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8 Participatory Budgeting

Participatory budgeting (PB) is a process by which communities collectively decide on the allocation

of public tax dollars for local public projects. First developed in Brazil in the 1980s, PB has become

widespread in Brazilian cities and has been adopted in cities around the world [3].

In the standard formulation of the problem, we would like to devise a method for collecting

voter’s preferences for budget allocation into an aggregate budget which maximizes some global

notion of utility for voters. Formally, we set up the problem as follows:

• Let N be the number of voters, M the number of projects or budget items, and B the total

budget to be allocated.

• Let x(i) = 〈x(i)1 , . . . , x
(i)
M 〉 be the ideal budget for voter i, where we suppose x

(i)
j is voter i’s

true preference for number of dollars spent on project j.

• We assume all x(i) are correct budget allocations. In other words, ‖x(i)‖1 = B for all i and

x
(i)
j ≥ 0 for all i, j.

• Let z = 〈z1, . . . , zM 〉 be the aggregated budget.

We define the overlap utility of an aggregated budget z for voter i as Ui(z) =
M∑
j=1

min{zj , x(i)j }.

Remark 8.1 Overlap utility yields an equivalent notion of cost di(z) = |x(i) − z‖1

.

Proof: Note that, for any i,
∑
j
x
(i)
j =

∑
j
zj = B. Reshuffling the terms, we have that∑

j: x
(i)
j ≤zj

(z
(i)
j − xj) =

∑
j: x

(i)
j >zj

(x
(i)
j − zj). Notice that the summation terms on both sides are equal

to the absolute value |x(i)j − zj |. Thus
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∑
j: x

(i)
j >zj

(x
(i)
j − zj) =

1

2

 ∑
j: x

(i)
j >zj

|x(i)j − zj |+
∑

j: x
(i)
j ≤zj

|x(i)j − zj |


=

1

2

∑
j

|x(i)j − zj |

=
1

2
‖x(i) − z‖1

Finally, we see that

Ui(z) =
M∑
i=1

min{zj , x(i)j } =
M∑
i=1

x
(i)
j −

∑
j: x

(i)
k >zj

(x
(i)
j − zj) = B − 1

2
‖x(i) − z‖1 = B − 1

2
di(z)

Intuitively, overlap utility/cost corresponds to the number of dollars that need to be shifted

from each project for the aggregate budget to match the voter’s ideal budget.

If we are satisfied with overlap utility/cost as representative of voter happines, we can cast

participatory budgeting as the following optimization problem:

arg max
z

N∑
i=1

M∑
j=1

min{zj , x(i)j }

subject to

M∑
j=1

zj = B; zj ≥ 0 for all j

(1)

By introducting additional decision variables tij for 1 ≤ i ≤ N, 1 ≤ j ≤M , we can equivalently

formulate (1) as a linear program (see: [8] for an introduction), lending the problem to solution

using any standard linear optimization algorithm:

arg max
tij ,z

N∑
i=1

M∑
j=1

tij

subject to tij ≤ x
(i)
j ; tij ≤ zj

M∑
j=1

zj = B; zj ≥ 0 for all j

(2)

Claim 8.1 (PB as a linear program) Suppose (t, z) is a solution to (2). Then z is a solution

to (1).
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Proof Outline: Since t is optimal, tij must be equal to min{zj , x(i)j }. Otherwise, we could

increase tij , thereby increasing the objective sum, without violating any constraints. Thus, the

corresponding optimal z must also maximize the sum in (1).

Formulated in this manner, participatory budgeting is an example of a Knapsack problem. One

method for practically solving the problem is to elicit voters to select any number of projects which

satisfy budget constraints. Consequently, projects are ranked by order of number of voters, and

the top projects are selected until the budget is exhausted. As shown in [5], such a method is

strategy-proof and welfare maximizing under the cost model.

Figure 1: Example interface for Knapsack Voting developed in [5]

9 From Ordinal to Cardinal Social Choice

The social choice functions we have seen in class - and the vast majority of social choice mechanisms

in place in contemporary democracies - all involve aggregation over ordinal preferences of voters.

However, in evaluating the quality of a social choice function, it can be helpful to assume that voters

implicitly assign costs or utilities to the different alternatives which induce their ordinal preferences.

Assuming such cardinal utilities/costs allows us to evaluate an SCF based on its distortion, or

the worst-case ratio of the utility/cost of the candidate selected by the function to the optimal

alternative [7].

9.1 Distortion Bounds

Suppose we have voters v1, . . . , vN , and candidates c1, . . . , cM . We can consider distortion based

on a utility or cost model of voter preferences. We assume that the designer of the SCF has no

access to cost/utility information.
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Under a utility model with utility function U , the distortion for candidate cj is defined as

D(cj) =

max
j′

N∑
i=1

Ui(cj′)

N∑
i=1

Ui(cj)

Under a cost model with cost function d, the distortion is defined as

D(cj) =

∑N
i=1 di(cj)

min
j′

N∑
i=1

di(cj′)

9.1.1 Unrestricted cost/utility

If we impose no restrictions on the structure of costs/utilities for voters, we encounter so-called

impossibility results for bounding distortion, with the following lower bounds in the worst-case [7]:

Deterministic SCF Randomized SCF

Utility ∞ M

Cost ∞ ∞

Example 9.1 (Unbounded disortion) Consider the following profile:

U1 U2

A 0 1

B 0 0

We see that the distortion in case the SCF picks B is equal to D(B) = 1+0
0 =∞.

9.1.2 Utility restrictions

We impose the restriction that all voters have utilities over candidates which sum to 1, i.e.∑
j
Ui(cj) = 1 for all i. In this case, a determinstic SCF has a distortion lower bound of M

while a randomized SCF has lower and upper bounds of O(
√
M) [2].

9.1.3 Cost restrictions

We assume that costs are distances in a metric space on the set of voters and candidates. A series

of results has shown determinstic SCFs to have a tight upper bound of 3. For randomized SCFs,

there is a known upper bound of 3 and tight lower bound of 2 [1][4][6].

Example 9.2 (Distortion under metric cost) Suppose we have two voters v1, v2 and candi-

dates A and B. Suppose that d(v1, A) = d(v1, B) = 1
2 and d(v2, A) = 1, d(v2, B) = 0. The optimal

cost of 1
2 is obtained by picking candidate B. The worst-case cost of 3

2 is obtained by picking

candidate A. The distortion in this case achieves the upper bound of 3.
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A B

v1 v2

Voter distance to candidates
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