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Introduction to game-theoretic concepts

We can think of social choice in game-theoretic terms: in a mapping of agents’ actions to payoffs,

we might think of voters’ ballots as corresponding to actions, and the position of the output of the

social choice function with respect to these ballots as corresponding to payoffs. Thus, it’s useful in

our study of social choice to first be introduced to some tools from game theory.

Strategy-proofness

In a multi-player game, a player A has a dominant strategy if there exists an action S such that

for every other action S
′
, playing S

′
can not be better for A than playing S regardless of what

other players do, and there exists at least one scenario in which playing S is better.

Example 2.1 (Rock paper scissors (dominant strategy)) In rock paper scissors with two play-

ers, the sets of possible actions for each player are:

A : {rock, paper, scissors}
B : {rock,paper, scissors}

with the following payoff matrix for player A (with an analogous matrix for player B):

Player A

Rock Paper Scissors

Rock 0 1 -1

Player B Paper -1 0 1

Scissors 1 -1 0

A dominant strategy does not exist for either player in this setup.

A mechanism is incentive-compatible if truthful reporting is a dominant strategy.1 We demon-

strate this idea in the following model of voting on a line.

1Same concept as strategy-proofness.
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Voting on a line

Consider a model where each voter i has a most preferred point xi ∈ [0, 1] (e.g., preferred size of a

budget deficit) and utility Ui(x) that is strictly decreasing with the distance from xi (not necessarily

symmetrically or smoothly). See Figure 1 for an example. Voter preferences in this setup are said

to be single-peaked.

0 1xi

Ui(x)

Figure 1: Utility Ui(x) for voter i given xi

An elicitation rule describes how preferences are elicited from voters (e.g., asking voter i for xi).

An aggregation rule describes how preferences are aggregated (e.g., taking the mean of xi over

all i). An elicitation rule and an aggregation rule together comprise a voting mechanism.

Using the mean as an aggregation rule is not incentive-compatible. Consider an example with four

voters, where x1 = x2 = x3 = 0 and x4 = 0.25. If everyone reports truthfully, taking the mean

yields 0.0625. On the other hand, if voter 4 reports x
′
4 = 1, aggregating via the mean yields 0.25,

so voter 4 has an incentive to misreport.

Now suppose we choose for our aggregation rule the median2 of xi over all i.

0 1x
′
α xα

Figure 2: Median as aggregation rule

Consider Figure 2. Suppose voter α’s true preference is xα, but they report x
′
α. If the median is in

the set of points denoted in red, this misreporting is inconsequential; if we think of the median as

partitioning the set of xis in two, then xα and x
′
α fall in the same “partition” with respect to the

median so misreporting will not change the outcome.

On the other hand, suppose the median falls in the set of points denoted by the dashed line. Then

misreporting x
′
α will change the median, but in a way that moves the median away from xα.

Since misreporting would be either inconsequential or result in a worse outcome, using the median

as the aggregation rule is incentive-compatible (Black’s theorem).3

2As an aside, Sir Francis Galton famously obtained a near-perfect estimate of the weight of an ox in 1907 by

taking the median of estimates from 787 villagers.
3One application of Black’s theorem is participatory budgeting.
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Nash equilibria

Pure strategies

Given players 1 through n, a pure strategy Nash equilibrium is a set of actions {A1, A2, . . . , An}
(where Ai denotes the action of player i) such that no player has an incentive to deviate.

A pure Nash equilibrium may not exist.

Example 2.2 (Rock paper scissors (pure strategy NE)) Conditional on player 1 choosing

to play rock, player 2 would profitably deviate by playing paper instead of, say, scissors. Conditional

on player 2 playing paper, player 1 would profitably deviate by playing scissors instead of rock, etc.,

and so a pure strategy Nash equilibrium does not exist.

Mixed strategies

A mixed strategy is one where players choose actions from some distribution. Players know each

other’s distributions but can’t ex-ante know what particular action will be drawn. A mixed

strategy Nash equilibrium is a set of distributions {D1, D2, . . . , Dn} such that no player can

obtain a higher expected payoff by deviating.

Example 2.3 (Rock paper scissors (mixed strategy NE)) Now suppose each player’s strat-

egy is to choose each action with equal probability, i.e., 1
3 . This is a mixed strategy Nash equilibrium.

No player can profitably deviate by choosing a different distribution across actions, e.g., if player

1 adjusts their strategy so that rock is played more often, player 2 can choose a strategy that plays

paper more often.

Pathological Nash equilibria in social choice

As seen in Examples 2.4 and 2.5, social choice contexts can exhibit pathological Nash equilib-

ria.

Example 2.4 (Plurality) Consider a setup with three voters {v1, v2, v3}, three alternatives {a, b, c},
and winner determined by plurality. Suppose we have the truthful preferences presented in Table 1.

v1 v2 v3

a b c

b c a

c a b

Table 1: Pathological profile
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Now suppose voters submit identical orderings (e.g., everybody reports b � c � a). No single voter

can profitably deviate; a single voter’s deviation will not change the outcome, as the winner is

determined by plurality.

Example 2.5 (Copeland) Suppose there are 101 voters, 52 of whom submit orderings that place

the same alternative highest. No single voter can profitably deviate, as the outcome will not change

even if they do.

Note that in both cases, coalitions of voters can sidestep these equilibria.

Bargaining

A general two-player bargaining problem can be set up as follows: players A and B negotiate given

outside option Z. Let S = {(xi, yi)} for all i denote the set of pairs of utilities such that if the two

players agree on some outcome (xA, xB), then players A and B receive xA and xB, respectively.

Otherwise, the outcome is the outside option (e.g., if Z = (0, 0), then both players receive 0). Note

that Z ∈ S.

Nash’s axiomatic approach

Nash proposed an axiomatic approach to the bargaining problem, so that the only outcomes con-

sidered are those that satisfy (1) invariance to affine transformations, (2) Pareto optimality, (3)

independence of irrelevant alternatives, and (4) symmetry. We describe each of these axioms with

accompanying examples.

Consider two players A and B choosing among points in the interval [0, 1]. Suppose both players

have utilities that are a function of q as in Figure 3a, i.e., UA(q
′
) is the utility player A obtains at

point q
′ ∈ [0, 1]. Invariance to affine transformations dictates that an affine transformation

to the utilities will not change the bargaining outcome. That is, the outcome is invariant to

adding/subtracting constants to the utilities or scaling them by a constant factor (as in Figure 3b).

This also means that we can let (0, 0) be the outside option without loss of generality.

0 1

UA(q)
UB(q)

(a) UA(q) and UB(q)

0 1

U
′
A(q)

U
′
B(q)

(b) UA(q) and UB(q) affine transformed

Figure 3: Invariance to affine transformations
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The red curve in Figure 4 traces out the Pareto frontier of utility payoffs for some bargaining

problem. An outcome (U∗
A, U

∗
B) is Pareto-optimal if no other outcome (U

′
A, U

′
B) results in a

better payoff for both A and B. If an outcome is not on the Pareto frontier, then at least one

player can achieve a better payoff without worsening the payoff of the other player. Symmetry

dictates that if (x, y) is the outcome of the bargaining process and we switch the utility functions

of the players, then (y, x) becomes the outcome.

Finally, let S denote the set of feasible outcomes and suppose the bargaining solution (U∗
A, U

∗
B) ∈ S.

Independence of irrelevant alternatives dictates that if (U∗
A, U

∗
B) ∈ S

′
where S

′ ⊆ S, then

(U∗
A, U

∗
B) is also the solution to the bargaining problem when S

′
is the set of feasible outcomes.

The dashed curve in Figure 4 traces out the Pareto frontier for some S
′
.

UA

Z = (0, 0) UB

(U∗
A, U

∗
B)

Figure 4: Pareto frontiers of payoffs

Example 2.6 (Independence of irrelevant alternatives) Suppose an agent chooses burritos

when faced with the decision of choosing between pizza, burritos, ramen, and burgers. Then faced

with the decision of choosing between just burritos, ramen, and burgers, they should still choose

burritos.

Nash bargaining solution

With the outside option as (0, 0) (recall that invariance to affine transformations allows this), the

Nash bargaining solution is given by maximizing UA·UB. Equivalently, the Nash bargaining solution

is the solution to:

max log(UA) + log(UB)

subject to the constraint that the outcome must be feasible. This objective is also known as Nash

Welfare.
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Notice that multiplying the utilities by some constant will only add a constant term to the objective

function, leaving the solution unchanged. In general, the Nash bargaining solution maximizes the

product of the additional utilities each player would receive over the outside option.

The Nash bargaining solution is the unique solution that satisfies the four axioms. Note that this

solution is obtained via assumption of the axioms, rather than being an equilibrium concept (e.g.,

based on player strategies).

Markets

Suppose we have a market with m divisible goods, n buyers, and a unit of money (say, a dollar)

that has no value outside the market allocated to each buyer. Each good costs some amount of

money, and buyer i has weight wij > 0 for good j so that buyer i’s utility from buying xij amount

of good j is wijxij .

Given these weights, we want to find prices that clear the market (i.e., every good is exactly sold).

Each buyer i solves the following optimization problem:

max
xij

∑
goods j

wijxij

subject to
∑
j

pjxij ≤ 1

wij > 0

xij ≥ 0.

We say that a set of prices clears the market if there is some solution to each buyer’s optimization

problem such that all the goods get exactly sold.

Note that supply constraints do not appear explicitly in the optimization (e.g., buyers don’t care if

Walmart runs out of toothpaste). Prices are chosen so that the market clears given each individual

buyer’s optimization problem. This setup is known as the Fisher market.

Example 2.7 (Fisher market prices) Consider a market with set of buyers {1, 2, 3} and set of

goods {A,B,C} and the following matrix of weights wij:

Good

A B C

1 2 2 1

Agent 2 2 2 1

3 2 2 1

Since every agent requires twice the amount of good C as goods A or B to obtain the same utility,

we would expect nobody to buy good C over good A, for example, if priceC >
1
2 · priceA, as it would

cost more to obtain the same utility.
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On the other hand, if priceC <
1
2 · priceA and priceC <

1
2 · priceB, we would expect all three agents

to purchase good C. In the case where priceC = 1
2 · priceA and priceA = priceB, the three agents

will be indifferent between the three goods.

For example, if we had priceA = priceB = 6
5 , and priceC = 3

5 , then the goods could be allocated

among agents as follows:

Good

A B C

1 2
3 0 1

3

Agent 2 1
3

1
3

1
3

3 0 2
3

1
3

That is, buyer 1 gets 2
3 of good A and 1

3 of good C, buyer 2 gets 1
3 of each good, and buyer 3 gets

2
3 of good B and 1

3 of good C. In general, neither prices nor bundles need be unique.

On the other hand, suppose we have the following matrix of weights instead:

Good

A B C

1 1 1 2

Agent 2 2 2 1

3 2 2 1

With prices so that priceA = priceB and 1
2 · priceA < priceC < priceA, agent 1 will purchase only

good C while agents 2 and 3 will be indifferent between goods A and B. Using a solver, we obtain

priceA = priceB = 0.434294164 and priceC = 0.434294075, with the following allocation:

Good

A B C

1 0 0 1

Agent 2 0.5 0.5 0

3 0.5 0.5 0

In general, agent i will buy the good j given by arg maxj
wij

pj
.

The allocation obtained from clearing the Fisher market is invariant to buyers scaling their utilities

by some constant factor, Pareto-optimal, symmetric, and anonymous. It is also envy-free, which

is to say that no agent strictly prefers a bundle or good that someone else has.

Example 2.8 (Envy-freeness) Consider the problem of allocating indivisible ice cream cones

where agents have the following preferences over flavors:

If Agent 2 receives vanilla and Agent 1 receives strawberry, we say that such an allocation induces

envy.
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Agent 1 Agent 2 · · ·

Vanilla Vanilla · · ·
Strawberry Chocolate · · ·

Chocolate Strawberry · · ·

The Fisher market allocation is envy-free in that each agent could have purchased any other agent’s

bundle, so the fact that they didn’t implies that they do not strictly prefer that bundle to their

own.

Example 2.9 (Pareto-optimal 6=⇒ envy-free) Suppose we have the following preferences:

Agent 1 Agent 2

Vanilla Vanilla

Strawberry Strawberry

and allocation such that agent 2 receives vanilla while agent 1 receives strawberry.

This allocation is Pareto-optimal: we can only improve agent 1’s payoff by giving them vanilla so

that agent 2 receives a worse allocation of strawberry. However, it is not envy-free: agent 1 strictly

prefers agent 2’s allocation, vanilla, to their own.

The solution to the market-clearing problem with divisible goods is given by maximizing Nash

welfare4 (i.e., the product—equivalently, sum of logs—of the individual utilities) as in the following

optimization problem:

max
xij

∑
agents i

log

 ∑
goods j

wijxij


subject to

∑
agents i

xij ≤ 1 ∀j

xij ≥ 0.

Note that wij > 0 for all i, j by assumption. This problem is also known as the Eisenberg-Gale

program.

Taking the log of individual utilities is nice in that the allocation obtained has good fairness

properties in the following sense: buyers with higher utilities for a good do not “monopolize” the

purchase of that good. That is, allocating a fixed amount of good G to someone with a smaller

utility for G will improve the value of the objective moreso than allocating that same amount to

someone with a larger utility for G.

4Note that, like the Nash bargaining solution, the market-clearing solution fulfills Nash’s bargaining axioms and

is obtained by maximizing Nash welfare.
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The allocation given by the solution to the Eisenberg-Gale program is not strategy-proof5 and not

a Nash equilibrium. However, it is still a widely used equilibrium concept.

Rough proof sketch of the market-clearing solution

A full proof is beyond the scope of this class, and involves the use of Lagrange multipliers and KKT

conditions.

We can derive prices via first-order conditions of the Eisenberg-Gale program: the market-clearing

price of good j is the value of the optimal Lagrange multiplier on constraint
∑

agents i xij ≤ 1. The

first-order condition for buyer i, good j is

wij∑
goods j wijxij

− pj = 0.

If pj >
wij∑

goods j wijxij
, we would expect buyer i to not purchase any amount of good j, i.e., xij = 0.

If xij > 0, then pj =
wij∑

goods j wijxij
.

5See gale-eisenberg.xlsx on the course website.
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