Markets for Public Decision-making

Ashish Goel
Stanford University

September 23, 2019
joint work with Nikhil Garg and Ben Plaut

Public decision-making

ㅊ

$$
\text { 禹 } 28
$$

Utility Model

- User i has binary preferences over the issues, and a weight $w_{i \ell}>0$ for issue ℓ. The decision z_{ℓ} on issue ℓ lies in $[0,1]$.
- Utility of user i is given by $u_{i}(z)=\sum_{\ell} w_{i \ell} x_{i}^{(\ell)}$ where $x_{i}^{(\ell)}=z_{\ell}$ if user i prefers side 0 on issue ℓ and $1-z_{\ell}$ otherwise.

"One person one vote"

- Give each person a single vote on each issue and select the outcomes which receive the most votes
- Fair in some sense
- Lacks expressiveness
- Can lead to very suboptimal outcomes

MAJORITY VOTING ON EVERY ISSUE

SIDE 1

ISSUE 1

SIDE 2

UTILITY

4 when in minority
1 when in majority
VOTE
Side 1 has majority

DECISION

100\% Side 1

WELFARE

Everyone is 50\% worse Tyranny of Majority

Markets

Markets

- Each player has a budget they wish to spend, and has no value for leftover money
- Goods are divisible
- "Fisher market" (Irving Fisher)
- "private goods"

Market equilibrium

- Each good has a price
- Each player buys her favorite affordable bundle
- An equilibrium always exists! [Arrow and Debreu, 1954]
- Demand meets supply
- The equilibrium maximizes Nash welfare [Eisenberg and Gale, 1959]:

$$
\sum_{i} \log u_{i}
$$

where u_{i} is the utility for player i

Our goal

Design a mechanism for public decision-making based on private goods markets.

- More expressive than "one person one vote"
- Markets in general have nice properties
- Prices can be computed in an iterative and natural way

Citizens purchasing political influence?
capitalism democracy

Our goal

Design a mechanism for public decision-making based on private goods markets.

- More expressive than "one person one vote"
- Markets in general have nice properties
- Prices can be computed in an iterative and natural way
- Each person gets equal endowment of "voting Dollars"

Citizens purchasing political influence?
capitalism democracy

A first attempt

- Assume issues are divisible/randomized
- Each issue has a price (this is the only thing that will change in our other model)
- Each player uses her budget to "buy probability" (ignoring supply)

SIMPLE PUBLIC MARKET

SIDE 1

SIDE 2

ISSUE 1

ISSUE 2

ISSUE 3

UTILITY

1.1 when in minority

1 when in majority

PRICE

Identical (symmetry)

EQUILIBRIUM
 100\% Side 2

WELFARE

Everyone is 45\% worse Extends to factor N

Context on the simple market

- Similar to the "free rider" problem
- Observed in the classical literature before (e.g., [Danziger 1976])
- The same counter-example extends to several variants, e.g., Quadratic Voting [Lalley, Weyl 2014] and Trading Post [Shapley, Shubik 1977, Branzei et al 2016]
- Arbitrary per-player prices can implement the Nash-welfare solution (in fact any Pareto-optimal solution) via Lindahl equilibria [Foley 1979]
- Lindahl prices are complex, and we would like a simple Fisher-like market, or a simple generative explanation
- A simple market might lead to an implementable protocol

Reduction via Pairwise Expansion

- For any public decision-making instance, we create a private goods instance as follows
- Same set of players
- For each every issue, we create a good for each pair of players who disagree on that issue

- "pairwise issue expansion"

Reduction via Pairwise Expansion

- Let u_{i} be the utility of player i in the private market
- One issue: $x_{i j}$ is what player i buys of good j. Define $u_{i}=\min _{\text {her pairwise goods } j} x_{i j} \quad$ (Leontief)
- Many issues: $u_{i}=\sum_{\text {issues } \ell} w_{i \ell}\left(\min _{\text {her pairwise goods } j} x_{i j}^{(\ell)}\right)$
- Key insight: Each player i is in direct competition with everyone she disagrees with, and with no one she agrees with

PAIRWISE EXPANDED MARKET

UTILITY
1.1 when in minority
1 when in majority
:---:
Identical (symmetry)
EQUILIBRIUM
100\% Side 1
WELFARE
Maximizes
Nash Welfare

PAIRWISE EXPANDED MARKET

UTILITY
4 when in minority
1 when in majority
PRICE
Identical (symmetry)

EQUILIBRIUM

100\% Side 2
WELFARE
Maximizes
Nash Welfare

Our main result

Theorem

Equilibria in the constructed private goods market correspond to valid solutions in the original public decisions instance.

- This will give us the nice private goods market equilibrium properties!
- Maximum Nash welfare

The mechanism:

- Players never see the constructed private goods market
- Compute equilibrium prices
- Reduction turns these into per-player prices in the public decisions instance
- These per-player prices give an equilibrium in the public decisions instance that maximizes Nash welfare.

Proof sketch

- $u_{i}=\min _{\text {her pairwise goods } j} x_{i j}$

Proof sketch

- $u_{i}=\min _{\text {her pairwise goods } j} x_{i j}$
- Say player 1 buys α of all of her pairwise goods
- Players 4 and 5 can each get at most $1-\alpha$

Proof sketch

- $u_{i}=\min _{\text {her pairwise goods } j} x_{i j}$
- Say player 1 buys α of all of her pairwise goods
- Players 4 and 5 can each get at most $1-\alpha$
- Players 4 and 5 will never buy more than $1-\alpha$

Proof sketch

- $u_{i}=\min _{\text {her pairwise goods } j} x_{i j}$
- Say player 1 buys α of all of her pairwise goods
- Players 4 and 5 can each get at most $1-\alpha$
- Players 4 and 5 will never buy more than $1-\alpha$
- This leaves exactly α for players 2 and 3
- At equilibrium, all players on the same side of the issue buy the same amount
- That is the probability placed on that alternative in the outcome of the public decisions instance

Market recap

- Construct the private goods market

- Compute equilibrium prices in the private goods market (one shot or tâtonnement)
- This gives us one price for each pair of players who disagree on a particular issue
- Player i's price for issue j is the sum of the prices on those pairwise disagreements

Theorem

The resulting per-player prices yield an equilibrium in the public decisions instance that maximizes Nash welfare.

Conclusion

- Markets have been well-studied for private goods, lots of nice properties
- Can use these concepts to design mechanisms for public decision-making
- Theorem: Any public decisions instance can be transformed into an equivalent private goods market.
- Can lift private goods results to public decisions setting

Future work:

- More practical mechanisms (iterative? deterministic?)
- Scalability
- Applications of reduction

