Sequential Deliberation for Social Choice

School

Brandon Fain, Ashish Goel, Kamesh Munagala (WINE 2016)

Voting in Complex Spaces

- What if:
 - The space of outcomes is large?
 - No preference structure is known a priori?
- Need not just
 voting, but also
 negotiation and
 deliberation

Goals

- Desiderata:
 - A. The algorithm (mechanism) designer does not need to understand the decision space.
 - B.We can prove guarantees on the quality of outcomes under analytical models (In particular, we should beat random dictatorship).
 - C. The mechanism should restrict cognitive load on users, and encourage negotiation and deliberation

Assumptions

- Assume all users and all possible decisions lies in a common metric space d, with user v having a cost d(v,x) for decision x
- Optimum: find a decision that minimizes total cost for all users, $S(x) = \sum_{v} d(v, x)$
- Distortion: If x* is the optimum decision, the the distortion of a randomized mechanism that produces decision x is E[S(x)]/S(x*)
- Randomized dictator gives a distortion of 2, and various deterministic voting rules give good distortion (e.g., Copeland: 5 [Anshelevich et al 2015], best known 4.236 [Munagala, Wang 2019])

Sequential Deliberation

- N := set of agents.
- Start with an initial suggestion (e.g., one proposed by a random agent), and call it s¹
- For rounds from t=1 to t=T:
 ut, vt ~ Two agents chosen uniformly at random
 st ~ Suggestion from previous step
 Agents ut, vt bargain with st as the outside alternative.
 If they agree, set s(t+1) to their consensus
 - •Else, s(t+1) = st

Nash Bargaining

Results

On a class of decision problems (median spaces):

1. Nash bargaining between agents u and v with ideal points p_u and p_v using disagreement outcome s finds the median of p_u, p_v, s .

2. All agents bargaining by truthfully representing their ideal point is a sub-game perfect Nash equilibrium of the extensive form game defined by sequential bargaining.

3. The chosen alternative converges to a stationary distribution in O(1) steps

But what about the distortion?

Median Spaces

For any three points, there is a unique point that lies on three pairwise shortest paths

Distortion on Median Spaces

Cost Distortion	Random Dictatorship	Sequential Deliberation
Upper Bound	2	1.208
Lower Bound	2	1.125
Second moment	Infinite	Finite