MS&E 235: Internet Commerce

Problem Set 4. Due June 4th by 5:00 pm.

1. (20 pts) In this problem we consider a personalized version of HITS for product recommendation. Given a set of products and a set of consumers, we set $L_{uv} = 1$ if consumer u has bought product v and $L_{uv} = 0$ otherwise. Let h_u be the hub score for consumer u and a_v be the authority score for product v. Note that we do not associate hub scores with products or authority scores with consumers. For $\epsilon \in [0, 1]$, the personalized HITS equations for consumer i are:

$$h_u = (1 - \epsilon) \sum_v L_{uv} a_v + b_u,$$

where $b_u = \epsilon$ if u = i and 0 otherwise; and

$$a_v = \sum_u L_{uv} h_u.$$

We have the following data for consumers $\{c_1, c_2, c_3, c_4, c_5, c_6\}$ and products $\{p_1, p_2, p_3, p_4, p_5, p_6\}$:

- Consumer c_1 has bought products p_1 and p_2 .
- Consumer c_2 has bought products p_1 , p_2 and p_3 .
- Consumer c_3 has bought products p_5 and p_6 .
- Consumer c_4 has bought products p_4 and p_6 .
- Consumer c_5 has bought products p_3 , p_5 and p_6 .
- Consumer c_6 has bought product p_6 .

Compute product recommendations for consumer c_1 for $\epsilon = 0.1$ and $\epsilon = 0.6$. In particular, compute the hub scores of consumers and the authority scores of products. Which product would be recommended to c_1 in each case? Explain.

Hint: Use matlab, Excel or any other program to compute the solution iteratively. Remember to normalize after each step.

- 2. (10 pts) We have seen in class how PageRank can be gamed and now consider how HITS can be gamed. Suppose HITS is being used by a collaborative recommendation web-site. Products play the role of authorities, and users of the system play the role of hubs. There is a link from a user to a product if the user recommends that product. One of the users is actually a pseudonym for the manufacturer of one of the products. If this user is allowed to place exactly k product recommendations, intuitively explain which products he should recommend in order to increase the authority score of his product. Assume that he can not post more than one recommendation for a particular product.
- 3. One increasingly important use of network models is to determine how a seed investment in advertising will help brand awareness propagate through a network.

Consider the following simple scenario: You are given a social network with N individuals. A company invests \$X in educating one person, say v_1 , about its product. This person then informs exactly one more person, v_2 , chosen uniformly at random from the remaining N-1 individuals, about the product. The newly educated person v_2 then informs one more person v_3 , chosen uniformly at random from the remaining N-1 individuals (i.e. other than v_2), about the product, and so on, forming a chain. The process terminates when the chain revisits an already informed individual. For example, if $v_3 = v_1$, the process terminates and only two individuals, v_1 and v_2 get informed; in this case we will say that the length of the chain is 2.

- (a) With what probability is the length of the chain at least k? [5 pts]
- (b) Assume that the expected length of the chain, l, can be modeled by the equation: $l(N) = aN^e$, for some constants a and e. Estimate the exponent e. Use a software program, Excel, or your own code to estimate the expected length of a chain for several different values of N; or download off the website data that has already been generated. Then fit this data to the model equation to determine the constant e. [10 pts]
- (c) BONUS [10 pts] Find or approximate e mathematically.
- (d) Comment on the power of viral marketing. [5 pts]
- 4. Concisely explain the winners' curse and the optimizers' curse. Make the connection between them and uncertainty. [10 pts]
- 5. Explain in an essay the business model of Skype. Relate the business model to the technical design. Use no more than 500 words total. [20 pts]