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11.1 Introduction

Nash, Arrow, Schelling, and Maskin are several Nobel Prize winners relevant to this class. We’ve

already discussed some of the research of Nash, Arrow, and Schelling, today we’ll look at some of

Maskin’s work. One of the reasons work in social choice is exciting is it has relevance to some of

the most consequential problems we face together, while also being an intellectually vibrant area

of study.

11.2 Mixing

Consider, again, sequential deliberation on a line. At a time t + 1, there is an outside option St
as well as two agents selected uniformly at random from the set of agents N , ut+1 and vt+1. As

discussed earlier, if the agents perform Nash bargaining, they will end up choosing the median of

their positions and the outside option (which was the result of the previous round). For any finite

N , St will go to a stationary distribution. In a rough sense, “mixing fast” means that it will go to

a stationary distribution quickly.

(St, ut+1, vt+1)
Nash Bargaining−−−−−−−−−−−−−→ (St+1, ut+2, vt+2)

Assume that in two steps of the process, all four of the randomly selected agents are unique.

Denote these agents a, b, c, d (though we are not assuming which corresponds to which) and assume

without loss of generality that a <= b <= c <= d. The probability that a and b arrive together

(meaning a = ut+1 and b = vt+1 or the reverse, or similarly for t+2) is 1/3 since there are
(
4
2

)
/2 = 3

ways to divide a, b, c, d into two groups of two. (Alternately, the probability that a is paired with

b is 1/3.) So with probability 1/3, the Markov chain collapses in two steps, which implies that the

mixing time is constant.

(a, ut+1) (b, vt+1)

St

(c, ut+2) (d, vt+2)

(c, ut+1) (d, vt+1)

St

(a, ut+2) (b, vt+2)

More concretely, let a and b arrive first at time t + 1, so c and d arrive second at time t + 2.

Then St+1 = a if St <= a, St+1 = St if a <= St <= b, or St+1 = b if b <= St. Regardless, since

a <= b <= c <= d St+2 = c. Similarly, if c and d arrive first then St+2 = b. In a sense, with
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probability 1/3 the process “forgets” the past in two steps to arrive at the stationary distribution,

regardless of the actual values of a, b, c, d. We will omit the formal definition of “mixing time” and

a formal proof that this implies fast mixing in this class. But the above is enough to claim that

the mixing time of this Markov chain is O(1).

Sequential Deliberation Process

S1 S2 ... St St+1?

u1 u2 ... ut

v1 v2 ... vt

Another way to think about mixing time is “coupling from the past” (CFTP). Suppose the

process has been run up to some very large time t. S1 was given, but all selected agents are random

and Si for i > 1 are also random since the agents are randomly selected. The distribution of

St+1 isn’t known with certainty since it depends on S1, but the distribution of ut, vt, and so on is

known. Because of mixing, with probability 1/3 the value of St+1 is known by looking back only

two steps (4 agents). Assuming S1 is on a stationary distribution, then St+1 is also on a stationary

distribution. On average, you have to go back 6 steps to know what the value of St+1 is for sure,

and this value must be a sample from the stationary distribution. Again, we won’t go into the

formalism, but this is a stronger result than fast mixing - not only does the Markov chain mix in

time O(1) but we can also get a sample from the stationary distribution in time O(1). This mixing

time holds for median spaces (the distortion results from before also hold on median spaces).

11.3 Strategic Behavior

Once again, consider sequential deliberation on a line. Now, assume that each participant declares

their position and the “social planner” computes the Nash bargaining outcome (the median). If

the process is on the final step, it is optimal for the agents to declare their true positions since

if they are the median point changing their declaration will only move the result away from their

true position, while if they aren’t the median point they only change the result by “crossing” the

median, which would also move the result further away from their desired position. Therefore, in

the final step there is no incentive to report a position other than their true position.

...(St, ut, vt)
median=St+1−−−−−−−−−−→ (St+1, ut+1, vt+1)

median=St+2−−−−−−−−−−→ (St+2, ut+2, vt+2)...

Claim 11.1 Assuming all agents are truthful in future steps, in the current period it’s optimal for

agents to report their positions truthfully. (This is called a sub-game perfect Nash equilibrium.)

Proof Outline: By monotonicity. Claim that (1) St+2 is monotone in St+1 and (2) if S′
t+1 >

St+1 then either median(S′
t+1, ut+1, vt+1) = median(St+1, ut+1, vt+1) or median(S′

t+1, ut+1, vt+1) >=

St+1. Assume ut < St+1. St+1 only changes if ut falsely reports s.t. u′t > St+1, so S′
t+1 > St+1,

which is obviously worse for ut. This reasoning can be applied repeatedly, so misreporting now is

never beneficial in the future.
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It’s not feasible to analyze full Nash equilibrium since that would be a strategy over all time

periods for all agents, so in a sense this proves the strongest equilibrium concept (sub-game perfect

Nash equilibrium) we can hope to achieve without exorbitant effort.

11.4 Median Spaces

Median spaces are metric spaces where for any three points, there is a unique point that lies on

three pairwise shortest paths between these. Median spaces always have a Condorcet winner (the

Condorcet winner on a line is simply the median). Trees, hypercubes, grids, and lines are examples

of median spaces, while triangles and disconnected spaces are not.

Consider the points A,B,C in the simple grid displayed below. The shortest path between

points A and B is clearly A−B, and similarly the shortest path between B and C is B−C. There

are two shortest paths between A and C, A−B−C and A−D−C. Since it is on a shortest path

between all three pairs, point B is the (unique) median point (Condorcet winner).

Consider the points A,B,C in the simple triangle displayed below. The shortest path between

any two points is just the direct path between those points, so it’s A − B for A and B, B − C
for B and C, and A − C for A and C. However, there is no median point since no point appears

on three pairwise shortest paths (each appears twice, on the paths where it is an endpoint). This

demonstrates that triangles are not median spaces.

A

B C

D

Grid - Median Space

A

B

C

Triangle - Not Median Space

11.5 Trees

Assume there are N agents, where N is odd. Agent opinions are unique nodes in a tree of size N ,

denoted T . Each edge has a cost, and the cost of an opinion for an agent is the sum of the costs

along edges travelled from the agent’s position to that opinion. Since trees are median spaces, there

is always a Condorcet winner.
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A1
C1

A2
C2

A3

C3

A4

A4 is the Condorcet winner.

vw1

w2

w3

w4

An example tree T .

To find the Condorcet winner (median) of T , start with an arbitrary node v. Denote wi as

neighbors of v and Ti as subtrees of v (we assume v is the root of each Ti). First, we consider the

case where ∀i, we have |Ti| < N/2, so anyone in Ti loses pairwise elections to v, since any node not

in Ti will vote for v over any node in Ti. Since v is not in any Ti, it wins pairwise elections against

all other nodes in T , meaning it is the Condorcet winner. Next, consider the case where |Ti| > N/2

for one i (clearly this could not be true for more than one i), then consider wi instead of v and note

it’s still the case that (|T | − |Ti|) < N/2 nodes (meaning, the number of nodes outside the subtree

Ti is still less than N/2). For all neighbors w′
i of wi and their subtrees T ′

i , if |T ′
i | < N/2 then wi is

the Condorcet winner by the same logic as in the |Ti| < N/2 case, if not then repeat the process
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with w′
i and so on until the Condorcet winner is found. In this way, you can “walk” from any node

v until you find the Condorcet winner (the process must terminate, since it is also the case that

the walk never traverses an edge twice).

A1 A2

A3

Am

Claim 11.2 Trees are median spaces.

Proof Outline: Consider arbitrary nodes A1, A2, and A3. Due to the tree structure, there

is exactly one path (which is trivially also the shortest path) between each pair of nodes. Because

there is one path between each pair, the paths between the three pairs must meet at some node,

that is the median point.

For sequential deliberation, truthfulness on trees can be shown similar to truthfulness on lines.

11.6 Maskin’s Framework

We know that truthful social choice rules don’t generally exist (due to Gibbard-Satterthwaite), but

can we get weaker forms of game theoretic implementation? Maskin’s framework is one possibility.

Maskin’s framework considers implementation of social choice rules by Nash equilibrium. The

social choice rules chooses a set f(R) (R is a profile of strict preferences), while the mechanism (a

function g and strategy spaces for each voter, S1, S2, ..., SN ) implementing it must choose a single

outcome g(s1, s2, ..., sN ). For voter i, strategy si ∈ Si. g : S1 × S2 × ... × SN → A, where A is

the set of candidates. For any alternative in f(R), some pure Nash equilibrium must achieve it.

Formally,

∀a ∈ f(R), ∃s1, s2, ..., sN s.t.

(i) g(s1, ..., sN ) = a

(ii) ∀i,∀s′i 6= si, a <Ri g(s1, ..., s
′
i, ..., sN )
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Additionally, for any mixed Nash equilibrium, anything in the support must result in something

in f(R). Meaning if P(µ1,...,µN )(s1, ..., sN ) > 0 (where µi is a mixed strategy for voter i) then

g(s1, ..., sN ) ∈ f(R).

11.7 Maskin Monotonicity

If a candidate c is in f(R), and one voter changes its ranking without changing the relative position

of candidate c with respect to any candidate that c dominated earlier, then c remains in f(R′).

Definition 11.1 A social choice function f satisfies Maskin Monotonicity (MM) if

c ∈ f(R)

and ∀i,∀b ∈ A, c <Ri b =⇒ c <R′
i
b

=⇒ c ∈ f(R′).

Maskin monotonicity is a necessary condition for Nash implementability - any social choice rule

that is Nash implementable must satisfy MM. (Note that, for example, the Borda and Copeland

rules don’t satisfy MM.)
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