectrum"

Alternative: quantitative approach, leverage spatial structure

The Mathematical Danger of Democratic Voting

1M views • 3 years ago
(ii) Spanning Tree

Elections might seem like they produce results people want, but that isn't alv
\square Transitivity | Voter Preferences | The Agenda-Setters | A Mathe
(McKelvey-Schofield chaos theorem)

Metric Distortion

- Voters and candidates lie in a metric space

${ }^{\circ}$

Metric Distortion

- Voters and candidates lie in a metric space
- Voter's cost of candidate: distance
- Goal: minimize total cost

Good candidate

Metric Distortion

- Voters and candidates lie in a metric space
- Voter's cost of candidate: distance
- Goal: minimize total cost

Bad candidate

Metric Distortion

- Voters and candidates lie in a metric space
- Voter's cost of candidate: distance
- Goal: minimize total cost
- Catch: don’t know metric space, only have voters' ranking of candidates by distance

Metric Distortion

- Voters and candidates lie in a metric space
- Voter's cost of candidate: distance
- Goal: minimize total cost
- Catch: don't know metric space, only have voters' ranking of candidates by distance
- Can we find a good candidate? Cost within small factor of true optimum

Input:

Voter	Ranking
1	$C A B D$
2	$D A C B$
3	$D A B C$
4	$D A B C$
5	$B D A C$
6	$B A C D$
7	$B C A D$
8	$C B A D$

Output: B

Problem Summary

- Input: voters' ranking of candidates by distance
- Output: single candidate
- Cost of candidate: total distance to voters
- Goal: regardless of underlying metric space, cost of chosen candidate only small factor worse than true OPT

Input:

Voter	Ranking
1	$C A B D$
2	$D A C B$
3	$D A B C$
4	$D A B C$
5	$B D A C$
6	$B A C D$
7	$B C A D$
8	$C B A D$

Output: B

Easy lower bound

- Two candidates, two disagreeing voters:

Voter

1
$2 B A$

If rule picks A...

$\rightarrow \operatorname{cost}(A)=3 \cdot \operatorname{cost}(B)$

If rule picks B...

$$
\rightarrow \operatorname{cost}(B)=3 \cdot \operatorname{cost}(A)
$$

- All deterministic rules: distortion ≥ 3
- All randomized rules: distortion ≥ 2

What's the optimal distortion?

Deterministic Rules

Anshelevich-Bhardwaj-Postl 2015

Optimal deterministic distortion is ≥ 3

Copeland has distortion 5

- Winner of most pairwise majority votes
- Key property: winner beats or beats-someone-who-beats every other candidate

Ramon Llull

Copeland winner A : for all B

Anshelevich-Bhardwaj-Postl 2015

Optimal deterministic distortion is ≥ 3

Copeland has distortion 5

Conjecture: Ranked Pairs has distortion 3

Goel-Krishnaswamy-Munagala 2017
Ranked Pairs has distortion ≥ 5
Conjecture: opt deterministic distortion is 3

Goel-Krishnaswamy-Munagala 2017
Ranked Pairs has distortion ≥ 5
Conjecture: opt deterministic distortion is 3
Conjecture: opt randomized distortion is 2

ABP15
Copeland

MW19
Weighted Uncovered Set

ABP15; GKM17
Conjectured optimal distortion
ABP15
No deterministic rules

Deterministic Rules

Munagala-Wang 2019

```
Novel Rule with distortion }\leq2+\sqrt{}{5}\approx4.23
```

Copeland winner A : for all B

Deterministic Rules

Munagala-Wang 2019
Novel Rule with distortion $\leq 2+\sqrt{5} \approx 4.236$
$\beta \in\left[\frac{1}{2}, 1\right]$. Exists? A : for all B

Exists for all β ! Best choice $\beta=\varphi^{-1} \approx 0.618$

Deterministic Rules

ABP15
Copeland

MW19
Weighted Uncovered Set

ABP15; GKM17
3

No deterministic rules

Gkatzelis-Halpern-Shah 2020

Gkatzelis-Halpern-Shah 2020

Kizilkaya-Kempe 2022
Plurality Veto: elegant novel rule with short proof of optimal distortion

Deterministic Rules

Kizilkaya-Kempe 2022
Plurality Veto: elegant novel rule with short proof of optimal distortion

Plurality Veto

Kizilkaya-Kempe 2022

Plurality Veto
 Kizilkaya-Kempe 2022

Everyone: place token on favorite game

Plurality Veto

Kizilkaya-Kempe 2022

One by one: remove token from least favorite game

Plurality Veto

Kizilkaya-Kempe 2022

Winner: last game with tokens

Plurality Veto

Kizilkaya-Kempe 2022

Let j_{v} be the candidate vetoed by voter v, and let j^{*} be the final chosen candidate. Let P_{j} be the set of voters that rank candidate j first and let $\operatorname{plu}(j)=\left|P_{j}\right|$. Since j^{*} has positive score until the very end, it must be the case that for each $v \in V, j^{*} \succeq_{v} j_{v}$. Then we have that for any candidate i,

$$
\begin{array}{rlrl}
\sum_{v \in V} d\left(j^{*}, v\right) & \leq \sum_{v \in V} d\left(j_{v}, v\right) & & \left(j^{*} \succeq_{v} j_{v}\right) \\
& \leq \sum_{v \in V}\left(d(i, v)+d\left(i, j_{v}\right)\right) & & (\text { triangle inequality }) \\
& =\sum_{v \in V} d(i, v)+\sum_{j \in C} \operatorname{plu}(j) d(i, j) & & \\
& =\sum_{v \in V} d(i, v)+\sum_{j \in C} \sum_{v \in P_{j}} d(i, j) & & \\
& \leq \sum_{v \in V} d(i, v)+\sum_{j \in C} \sum_{v \in P_{j}}(d(i, v)+d(j, v)) & (\text { vetoed plu }(j) \text { times }) \\
& \leq \sum_{v \in V} d(i, v)+\sum_{j \in C} \sum_{v \in P_{j}} 2 d(i, v) & & \\
& =3 \sum_{v \in V} d(i, v) &
\end{array}
$$

"Optimal Metric Distortion for Voting - A Proof from the Book"

Formal Description \& Distortion Proof

Plurality Veto

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X

Plurality Veto

- Initially, each candidate X, score $(X)=$ \# first choice votes for X

- Last candidate vetoed wins

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
$B A C D^{\circ}$
${ }^{\circ}{ }_{D A B C}$
${ }^{\circ}$ BDAC

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins

$B A C D{ }^{\circ}$
${ }^{\circ}{ }_{D A B C}$

Plurality Veto

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X

- Last candidate vetoed wins

Plurality Veto

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X
- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score

$B A C D{ }^{\circ}$
${ }^{\circ}{ }_{D A B C}$

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
$B A C D^{\circ}$
${ }^{\circ}$ DABC

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

$$
\begin{array}{cc}
C A B D_{\circ} & C_{0}^{C(1)} \quad \circ^{D A C B}
\end{array}
$$

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
$B A C D^{\text {o }}$
${ }^{\circ}$ DABC
${ }^{\circ}$ BDAC

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score

Plurality Veto

- Initially, each candidate X, score $(X)=$ \# first choice votes for X

- Last candidate vetoed wins

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X
$\mathrm{CABD}_{\mathrm{O}}$

${ }^{-D A C B}$

$$
0^{D(2)}
$$

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
${ }^{\circ}$ DABC

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
$B A C D{ }^{\circ}$
${ }^{\circ}{ }_{D A B C}$

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
${ }^{\circ}{ }_{D A B C}$

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- Last candidate vetoed wins
${ }^{\circ}$ DABC

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

- One by one, each voter decrements score (veto) of least favorite candidate with positive score
- Last candidate vetoed wins!

Plurality Veto

- Initially, each candidate X, score $(X)=\#$ first choice votes for X

$B A C D{ }^{\circ}$
${ }^{\circ}{ }_{D A B C}$

Plurality Veto

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X

$B A C D{ }^{\circ}$
${ }^{\circ}{ }_{D A B C}$

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,

$$
\operatorname{score}(X)=\# \text { first choice votes for } X
$$

- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes BCADO
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,

$$
\operatorname{score}(X)=\# \text { first choice votes for } X
$$

- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes BCADO
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,

$$
\operatorname{score}(X)=\# \text { first choice votes for } X
$$

- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes BCADO

- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...

$$
\operatorname{cost}(B) \leq[\text { edges shown }]
$$

- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...
$\operatorname{cost}(B) \leq \operatorname{cost}(\mathrm{A})+[$ edges shown $]$

Plurality Veto

- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes BCAD -
- So far...
$\operatorname{cost}(B) \leq \operatorname{cost}(A)+[$ edges shown $]$
- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes BCAD
- So far...
$\operatorname{cost}(B) \leq \operatorname{cost}(\mathrm{A})+[$ edges shown $]$
- Initially, each candidate X,
$\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)

of least favorite candidate with positive score
$\stackrel{\circ}{B D A C}$
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...
$\operatorname{cost}(B) \leq \operatorname{cost}(\mathrm{A})+[$ edges shown $]$
- Initially, each candidate X,

$$
\operatorname{score}(X)=\# \text { first choice votes for } X
$$

- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...
$\operatorname{cost}(B) \leq \operatorname{cost}(\mathrm{A})+[$ edges shown $]$
- Initially, each candidate X,

$$
\operatorname{score}(X)=\# \text { first choice votes for } X
$$

- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...
$\operatorname{cost}(B) \leq 2 \cdot \operatorname{cost}(A)+[$ edges shown $]$
- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)
 of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes
- So far...
$\operatorname{cost}(B) \leq 2 \cdot \operatorname{cost}(\mathrm{~A})+[$ edges shown $]$
- Initially, each candidate X, score $(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto)

of least favorite candidate with positive score
- Last candidate vetoed wins!

Proof of distortion 3

- Goal: $\operatorname{cost}(B) \leq 3 \cdot \operatorname{cost}(A)$
- Key observations:
- Voters closer to B than veto
- Candidates: \# vetos = \# first choice votes

Plurality Veto

- Initially, each candidate X, $\operatorname{score}(X)=\#$ first choice votes for X
- One by one, each voter decrements score (veto) of least favorite candidate with positive score
- Last candidate vetoed wins!

Randomized Rules

Randomized Rules

Anshelevich-Postl 2017;
Feldman-Fiat-Golomb 2016
Optimal randomized distortion is ≥ 2
Random Dictator has distortion 3

GKM17
Conjectured optimal distortion
AP17; FFG16
No rules

Randomized Rules

$$
\begin{aligned}
& \text { Anshelevich-Postl 2017; } \\
& \text { Feldman-Fiat-Golomb } 2016
\end{aligned}
$$

Optimal randomized distortion is ≥ 2

Random Dictator has distortion 3

- Random voter's favorite candidate

Randomized Rules

AP17; FFG16
3 Random Dictator

Surprisingly difficult to improve!

- Natural classes of rules fail
- Tournament rules (GKM17), e.g., Copeland, Ranked Pairs, Schulze, Maximal Lotteries, (Weighted) Uncovered set...
- Top O(1) choices of voters (GAX17), e.g., Plurality, Plurality Veto, Single Transferable Vote, Random Dictator, Smart Dictator, Proportional to Squares...
- Improvements only in restricted settings
- Few voters or candidates (AP17, FGMP19, Kem20, GHS20)
- Restricted metrics/more information (FFG16, FGMS17, BFGT23)

What's the right answer?

Randomized Rules

Charikar-R. 2022

Optimal randomized distortion is $\geq \mathbf{2 . 1 1 2}$

Randomized Rules

Charikar-R. 2022

Optimal randomized distortion is $\geq \mathbf{2 . 1 1 2}$

- Independently, Pulyassary-Swamy got 2.063

Charikar-R.-Wang-Wu 2024

New randomized rule with distortion ≤ 2.753

- Powerful techniques to determine distortion precisely
- Uses simple voting rules!

Beating distortion 3

Part 1: Maximal Lotteries

Alice and Bob observe an election and play a game:

- Each picks a candidate
- Random voter is chosen
- Winner is whose candidate the voter prefers
What is the best strategy?
- Symmetric zero sum game
- Exists mixed-strategy Nash equilibrium
- Voting rule: use equilibrium distribution

Voter	Ranking
1	$C A B D$
2	$D A C B$
3	$D A B C$
4	$D A B C$
5	$B D A C$
6	$B A C D$
7	$B C A D$
8	$C B A D$

Part 1: Maximal Lotteries

"Maximal lotteries were first considered by Kreweras (1965) and rediscovered and studied in detail by Fishburn (1984a). ... rediscovered again by economists (Laffond et al., 1993), mathematicians (Fisher and Ryan, 1995), political scientists (Felsenthal and Machover, 1992), and computer scientists (Rivest and Shen, 2010)"

Felix Brandt (2017), Recent Results in Probabilistic Social Choice

Part 1: Maximal Lotteries

Condorcet's Paradox

Not always a candidate that beats all others

Nicholas de Condorcet

Maximal Lotteries

Always a distribution over candidates that beats all others

Part 1: Maximal Lotteries

$3 \begin{aligned} & \text { This work } \\ & \text { Maximal Lotteries has distortion } 3\end{aligned}$

- Optimal for tournament rules!
- Key feature of analysis:
- When ML has high distortion, get precise structure on metric

Distortion $\approx 3 \Rightarrow$ structured metric

Part 2: Random Consensus Builder

Idea: Random Dictator, but strong consensus can overrule Threshold for overruling: β (say 2/3)

Random voter's ranking:

$\beta=1$ is Random Dictator, $\beta=\frac{1}{2}$ is like Copeland
Distortion interpolates between 3 and 5

ML mixed with RCB

With probability p :

- Run Maximal Lotteries

With probability $1-p$:

- Randomly pick threshold $\beta \sim\left[\frac{1}{2}, B\right]$
- Run Random Consensus Builder

With $p=\frac{1}{\sqrt{2}}, B=\sqrt{2}-\frac{1}{2}$, gets distortion $2 \sqrt{2} \approx 2.82$
To get 2.753, need something a little different...

Part 3: RaDiUS

- Idea: Use consensus to identify "good" shortlist of candidates
- Random voter picks from this set
- "Good set": weighted uncovered set from Munagala-Wang 2019

$$
\beta \in\left[\frac{1}{2}, 1\right] . A \text { such that for all } B
$$

Random Dictator in the (Weighted) Uncovered Set

ML mixed with RaDiUS

With probability p :

- Run Maximal Lotteries

With probability $1-p$:

- Randomly pick threshold $\beta \sim\left[\frac{1}{2}, B\right]$ according to pdf $\rho(\cdot)$
- Run RaDiUS

With $\rho(\beta)=\frac{p}{(1-p)\left(1-\beta^{2}\right)}, p=\frac{1}{1+\int_{\frac{1}{2} \frac{d \beta}{1-\beta^{2}}}, B=0.876 \text {, gets distortion } 2.753 ~}$

Key Analysis Ideas

Idea 1: Hard Metrics

- Distortion lower bound: strategy for adversary
- Distortion upper bound: strategy for voting rule

Idea 1: Hard Metrics

- Make metric worse for rule?
- Keep only dists from candidates to A
- Make voter dists to A minimal
- Make voter dists to others maximal

True opt: A

Idea 1: Hard Metrics

- Make metric worse for rule?
- Keep only dists from candidates to A
- Make voter dists to A minimal
- Make voter dists to others maximal Key observations:
- Changes increase distortion!
- Distances define a metric!
- \Rightarrow Can assume metric looks like this

Notes: factor of 2, difference between
 costs

True opt: A

Idea 2: Continuous View of Costs

$$
\begin{aligned}
2 \cdot \operatorname{cost}(A) & =\frac{1}{n} \sum_{v \in V} 2 d(v, A) \\
& =\mathbb{E}_{v \sim V}[2 d(v, A)] \\
& =\int_{0}^{\infty} \operatorname{Prr}_{v \sim V}[2 d(v, A)>t] \mathrm{d} t
\end{aligned}
$$

Idea 2: Continuous View of Costs

$$
2 \cdot \operatorname{cost}(A)=\int_{0}^{\infty} \underset{\sim}{\operatorname{Pr}}[2 d(v, A)>t] \mathrm{d} t
$$

$$
\operatorname{cost}(B)-\operatorname{cost}(A)=\mathbb{E}_{v \sim V}[d(v, B)-d(v, A)]
$$

$$
=\int_{0}^{\infty} \underset{v \sim V}{\operatorname{Pr}}[d(v, B)-d(v, A)>t] \mathbf{d} t
$$

Distortion 3: orange < purple

Idea 2: Continuous View of Costs

Proofs for Random Dictator, Plurality Matching, Plurality Veto

Proof for Maximal Lotteries

Idea 2: Continuous View of Costs

Hard instances for Maximal Lotteries

Open Problems

State of the Art (Voting)

Deterministic Voting

Randomized Voting

Deterministic Tournament Voting

4 -

GKM17
No rules

Takeaways

- Metric distortion lens is a new way to deepen our understanding of existing voting rules
- Clean mathematical framework motivates creation of interesting new rules
- Big problems still wide open: could there be a simple randomized rule with optimal distortion?
- Distortion in Social Choice Problems: The First 15 years and Beyond (Anshelevich-Filos-Ratsikas-Shah-Voudouris 2021)
- Our paper!

Thank You!

$2.753 \approx 3-\max 4 \operatorname{mi}_{3}+4 \ln (1+B)$

$$
\max _{B \in\left[\frac{1}{2}, 1\right]} \overline{2-\ln 3+\ln \frac{1+B}{1-B}}
$$

$2.112 \approx$

$1+\max _{\substack{a, b, c \in\left(0, \frac{1}{2}\right) \\ a+b+c \geq 1}} \frac{2(1-2 c(1-c))}{\frac{-b(1-b)+(1-a)(1-2 c(1-c))}{a}+\frac{(1-b)^{2}-2 c(1-c)(1-b)+b(1-2 c)(a+b)}{1-a}}$

