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In this lecture, we discuss fairness in the context of social-choice and allocation problems; what

follows is a study of the epistemic notion of fairness as opposed to participatory ones, insofar as

we shall limit ourselves to focusing on the outcomes of the democratic process at hand. We begin

with the specification of a generic allocation problem and analyze the following axioms of fairness

in reference to our chosen problem.

In an economy, there exist n agents with utility functions Ui : S → R≥0 for agents i = 1, . . . , n

and a space S of solutions to the allocation problem. We proceed with an axiomatic approach

to describing this space of solutions, so as to endow it with certain ’good’ behaviors we believe

intuitively should be true. Some of these axioms are very broad in scope, in that they can be

meaningfully expressed in any model:

1. Pareto Efficiency: An allocation x ∈ S is Pareto-optimal if there does not exist another

allocation x′ ∈ S such that each agent finds x′ at least as desirable as x whilst some agent

strictly prefers x′ to x. In terms of utilities, x ∈ S is said to be Pareto-optimal if there does

not exist x′ ∈ S such that Ui(x
′) ≥ Ui(x) for every i = 1, . . . , n, and for some i ∈ {1, . . . , n},

we have Ui(x
′) > Ui(x).

Another starting point in classical fair division problems is to bound the physical assignments

and/or utilities that each agent can receive. Lower bounds guarantee that an agent’s social welfare

will be above a certain ’fair’ level, as determined by their social endowments and preferences. Upper

bounds guarantee that no agent is too much of a burden to the economy. Some of these sensible

bounds are actually independent of the agents’ preferences:

2. Preference Agnosticity: For classical fair division problems, an allocation often satisfies

no-domination of-or-by equal division. As an illustration consider a solution to the allocation

problem, an n × k matrix A where Aij is the amount of resource j allocated to agent i.

Furthermore assume that the total amount of any resource available is 1. This guarantees

n∑
i=1

Aij ≤ 1, ∀1 ≤ j ≤ k.

The allocation to agent i, namely Ai is said to be dominated by equal division if Aij ≤ 1
N for

every resource j and for some resource j, we have the strict inequality Aij <
1
N . Similarly,

Ai dominates equal division if Aij ≥ 1
N for every resource j and for some resource j, we have

the strict inequality Aij >
1
N .
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By contrast, the remaining axioms will largely account for the agents’ utilities. We begin with

some punctual axioms; these are requirements that can be enforced upon agents separately, at an

’intra-personal’ level. The first of these is a notion almost as pervasive across models as Pareto

efficiency

3. Envy-Freeness: According to this axiom, no agent should prefer another agent’s allocation

to their own. Namely, we must have Ui(Ai) ≥ Ui(Aj) for every i, j. The no-envy notion

makes the most sense when applied to the distribution or redistribution of private resources.

It is silent in models of “pure” public choice, where by definition, all agents consume the

same thing and a compromise has to be found on what that common assignment should be

because agents differ in how they value it.

4. Proportionality: This property, in the context of continuous fair division problems states

that an agent must obtain at least as much utility from an allocation as they would if they

received their proportional share of each resource. Formally, this translates to

∀i = 1, . . . , n, Ui(Ai) ≥ Ui

(
1

n
, . . . ,

1

n

)
︸ ︷︷ ︸

k

.

Neither envy-freeness nor proportionality is sufficient to guarantee us preference agnosticity; as

an example, each agent may only care about one specific resource and thus never be preference

agnostic. Note also that in social choice problems, while Pareto optimality is still a sensible notion,

Axioms 2 and 3 are quite meaningless. Proportionality however can sometimes be a meaningful

concept, for instance in the case of participatory budgeting. We proceed now to notions of group-

fairness; axioms that cannot be verified at an individual level but requires a group of people to

know their own utilities to ascertain.

5. Core: The concept of an allocation in the core is a generalization of Pareto-optimality and

proportionality to groups of individuals; it requires that each subset of agents receive an

allocation that is fair relative to its size. An allocation A is in the core if for all sets of agents

W and allocations A′ that satisfy

∀ 1 ≤ j ≤ k,
∑
i∈W

A′ij ≤
|W |
n
,

there exists some agent Ai ∈ W such that Ui(A
′
i) ≤ Ui(Ai). An allocation that does not

satisfy this property is called a blocking allocation.

It’s not clear a priori that core-solutions exist. A solution in the core however is necessarily

Pareto-optimal and proportional; this follows by considering the absence of blocking alloca-

tions of size n and 1 respectively. It is important to note that the core provides a guarantee

for every possible subset of agents. Hence, in satisfying the guarantee for a set W , a solution

cannot simply make a single member i ∈ W happy and ignore the rest as this would likely

violate the guarantee for the set W − {i}.
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We proceed now to a discussion of notions of fairness that require inter-personal comparisons

of utilities.

6. Maxmin: An allocation is said to be maxmin if the utility of the poorest agent is as high as

possible, that is,

max
s∈S

n
min
i=1

Ui(s).

Note that a maxmin allocation is not necessarily Pareto optimal since it only focuses on the

welfare of the poorest agent; in particular, it may be the case that keeping the poorest agent’s

utility constant, one can obtain strictly better utility for the rest of the population. However,

it is easy to see that at least one maxmin solution satisfies Pareto optimality.

7. Lexicographic Fairness: This is an attempt to find Pareto-optimal maxmin allocations,

specifically to avoid the situation where the poorest agent drives down the general social

welfare. Consider the constrained problem Cu ≤ b, where C is an K ×N constraint matrix,

u a vector of utilities and b the bounds on the constraints. We arrange the utilities u1, . . . , un
in non-decreasing order and maximize the utility of the poorest agent followed by the second

poorest agent (holding the poorest agent’s utility fixed) and so on. Formally this proceeds as

β1 = max
s∈S

n
min
i=1

ui(s).

This is the first step of computing the lexicographically fair solution and is identical to the

maxmin solution. This can be formulated as an LP as follows

maximize β

subject to β ≤ u
Cu ≤ b.

The next step is to maximize the second smallest utility subject to β1 being the maxmin

objective. To make the lexicographically fair solution envy-free, we can often add envy freeness

as a constraint in the optimization problem, especially when utilities are simple functions.

For example, if utilities are linear functions of allocation, say ui = b>i Ai, then envy freeness

is the set of constraints

∀1 ≤ i 6= i′ ≤ n,
∑
j

bijAij ≥
∑
j

bijAi′j .

Note that these notions requiring interpersonal comparisons of utility still don’t require knowl-

edge of the exact utilities. Applying any monotonic transformation on utilities keeps these prop-

erties unchanged. There are however more complex notions of fairness. We end the lecture with

a discussion of proportional fairness (via Nash welfare). The solution of the Nash welfare problem

guarantees envy-freeness (as the solution to Fisher market equilibrium, if an agent prefers another

agent’s bundle, they would simply trade). We prove this for a single resource allocation problem

with linear utilities. Namely, let x be an allocation vector for a single resource and suppose that
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Ui(x) = aixi for each agent Ai. The solution to the constrained Nash welfare problem is obtained

by

maximize
n∑

i=1

log aixi

subject to
n∑

i=1

cixi ≤ 1

x ≥ 0.

Using the method of Lagrange multipliers, we have the Lagrangian

L(x) =
n∑

i=1

log(aixi)− λ

(
n∑

i=1

cixi − 1

)
.

Solving, we have

0 =
δL(xi)

δxi
=

1

xi
− λci =⇒ xi =

1

λci
∀ 1 ≤ i ≤ n,

are optimal. Not only is it clear that the allocations are independent of the utilities, but we also

note that they are inversely proportional to externality ci posed by agent Ai on the economy.
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