1. We assume that N bidders compete for a single item. The valuation of bidder i is v_i and

 $v_1 > v_2 > \dots > v_N.$

- (a) First assume that a 1^{st} price auction is used and show that the revenue to the auctioneer is at least v_2 at any Nash equilibrium. [5pts]
- (b) Now assume that a 2^{nd} price auction is used and show there exist Nash equilibria at which the revenue to the auctioneer is arbitrarily small. In particular, show that for any $\epsilon \in (0; v_N)$ there exists a Nash equilibrium at which the revenue to the auctioneer is ϵ . [5pts]
- 2. Consider a search engine with discount factor θ and an advertisement with the following characteristics.
 - When the advertiser pays x per impression (but nothing if the advertisement is clicked), then the Gittins' index is g_1 .
 - When the advertiser pays y per click (but nothing per impression), then the Gittins' index is g_2 .

Now assume that the advertiser pays x per impression and additionally pays y if the advertisement is clicked. Is the Gittins' index $(g_1 + g_2)$? [8pts]

- 3. Suppose $m_i(t) = (t/i)^{1.5}$. Which of the following is true? [2/-1pts]
 - (a) The median is infinite and the expected product rank is infinite.
 - (b) The median is bounded and the expected product rank is infinite.
 - (c) The median is bounded and the expected product rank is bounded.
 - (d) The median is infinite and the expected product rank is bounded.