
MS&E 235: Lecture 10
Prof. Ashish Goel
May 5, 2009
Notes by Rio Goodman

Lecture 10: PageRank

In the last lecture, we developed an expression for näıve PageRank. We called the set of web pages (or
nodes) V , and the set of links (or directed edges) E. If page u has a link to page v, then (u, v) ∈ E. We
denote the number of edges coming out of a page, v, as dv, and the PageRank of v as πv. As we derived last
time, we get the following expression for näıve PageRank.

πv =
∑

(w,v)∈E

πw
dw

such that ∑
v

πv = 1

πv ≥ 0 for all v

Consider the following example network, where page A has a link to B, B has links to A and C, and C has
a link to B:

B

�� ��
A

KK

C

dd

There is only one link from A, so dA = 1. Similarly, dC = 1. We can plug these values into the PageRank
expression above, to obtain an equation for πB :

πB = πA + πC

We can find expressions for πA and πC in a similar manner:

πA =
πB
2

πC =
πC
2

The constraints from the expression above become:

πA + πB + πC = 1

πi ≥ 0

Thus, the unique solution to this set of expressions is: πA = πC = 1/4, πB = 1/2.

2/5 Prof. Ashish Goel

Flaws in näıve PageRank

For the previous network, we were able to efficiently obtain a unique solution. Now consider a different
example network:

B

��1111111111111

A

FF
Coo

The näıve PageRank will yield the solution: πA = πB = πC = 1/3

A web page cannot change the number of links that are coming into it, but it can construct new links that
are going out of it. Is there any unilateral change a web page can make to increase its own PageRank? Lets
see what happens if C changes its link from A to B.

The network will now look like this:
B

$$
A

FF
C

dd

Since A has no links to it, πA = 0. Then πB = πC = 1/2. So C has increased its PageRank from 1/3 to 1/2.
This problem is amplified by a ring network:

a1

��

aN
||

a2 <<a3

OO

Where the PageRank for each page is πi = 1/N for i = 1, ..., N . Now suppose a2 changes its link from a3 to
point to a1. We will get this network:

a1

��

aN
||

a2

]]

a3

OO

Now the PageRank of a3 will be zero, because there are no links to it. If πa3 = 0, then πa4 = 0, and the
zero will propagate through the network so that all pages are left with PageRank zero except for a1 and a2.
Thus πa1 = πa2 = 1/2. So by changing one link, a2 increased its PageRank from 1/N to 1/2.

This example demonstrates näıve PageRank’s vulnerability to collusion, or “link spam.” Yet there is a
more serious problem with näıve PageRank: the solution is not always well defined. Consider the following
network:

b

��0000000000000

a

GG�������������
coo

q

��0000000000000

p

GG�������������
roo

3/5 Prof. Ashish Goel

Where a, b and c are in a different community than p, q and r, with no links between the two communities.
From the structure of this network, it is easy to see that we must satisfy the conditions

πa = πb = πc

πp = πq = πr

We also must satisfy the standard conditions

πa + πb + πc + πp + πq + πr = 1

πi ≥ 0 for all i

But there are infinitely many solutions to this system. One possible solution is πa = πb = πc = 1/3,
πp = πq = πr = 0. Another is πa = πb = πc = 0, πp = πq = πr = 1/3. And any average of these two
solutions is also a solution.

So for this example, there are infinitely many solutions. For other networks, there may not be any solution.

PageRank

To solve this problem of ill defined networks, we turn to (not näıve) PageRank. This will be analogous to
the internet monkey we discussed last lecture randomly jumping to a new page every so often. Now instead
of the monkey following a link on the current page every time period, the monkey either follows a link, or
jumps to a new page (with a certain probability).

The modified expression for this new PageRank will be:

πv = (1− ε)

 ∑
(w,v)∈E

πw
dw

+
ε

N

Where N is the total number of pages, and ε is the “reset probability” (the probability that the monkey
randomly jumps to another page). It is widely believed that Google initially used ε ≈ 1/7 to calculate
PageRank. This formulation of PageRank makes sense, in terms of the way people generally surf on the
internet. A normal user will click on links most of the time, but sometimes will type in a new url, and
randomly jump to a new page.

Now let us re-examine the example that was not well defined under näıve PageRank:

b

��0000000000000

a

GG�������������
coo

q

��0000000000000

p

GG�������������
roo

Under PageRank, we will now be able to compute a unique solution. We can no longer have a solution where
πp = πq = πr = 0, because of the ε

N term. Under this new PageRank, we have the condition:

πi ≥
ε

N
for all i

Lets say that ε = 0.12, and thus ε
N = 0.02. Is πa = πb = πc = 0.02, πp = πq = πr = 0.94

3 a solution? No,
because πa = 0.88πc + 0.02. If πc = 0.02, then πa must be greater than 0.02.

In fact, there is only one unique solution to this system: πi = 1/6 for all i.

4/5 Prof. Ashish Goel

In the ring example, a2 was able to increase its PageRank by changing its link. Now let us revisit this
example.

a1

��

aN
||

a2

]]

a3

OO

Under our new formulation of PageRank, πa3 = ε
N (not zero). This means that πa4 will be larger than ε

N ,
and πa5 will be larger than πa4 . Thus, we will not have the same problem that we had with näıve PageRank
where a2 was able to increase its PageRank by an unbounded amount, and cause the PageRank of most of
the other pages to go to zero. Although PageRank is less vulnerable to collusion than näıve PageRank, it is
not completely immune to it.

Special values of ε

If ε = 1, the PageRank of every page is 1
N . And if ε = 0, then we have näıve PageRank.

Computing PageRank

Since there are billions of web pages, it is not obvious how to go about computing the PageRank for every
page. One possibility is matrix inversion since we can rewrite the PageRank equations as a matrix equation.
To solve such an equation, the matrix must be inverted, and for billion by billion matrix, this would take a
very long time.

Consider the earlier example with two web communities:

b

��0000000000000

a

GG�������������
coo

q

��0000000000000

p

GG�������������
roo

We saw that using PageRank, if ε = 0.12, we cannot have a solution of πa = πb = πc = 0.02 because πa =
0.88πc+ 0.02. But if we use these values as a starting point, and then solve equations like πa = 0.88πc+ 0.02
to obtain new values, we can get closer to the true solution, and in fact this algorithm will converge quickly
as we will see.

We will denote the iterative PageRank of page v after t iterations as π(t)
v . Initially, we set π(0)

v = 1
N . Then,

at every iteration of the algorithm, we will use the following formula to compute the new PageRank.

π(t)
v = (1− ε)

 ∑
(w,v)∈E

π
(t−1)
w

dw

+
ε

N

After a small number of iterations, the solution will converge to the true PageRank solution.

To prove that the convergence time is small, we will define π∗v as the true PageRank of v. Then we can
define the total error at step t to be:

Err(t) =
∑
v

|π(t)
v − π∗v |

Since π∗v is the true solution, we know that it must satisfy the PageRank equations exactly:

π∗v = (1− ε)

 ∑
(w,v)∈E

π∗w
dw

+
ε

N

5/5 Prof. Ashish Goel

To find the error, we subtract this from the iterative method equation, and obtain:

π(t)
v − π∗v = (1− ε)

 ∑
(w,v)∈E

π
(t−1)
w − π∗w

dw

Using the Triangle Inequality, we can get this expression for the error in PageRank v at step t:

|π(t)
v − π∗v | ≤ (1− ε)

 ∑
(w,v)∈E

|π(t−1)
w − π∗w|

dw

Now we can sum over all v to get the total error. Notice that the page w will occur dw times on the right
hand side, and since there is a dw on the denominator, these will cancel.

Err(t) =
∑
v

|π(t)
v − π∗v | ≤ (1− ε)

(∑
w

|π(t−1)
w − π∗w|

)

We are left with (1− ε) times the total error at time t− 1 on the right hand side.

Err(t) ≤ (1− ε)Err(t− 1)

This shows fast convergence, because the decrease in total error is compounding.

LATEXd by Rio Goodman

