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Optimization permeates many (almost all) branches of human endeavor.
Darwinian evolution optimizes a species for the “best traits” for survival.
Firms optimize their supply chains. Fund managers optimize their portfo-
lios. On a lighter note, personal dating sites try to find the “best match”,
and advertisers on online sites try to show you the “best advertisement”
based on your user profile. The window arch, the suspension bridge, the
coding scheme used by your cell phone, are all highly optimized. This class
will largely study Linear Programming (or LPs), one of the simplest and
perhaps the most widely used paradigms for optimization. We will see lots
of real world problems that can be modeled and solved as Linear Programs.
We will study and use properties of LPs such as duality and vertex opti-
mality. We will spend significant amount of time on a special sub-class of
LPs, known as network flow problems. Finally, we will use LPs as a base
to briefly explore two other important techniques in optimization: Dynamic
Programming and Convex Optimization.

1 The knapsack problem

In this lecture, we will use the knapsack problem as an example to give you a
preview of several basic concepts from linear programming. Consider a thief
who goes into a warehouse with a knapsack. There is a limit to how much
weight the knapsack can carry. The warehouse has many items, each of
which is divisible into arbitrarily small fragments eg. gold, silver, diamond
dust, etc. The thief wants to fill her knapsack with the most profitable
bundle of goods. How can she decide what this bundle is?
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1.1 Modeling

The first stage in solving an optimization problem is modeling. And the
very first as well as the most important step in modeling is to name your
quantities1. Let the knapsack capacity be W lbs. Let N denote the number
of goods in the warehouse. Let the total weight of the i-th good be wi and
let the value of the i-th good be vi.

The next step is to decide what quantities we are free to choose. These
are known as decision variables. In this case, the thief must decide how
much of each item to carry. Let xi denote the fraction of the i-th good
carried away by the thief.

The next two steps in modeling an optimization problem are to decide
what our goals and restrictions are. The goal is commonly referred to as
an objective function which we need to either maximize or minimize de-
pending on the problem. In this case, the objective function is

∑N
i=1 vixi,

which is the total profit made by the thief, and we need to maximize the
objective function. The restrictions are that (a) the thief can not take more
of a good than is available in the warehouse, and (b) the thief can not carry
more weight than the knapsack capacity. Using our notation, we have:

(a) ∀i ∈ {1, . . . , N}, xi ≤ 1 and

(b)
N∑
i=1

xiwi ≤ W.

When we write down the restrictions mathematically as above, we call them
constraints. The symbol ∀ is the “for all” symbol, and the symbol ∈ is
the “belongs to” symbol. Thus the first constraint (a) is really a set of N
constraints, one for each i in the set {1, . . . , N}. Some other notation that
we will commonly use is∑

: Sum∏
: Product

< : The set of real numbers

Z : The set of integers

Z+.<+ : The set of non-negative integers/real numbers respectively.

s.t. : subject to

AT : The transpose of the matrix A.

1If you get stuck on a problem, try thinking about that problem without using any
pronouns.
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We will introduce more notation as we go along. But for now, let us
return to the knapsack problem. Do we have all the restrictions in place?
As it turns out we missed one very important restriction. The thief can not
steal negative quantities of any good. So we also need to add the constraints
(c)∀i ∈ {1, . . . , N}, xi ≥ 0. We will commonly write these constraints as a
single constraint x ≥ 0. This is vector notation and we are using x to denote
the vector 〈x1, x2, . . . xN 〉; more on that later.

We now have our complete model. The problem, in mathematical terms
is:

maximize
N∑
i=1

xivi

subject to:

∀i ∈ {1, . . . , N} : xi ≤ 1∑N
i=1 xiwi ≤ W
x ≥ 0.

This is an example of what is known as a “linear program” i.e. an
optimization problem where the objective function is linear in the decision
variables and each constraint is an inequality involving only linear functions
of the decision variables. The more general term “mathematical program”
is used to describe an optimization problem where the objective function
and the constraints are more general.

1.2 Solving the problem

The next stage after modeling is to solve the problem. Of course we need
to specify the values of all the parameters we used (i.e. N,W,wi, vi etc.) in
the modeling part. This is known as an instance of the problem. Consider
the problem where we have three goods (say gold, diamond, and silver) and
the problem parameters are N = 3,W = 4, w = 〈2, 3, 4〉, v = 〈5, 20, 3〉. Here
we have again used vector notation to succinctly write down the values of
v1, v2, v3 and w1, w2, w3 as single vectors v an w. The above model now
reduces to:

maximize 5x1 + 20x2 + 3x3

subject to:
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x1 ≤ 1
x2 ≤ 1

x3 ≤ 1
2x1 + 3x2 + 4x3 ≤ 4

x ≥ 0.

We will solve this problem using Excel. The solution that we obtain
is x1 = 0.5, x2 = 1, x3 = 0. This is what we call an optimum solution.
The maximum profit that the thief can obtain is 22.5 . We call this the
optimum value of the objective function. Often, we will refer to both the
optimum value and the optimum solution together as the “optimum”. In
this instance, there is a unique optimum solution, but that may not always
be the case. The solution x1 = 1, x2 = 0, x3 = 0.5 also satisfies all the
constraints. In general, any solution (i.e. assignment of values to decision
variables) that satisfies all the constraints is a feasible solution.

Linear programs can be solved efficiently. Excel works well for small
linear programs. Other commercial packages such as CPLEX and free pack-
ages such as lpsolve are better suited to larger LPs. These solvers use mul-
tiple algorithms, including the classic simplex method pioneered by George
Dantzig, and more recent approaches such as interior point methods. In this
class, we will not dig deep into these algorithms.

1.3 Analysis and interpretation

Having solved the problem, are we done? Not at all – this is where the fun
starts. Linear programs satisfy a range of properties which often provide
striking and useful insight into the original problem. We will provide a
sneak preview of two such properties. We will treat them in more detail
later.

1. Only one of the goods (gold) in the above example is chosen fraction-
ally. Diamonds are chosen completely, whereas silver is entirely left
behind. In general, for a knapsack problem with N goods, only one
good will be chosen fractionally by solvers such as Excel. A full proof
of this statement will follow later in the class. But here is the intuition
for this specific instance. The optimum solution for this instance of
the knapsack problem is unique. To uniquely define three unknowns,
we need three linear equations. Thus at least three of our inequalities
must be satisfied with equality, i.e. be tight. Where can these three
inequalities come from? One of these can be (and in this case, is) the
knapsack capacity constraint 2x1 +3x2 +4x3 ≤ 4. But that still leaves

4



2 more. Clearly, x1 ≤ 1 and x1 ≥ 0 can not both be tight. The same
for x2 and x3. Hence, any good can contribute only one tight con-
straint. Thus, the two tight constraints must come from two different
goods, in which case neither of those two goods can be chosen frac-
tionally. This leaves only one good which can be chosen fractionally
in the optimum solution.

2. Suppose a crime syndicate wants to buy out the thief. They offer to
pay the thief a price y1 for the gold, a price y2 for the diamonds, a price
y3 for the silver, and a price y4 per lb for the knapsack. But the thief
can use 2 lbs of knapsack capacity and all her gold to generate a profit
of 5 units, so 2y4 + y1 should be at least 5. Similarly, 3y4 + y2 ≥ 20
and 4y4 +y3 ≥ 3. The syndicate would like to minimize the total price
it pays, i.e. minimize y1 + y2 + y3 + 4y4. Also, the prices should be
non-negative, otherwise the thief will hold on to that resource (gold,
diamond, silver, or knapsack capacity). This gives us the following LP
which the syndicate can use to decide the minimum price:

minimize y1 + y2 + y3 + 4y4

subject to:

y1 + 2y4 ≥ 5
y2 + 3y4 ≥ 20

y3 + 4y4 ≥ 3
y ≥ 0.

Try solving this linear program in Excel. It turns out that y =
〈0, 12.5, 0, 2.5〉 is an optimum solution, giving an optimum value of
22.5, or, the same as the optimum value of the previous LP.

In retrospect, the connection is not really surprising. What is the
minimum total price the thief would settle for? Clearly 22.5, since this
is how much the thief can make by filling her knapsack and walking
away from any deal being offered by the syndicate. This is an example
of duality. The variables y1, y2, y3, y4 are called dual variables or dual
prices. Linear programming duality will be a central theme in this
class. It is a very important concept in economics; in fact prices in the
real world can often best be understood as dual variables.
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1.4 Discussion points

1. The above instance had a unique optimum solution. Will this be true
for all instances of the knapsack problem?

2. What happens if we remove the constraint x ≥ 0?

3. Can you list some more feasible solutions to this LP?

4. Can you think of more realistic applications for the knapsack problem?

5. Why might it be practically important that only one good is chosen
fractionally?

As the number of variables increases, the original approach used to solve
this problem in Excel becomes tedious. Remember, we had to individually
label all the variables, and do some computation for each constraint. Vector
notation is going to be very useful in expressing and solving LPs, and that
will be our next topic.

2 The knapsack problem in vector notation

First, refamiliarize yourself with basic matrix multiplication and dot prod-
ucts. Next, consider the knapsack LP that we wrote above but let us add
some more terms so that each inequality explicitly involves all the variables:

maximize 5x1 + 20x2 + 3x3

subject to:

x1 + 0x2 + 0x3 ≤ 1
0x1 + x2 + 0x3 ≤ 1
0x1 + 0x2 + x3 ≤ 1
2x1 + 3x2 + 4x3 ≤ 4

x ≥ 0.

This can succinctly be written as

maximize cT · x
subject to:

Ax ≤ b
x ≥ 0.
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where c is the column vector

 5
20
3

, A is the matrix


1 0 0
0 1 0
0 0 1
2 3 4

, b is

the column vector


1
1
1
4

, and x is the column vector of decision variables

 x1
x2
x3

. We can then set up this problem in Excel without having to

assign names to individual variables and having to write down individual
constraints. For this small instance, this might not seem like much saving of
work. But imagine an instance with 100s of goods. We can just type in and
name the individual matrices (often the matrices are already entered into a
spreadsheet since the data has to come from somewhere), use MMULT and
SUMPRODUCT to express the constraints, and we are done. More details
will follow in the Excel solver tutorial.

The representation

maximize cT · x
subject to:

Ax ≤ b
x ≥ 0.

is one of the standard ways of writing a linear program. This can be used to
naturally represent the optimization problem VRM2 1.2.1, for example. If a
problem has n variables and m constraints, then c and x are n× 1 vectors,
b is an m× 1 vector, and A is an m× n matrix. Verify that all the matrix
dimensions are consistent.

There are other standard ways of writing linear programs, but they are
all equivalent (i.e. a LP in one standard form can be transformed into a LP
in another standard form). For example, one general form for a LP is:

maximize/minimize cT · x
subject to:

Ax ≤ b
Dx ≥ f
Gx = h.

2VRM refers to the notes by Van Roy and Mason on the class web page
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where c, x are n×1 vectors, and A,D,G are m1×n,m2×n,m3×n matrices,
respectively. If the objective is to minimize cT · x we can define r = −c and
the objective now becomes to maximize rT · x; else we define r = c. We can
define S = −D and t = −f and the constraint Dx ≥ f becomes Sx ≤ t. We
can further define U = −G and v = −h and the constraint Gx = h can be
replaced by the two constraints Gx ≤ h and Ux ≤ v. We can now use W to

represent the matrix


A
−D
G
−G

 and z to represent the vector


b
−f
h
−h

. The

LP now becomes

maximize rT · x
subject to:

Wx ≤ z.

The matrix W is (m1+m2+2m3)×n dimensional. This is almost in standard
form except that we are missing the constraint x ≥ 0. The next trick is to
replace each decision variable by a difference of two decision variables. So
x = p−q. Even if we constrain p, q to be non-negative, x is not constrained.
So the above LP can now be written as

maximize rT · p− rT · q
subject to:

Wp−Wq ≤ z
p, q ≥ 0.

Finally, (having exhausted almost all the letters of the alphabet!) we can

define J = (W −W ), k =

(
r
−r

)
and the decision variables y =

(
p
q

)
we get our standard form

maximize kT · y
subject to:

Jy ≤ z
y ≥ 0.

This is more than a technical exercise. We now know that any theorems
we prove for our standard theorem will apply to general LPs. Another
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commonly used standard form is:

minimize bT · y
subject to:

Ay ≥ c
y ≥ 0.

3 An example: matching candidates and jobs

Example 3.1 Consider the problem where we are given 3 candidates, Daniella,
Eddie, and Frank, and 3 job opportunities, Arborist, Botanist, and Carpen-
ter, at a landscaping company. We would like to pair the 3 candidates and
the 3 jobs such that no candidate can take on multiple jobs and at most one
candidate can be assigned to any job. Also, we would like to maximize the
total compatibility. Let C be a 3×3 matrix where Ci,j is the compatibility of
the i-th candidate with the j-th job. Let us define decisions variables xi,j to
indicate whether the i-th candidate is matched to the j-th job. This problem
can be modeled as

maximize
3∑

i=1

3∑
j=1

Ci,jxi,j

subject to:

∀i ∈ {1, 2, 3}
∑3

j=1 xi,j = 1

∀j ∈ {1, 2, 3}
∑3

i=1 xi,j = 1
x ≥ 0.

Reduce this to either of the two standard forms. Solve this problem (in
any form, not necessarily a standard form) using Excel for the following
compatibility matrix:

Compatibility Arborist Botanist Carpenter

Daniella 1 0 0.5
Eddie 0.75 2.0 1.0
Frank 0.5 2.5 1.5

A little observation shows that this instance has at least two optimum
solutions. Is there a fractional optimum solution? Does Excel return a
fractional or an integer solution? Mentally file your observations away for
future reference.
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It is clear how to extend this problem to N candidates and N jobs.
Observe that the task assignment problem (VRM 1.0.1) is the same math-
ematical problem even though it arises in a different context. In this class,
we will often discuss seemingly toy problems such as knapsack, matching
candidates and jobs, etc. These problems capture a wide range of real life
applications. For example, knapsack and knapsack like problems are used
to maximize profit constrained by resources, as in VRM 1.2.1.

4 A useful linear programming modeling technique

Often, linear programming can be used to model objective functions and
constraints that may not seem linear at first glance. We will see two such
examples: Minimizing the max and maximizing the min. We will start with
an example, then state the general technique, and give some more examples.

Example 4.1 Minimize Makespan: We have N jobs and M agents.
Agent i can complete job j in time ti,j. A job can be split among two agents,
and an agent can perform multiple jobs. The completion time of the last job
to be completed is known as the “makespan” of the problem. Our goal is to
minimize the makespan.

Solution: Assume that our decision variables are xi,j , which represent
the fraction of job j assigned to agent i, and yi which represent the total
time required for agent i to complete all the jobs assigned to agent i. Then,
we have the constraints:

∀j ∈ {1, . . . , N} :
∑M

i=1 xi,j = 1

∀i ∈ {1, . . . ,M} :
∑N

j=1 xi,jti,j = yi
x, y ≥ 0.

But what would the objective function be? Here, we will indulge in a bit
of “bait and switch”: we will look at the problem in a different light. Our
original goal is to minimize the time when all the jobs get completed. But
this is the same as the time when all the agents are done. So our new goal
is to minimize the largest of the yi’s, i.e., our objective function is

minimize maxM
i=1yi.

The function maxM
i=1yi is not a linear function. How then can we capture

this as a linear program? The answer is simple. We introduce a new variable
z and add a new set of M constraints

∀i ∈ {1, . . . ,M} : z − yi ≥ 0.
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We can then simply use the objective function

minimize z

to obtain a linear program.
In the above example, since for any feasible solution, z ≥ yi for all i, it

follows that we must also have z ≥ maxi yi. But since the objective function
attempts to minimize z and z does not appear in any other constraints, at
the optimum point we must have z = maxi yi. In general, we can use this
technique to minimize the maximum of any number of linear functions, or
maximize the minimum of any number of linear functions.

Exercise 4.2 Is it necessary to introduce z ≥ 0 as a constraint in the above
linear program? What will be the impact of introducing this constraint?

Suppose we have a set of linear constraints with n variables x1, x2, . . . , xn,
i.e. the decision variables form an (n × 1) vector. Suppose we also have k
(n× 1) vectors c1, c2, . . . , ck. Then,

1. The objective function “minimize maxk
i=1c

T
i x” can be modeled as a

linear program by introducing a new decision variable z, k new con-
straints “∀i ∈ {1, . . . , k} : z ≥ cTi x”, and by changing the objective
function to “minimize z”.

2. The objective function “maximize mink
i=1c

T
i x” can be modeled as a

linear program by introducing a new decision variable z, k new con-
straints “∀i ∈ {1, . . . , k} : z ≤ cTi x”, and by changing the objective
function to “maximize z”.

Example 4.3 Minimizing the absolute value: The absolute value of a quan-
tity α is merely the maximum of α and −α. Hence, the absolute value can
be minimized using the same technique as above.

Example 4.4 Min/max/absolute value constraints: We can impose the con-
straint “mink

i=1 c
T
i x ≥ α” by using the k constraints

∀i ∈ {1, . . . , k} : cTi x ≥ α.

We can impose the constraint “maxk
i=1 c

T
i x ≤ α” by using the k constraints

∀i ∈ {1, . . . , k} : cTi x ≤ α.

We can impose the constraint “|cTx| ≤ α” by writing |cTx| as max{cTx,−cTx}
and then using the technique for max.
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Unfortunately, we can not use the above technique to represent the con-
straints “mink

i=1 c
T
i x ≤ α” or “maxk

i=1 c
T
i x ≥ α” or “|cTx| ≥ α”.

Exercise 4.5 Consider the functions a(x) = x1 + 2x2 and b(x) = 2x1 + x2.
Graph the regions defined by each of the following: min{a(x), b(x)} ≥ 3,
min{a(x), b(x)} ≤ 3, max{a(x), b(x)} ≤ 3, max{a(x), b(x)} ≥ 3, |a(x) −
b(x)| ≥ 1 and |a(x)− b(x)| ≤ 1. Intuitively, which of these regions looks like
a polytope (i.e. an intersection of half-spaces)? Identify the half-spaces.

5 Ten steps towards understanding basic feasible
solutions

In this section, we will assume that U denotes the set of feasible solutions of
a given LP, i.e. the set of all points in <N which satisfy all the constraints.
Recall that U is an intersection of half-spaces, and that we were using the
term “polytope” to refer to such a set. We will assume that the linear
program under consideration has N variables and M constraints.

1. Convex sets and convex combinations Given two points x and y
in N dimensional space, and any real number α between 0 and 1 (inclusive,
i.e. 0 ≤ α ≤ 1 or more concisely, α ∈ [0, 1]), the point z = αx+ (1− α)y is
called a convex combination of x and y. The set of all convex combinations
of x and y is the line segment joining x and y.

Given K points b1, b2, . . . , bK in <N , and given K non-negative real
numbers α1, α2, . . . , αK such that

∑K
i=1 αi = 1, the point z =

∑K
i=1 αibi is

called a convex combination of b1, b2, . . . , bK . A convex combination can also
be thought of as a “weighted average”. The set of all convex combinations
of 3 points is the filled triangle with these points as vertices3.

Exercise 5.1 Given points x, y, z, suppose a is a convex combination of
x, y and b is a convex combination of a, z. Show that b is also a convex
combination of x, y, z.

A set S of points from N dimensional space is said to be convex if for
all x, y ∈ S, all convex combinations of x, y are also in S.

Some examples of convex sets are cubes, cuboids, spheres, cones, line
segments, infinite lines, etc. Please do not confuse convex sets with con-
vex/concave functions.

3The set of all convex combinations of b1, b2, . . . , bK is also known as the convex hull
of b1, b2, . . . , bK .
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2. Half spaces are convex Consider the half space defined by aTx ≤ d
where a is a given N × 1 vector, x is an N × 1 variable vector, and d is
a scalar (i.e., a 1 × 1 matrix). This half space consists of all points which
lie on or one side of the hyperplane defined by aTx = d. Suppose x, y are
two points in this half-space. Let z be a convex combination of x, y, i.e.,
z = αx + (1 − α)y for some α ∈ [0, 1]. Since x, y are in the half-space, we
must have

aTx ≤ d, and

aT y ≤ d.

Multiplying the first inequality by α and the second inequality by 1−α, and
adding, we get

aT (αx+ (1− α)y) ≤ d

which implies aT z ≤ d, i.e., z is also in the half-space. Hence the half-space
is convex.

The reason that we could multiply the two original inequalities by α,
1−α respectively without changing signs is that α ∈ [0, 1]. Always be careful
while multiplying inequalities; if you multiply with a negative number, the
inequality flips.

3. Intersection of two convex sets is convex Suppose S, T are two
convex sets, x, y are two points in S ∩ T , and z is a convex combination of
x, y. Since x, y are in S ∩ T they are in S. Since S is convex, this implies
that z is also in S. Similarly, z is also in T , and hence, in S∩T . This proves
that S ∩ T is convex.

4. The set of feasible solutions to a linear program is convex Since
the feasible solution to a linear program is an intersection of half-spaces, it
must be convex by steps 2,3 above. In other words, all polytopes are convex.

5. Basic feasible solution Recall that U denotes the set of feasible
solutions to a given linear program. A point x ∈ <N is said to be a basic
feasible solution if

1. x ∈ U , i.e., x is feasible, and

2. There do not exist two other (i.e., different from x) feasible points y, z
such that x is a convex combination of y, z.
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Informally, basic feasible solutions are “extreme points”, i.e., they can not
be represented as convex combinations of other feasible points. They are
also known as “vertex” solutions and “corner-point solutions”.

Let b1, b2, . . . , bK refer to the basic feasible solutions of the linear program
under consideration. K can be 0, i.e., it is possible for a linear program to
not have any basic feasible solution.

6. Basic feasible solutions and bounded polytopes If U is bounded,
then any point in U is a convex combination of the basic feasible solutions,
b1, b2, . . . , bK .

We will omit the proof of this statement; you can see VRM 3.2.4 for a
proof.

7. Basic feasible solutions and optimality for bounded polytopes

Theorem 5.2 (Equivalent to VRM 3.3.1) If U is bounded, then there exists
an optimum solution that is a basic feasible solution.

Note that the theorem does not claim that all optimum solutions are basic
feasible; just that there exists one.

Proof: Assume, without loss of generality, that the objective function is
to maximize cTx. Let x be an optimum solution. From step 6, we conclude
that x is a convex combination of b1, b2, . . . , bK , i.e., there exist non-negative
real numbers α1, α2, . . . , αK such that

∑K
i=1 αi = 1 and x =

∑K
i=1 αibi.

If cTx > cT bi for all i ∈ {1, . . . ,K} then we must have
∑K

i=1 αic
Tx >∑K

i=1 αic
T bi which is impossible since the right hand side is cT

∑K
i=1 αibi

which is equal to cTx and the left hand side is equal to cTx
∑K

i=1 αi which
is also equal to cTx. Hence, there must exist at least one i ∈ {1, . . . ,K}
such that cTx ≤ cT bi. Since x is an optimum solution, we can not have any
other feasible solution yield a larger value for the objective function. Hence,
bi is also an optimum solution, and we have demonstrated the existence of
an optimum solution that is basic feasible.

An equivalent statement of the above theorem is that if U is bounded,
and x is an optimum solution among all basic feasible solutions, then x is
an optimum solution among all points in U .

8. Basic feasible solutions and optimality for general polytopes
We will state the following theorem (same as VRM 3.3.2) without proof.

14



Theorem 5.3 If a linear program has an optimum solution as well as a
basic feasible solution, then there exists an optimum solution which is also
basic feasible.

Thus, whenever the notion of “optimum” and “basic feasible” makes
sense for an LP, we just have to look among basic feasible solutions to find
an optimum.

Example 5.4 The LP, maximize 3x + 4y subject to 3x + 4y ≤ 7 has an
optimum solution but no basic feasible solution.

Example 5.5 The LP maximize x + y subject to x ≥ 0, y ≥ 0 has a basic
feasible solution but no optimum solution, i.e., the optimum is unbounded.

9. Two implications of optimality of basic feasible solutions The
first implication is for how LPs are solved. The famous simplex algorithm,
developed by the famous George Dantzig, “walks” from basic feasible solu-
tion to basic feasible solution, improving the objective function as it goes
along. By steps 8 and 9, this is sufficient to solve most LPs (perhaps it is
fair to say, all interesting LPs). Hence, optimality of basic feasible solutions
has had a tremendous impact on our ability to solve large LPs, even when
computers were not very powerful. More than 50 years after it was devel-
oped, the simplex algorithm and its variants remain the most commonly
used method for solving large LPs. In fact, all commercial LP solvers that
we know of will return a basic feasible solution by default (unless you muck
around with configuration parameters etc, eg. uncheck the “assume linear
model” button in Excel)4. We will not discuss solution procedures for LPs
in any more detail in this class.

The second implication is about the properties of LPs. For many types
of LPs, basic feasible solutions have very interesting properties. Since LP
solvers return optimum basic feasible solutions by default, we can safely
assume that the optimum solutions that we find also have those interesting
properties. This is a simple but surprisingly powerful tool; we can use

4Other algorithms may find optimum solutions in the interior, but commercial solvers
which use those algorithms employ “cross-over” methods which translate these solutions to
a basic feasible solution. To understand this (very) informally, imagine that an algorithm
finds an optimum solution in the interior of a bounded polytope. Then, there must be
a “degree of freedom” i.e. a direction in which we can perturb the optimum solution so
that it remains both feasible and optimum. We can move in this direction till we hit the
hyperplane defined by another constraint, and our “degrees of freedom” get reduced by 1.
Repeating this process will put us at a basic feasible solution which is also optimum.
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this to show that the knapsack problem can have at most one fractional
solution, and that the maximum compatibility matching problem will not
yield solutions that result in “fractional marriages”. We have had a foretaste
of these results earlier, and will soon prove them formally.

10. A useful property of basic feasible solutions One general prop-
erty of basic feasible solutions is particularly useful. At least N constraints
must be binding i.e. satisfied with equality (also sometimes called “tight”)
at a basic feasible solution. This is not surprising since we need N equalities
to define a point in N dimensional space. We will omit a formal proof.

In fact, something stronger is true: N linearly independent constraints
must be binding at a basic feasible solution; a set of inequalities is said to be
linearly independent if the left hand side (i.e. the side with all the variables)
of any inequality in the set can not be derived as a linear combination of
the left hand sides of other inequalities in that set.

6 The knapsack problem revisited

6.1 Basic feasible solutions

Consider the polytope defined by the knapsack constraints:

∀i ∈ {1, . . . , N} : xi ≤ 1∑N
i=1 xiwi ≤ W

∀i ∈ {1, . . . , N} : xi ≥ 0.

Just the first set of constraints above and the non-negativity constraints
imply that the feasible region is contained in an N -dimensional “cube” of
side 1. Hence, the feasible region for this linear program is bounded. This is
an important step towards applying theorem VRM 3.3.1 to claim that there
exists an optimal solution that is basic feasible. Please do not ignore this
step5.

Hence, we know that there exists at least one optimum solution that is
basic feasible; let this solution be x. At the point x, at least N constraints
must be binding. One of them can be the constraint

∑N
i=1 xiwi ≤ W , but

that still means that (at least) N − 1 other constraints of the form xi ≤ 1
or xi ≥ 0 must be binding. For any good i, at most one of the constraints

5Of course you can apply the more general theorem VRM 3.3.2, for which you need to
show both that there exists at least one basic feasible solution and at least one optimum
solution.
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xi ≥ 0 and xi ≤ 1 can be binding. Hence, the remaining (at least) N − 1
binding constraints must correspond to (at least) N − 1 different goods.
Hence, (at least) N − 1 goods satisfy one out of xi ≥ 0 and xi ≤ 1 and are
therefore not chosen fractionally; the (at most) one remaining good can be
chosen fractionally.

7 Minimum cost flow

“Minimum cost flow” is a problem formulation that can be used to model a
wide range of real life problems. It can also be solved as a linear program,
and its basic feasible solutions (and its dual, which we see later), have many
interesting properties.

We will start with a warm up example, followed by a formulation of
the general min cost flow problem and the properties of its basic feasible
solutions. We will then use this general formulation to capture several in-
teresting real life problems.

7.1 Warm-up example: a simple shortest path problem

Consider the graph in figure 1. Imagine that each node (i.e. small filled dot)
in this graph represents a “city”, and each edge in this graph represents a
“road”. We will commonly use V to denote the set of nodes and E to
denote the set of edges in a graph. We will commonly refer to the graph as
G = (V,E). The arrow on a road represents the direction in which you can
travel, and the number on the road represents the cost of using the road.
Depending on the application, the cost might be the toll you have to pay,
the amount of gas you will consume, or the time you will spend. Our goal is
to find the minimum cost path from city s to city t. This is an instance of
the shortest path problem. We will commonly use s to denote the “source
node” and t to denote the “terminal node” for shortest path and related
problems.

Figure 1: A shortest path example.

Please remember that the use of V , E, s, t, c as described above is a
matter of convention (not a hard and fast rule); we reserve the right to
use other notation where it makes more sense in an application. We will
commonly use N to denote the number of vertices and M the number of
edges in a graph.

17



How do we determine the shortest path using an LP? For any edge (v, w),
i.e., for a road going from city v to city w, let cv,w denote its cost, and let
xv,w denote a decision variable that captures whether this road is used in the
shortest path or not. If xv,w = 0 we will interpret that as the road not being
used at all, and if xv,w = 1 we will interpret that as the road being used
completely. If xv,w lies between 0 and 1, we will interpret that as “fractional
use” of the road.

Our objective function is clearly to minimize the total cost of used roads,
which is simply to minimize

∑
(v,w)∈E cv,wxv,w. We also need x ≥ 0. What

other constraints do we need? First, if we enter node p, we must also leave
it, since p is neither the source nor the terminal. Thus the total amount of
“entering” we do into p must be the same as the total amount of “leaving”
from p, or, the net amount of leaving must be 0. The same is true for nodes
r and q. These are commonly called conservation constraints, and can be
mathematically expressed as:

xp,s + xp,t −xs,p = 0
xq,r + xq,s −xs,q = 0
xr,t −xq,r = 0.

But the net amount of leaving from s must be 1 and from t must be -1.
These are also called conservation constraints, and can be written as:

xs,p + xs,q −xp,s − xq,s = 1
−xr,t − xp,t = −1.

This completes our LP. As it turns out, when you solve it, you will find
xv,w = 1 or 0 for every edge (v, w). This is because all basic feasible solutions
of the above LP are simple paths (i.e. without cycles) from s to t. This holds
in general, and we will explore it in the context of the more general min cost
flow problem.

7.2 Formulation of min cost flow

In the min cost flow problem, we need to ship some goods from a set of
nodes in a graph (the supply nodes) to another set of nodes (the demand
nodes). We will capture that uniformly by using dv to denote the demand
of node v; if v is a supply node, dv will be negative. Not all supply nodes
necessarily have the same dv, and not all demand nodes necessarily have the
same dv. In this problem, every demand must be exactly met, and every
supply must be exactly exhausted.
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We will refer to the amount of goods shipped on an edge as the “flow”
on that edge. The intuition comes from thinking about edges as pipelines
and the goods as a fluid such as water or oil. Each edge has a capacity, and
can carry no more flow than its capacity. Each edge also has a cost-per-unit-
flow. Our goal is to send flow from the supply nodes to the demand nodes
in a minimum cost fashion. while respecting the capacity constraints and
satisfying all the supplies and demands. Let uv,w represent the capacity of
edge (v,w) and cv,w its cost. Again, while u, d, c are terms we will try to use
consistently to denote capacities, demands, and costs, this is just a matter
of convention, and we reserve the right to use different notation.

We will have similar decision variables as for the shortest path problem.
Let xv,w denote the amount of flow on edge (v, w) . The objective function
is simple, as before:

minimize
∑

(v,w)∈E
cv,wxv,w.

The so called capacity constraints are simple as well:

∀(v, w) ∈ E : xv,w ≤ uv,w,

and of course we need x ≥ 0. Observe that the total amount of flow leaving
a supply node minus the total amount of flow entering that node must be
equal to the amount of supply at the node. Similarly, the total amount of
flow entering a demand node minus the total amount of flow leaving that
node must be equal to the amount of demand at the node. These can be
captured concisely6 as: the net amount of flow leaving a node must be equal
to the negative of the demand.

For node v, this can be written mathematically as:∑
w:(v,w)∈E

xv,w −
∑

w:(w,v)∈E
xw,v = −dv.

The above constraint is known as the “flow conservation constraint”.

6Remember that we are using negative demand to indicate supply.
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adding this constraint for all the nodes completes the min cost flow LP:

minimize
∑

(v,w)∈E cv,wxv,w
subject to:

CAPACITY CONSTRAINTS
∀(v, w) ∈ E : xv,w ≤ uv,w

CONSERVATION CONSTRAINTS
∀v ∈ V :

∑
w:(v,w)∈E xv,w −

∑
w:(w,v)∈E xw,v = −dv

x ≥ 0.

We will use the notation OUTx(v) to denote
∑

w:(v,w)∈E xv,w and INx(v)
to denote

∑
w:(w,v)∈E xw,v, and hence, the conservation constraint for node

v can be written as OUTx(v)− INx(v) = −dv, in short.

Exercise 7.1 How will you model the case where the total demand is less
than the total supply, and where any unused supply can be discarded at no
extra cost?

Exercise 7.2 How will you model the case where the total demand is less
than the total supply, and where any unused supply can be discarded at an
extra cost of α per unit?

Example 7.3 The shortest path problem can be modeled as a minimum cost
flow problem by setting the demand (in the minimum cost flow problem) for
the source node s to be −1, the demand for the terminal node t to be +1,
the demands for all other nodes to 0, the costs in the minimum cost flow
problem to be the same as the those in the shortest path problem and setting
all the capacities to either 1 or ∞. This is an example of a reduction: the
shortest path problem has been reduced to the minimum cost flow problem,
and hence theorems that we prove about minimum cost flows will translate
to shortest paths.

All the flow conservation constraints can be written concisely as Ax = −d
where the matrix A has N rows (one for each node in the graph) and M
columns (one for each edge in the graph). The entry in the row correspond-
ing to node p and edge (v, w) is 1 if p = v, is -1 if p = w, and is 0 otherwise.
This matrix is known as the Incidence matrix, and can be computed using
a formula in Excel if the list of edges is given.
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The Excel spreadsheets shortestold.xls and shortest.xls illustrate how
to set up the min-cost flow problem using the example in figure 1. The
first of these solves the problem exactly as specified, with capacities 1. The
second sheet solves the same problem but the model ignores the capacity
constraints (i.e., sets capacities to ∞) and also illustrates how the matrix A
can be generated automatically.

Example 7.4 The maximum compatibility matching problem (section 3)
can also be modeled as a minimum cost flow problem by making a graph
with N candidates and N jobs. We draw an edge from each job j to each
candidate c with cost equal to the negative of the compatibility, and capacity
either 1 or∞. Set the demand of all jobs to be −1 and that for all candidates
to be +1.

7.3 Basic feasible solutions of min cost flows

The following theorem is very useful:

Theorem 7.5 If a minimum cost flow problem has integer demands and
capacities, then any basic feasible solution must have integer flow on each
edge.

The proof is a simple cycle canceling technique. Details are in the proof of
VRM 5.2.1 and rather than repeating the details, we will present an example
of this technique here. Consider the shortest path example we have already
seen but with a slight modification as described in figure 2: the cost of the
edge (p, t) has been reduced to 3 so that the top path (s, p, t) and the bottom
path (s, q, r, t) are equally expensive. Now consider the solution which sends

Figure 2: The shortest path example modified to have two possible shortest
paths.

flow 0.5 on the top path and 0.5 on the bottom (figure 3). This is an optimum
solution (and in fact if you uncheck the “assume linear model” option, this
is the solution you will get in the current version of Excel.).

Figure 3: A fractional optimum solution for the modified shortest path
example.The numbers on the edges are flows.
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Pick any edge with fractional flow in this solution, say the edge (s, p).
The first endpoint of this edge is s. Write the node s and the edge (s, p) in
a table.

Nodes Edges

s (s, p)

Consider the conservation constraint for node p, the other endpoint of
edge (s, p):

xp,s + xp,t − xs,p = 0.

The flow on xs,p is fractional but the RHS of the above equation is integral
(in this case, 0), and hence there must be another edge with fractional flow
incident on p (i.e. with p as an endpoint). Indeed, there is such an edge, in
particular, edge (p, t). Add p and (p, t) to the table:

Nodes Edges

s (s, p)
p (p, t)

Consider the conservation constraint for t, the other endpoint of (p, t):

−xr,t − xp,t = −1.

Again, we already know that edge (p, t) has fractional flow. The RHS is
again integral, and hence there must be another edge incident on t which
has fractional flow. Indeed, such an edge exists, and is (r, t). We will add t
and (r, t) to our table:

Nodes Edges

s (s, p)
p (p, t)
t (r, t)

Consider the conservation constraint for r, the other endpoint of (r, t):

xr,t − xq,r = 0.

Again, the RHS is integral, and we have already identified xr,t as fractional.
Hence, another edge incident on r must have fractional flow. In this case,
(q, r) is such an edge. We add r and (q, r) to the table:
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Nodes Edges

s (s, p)
p (p, t)
t (r, t)
r (q, r)

Consider the other endpoint of (q, r), i.e. q. The conservation constraint
for q is:

xq,r + xq,s − xs,q = 0.

Again, the RHS is integral, and we have already identified (q, r) as an edge
that has fractional flow. Hence, another edge incident on q must have frac-
tional flow. In this case, (s, q) is such an edge; we add this edge to our table
along with node q:

Nodes Edges

s (s, p)
p (p, t)
t (r, t)
r (q, r)
q (s, q)

There is of course a point to this tedious repetition, and it is time to get
to the punch line. The other endpoint of (s, q) is s, which is already in the
table. We have cycled back. Whenever the demands are integral, we will be
able to cycle in this fashion, which is the first step in the general proof.

Our cycle is (s, p, t, r, q, s). Notice that some of the edges we identified
in the table go along this cycle, and some go against. But none of the edges
in the table is at capacity (since the flows on these edges are all fractional)
and none of the edges has 0 flow (again, since all the flows are fractional).
Hence, for each of these edges, there is some small amount by which the
flows can be increased and decreased freely without violating the capacity
or non-negativity constraints. This is the second step in the general proof.
Observe that the first step crucially used the fact that demands are integral,
while the second crucially uses the fact that capacities are integral. In this
example, the amount by which the flow on any edge in the table can be
increased or decreased freely is 0.5, but this amount may be different for
other examples. Choose any amount smaller than this number; in this case
let us choose 0.1.

Let us send additional flow of 0.1 along this cycle (i.e. increase flow by
0.1 on the edges in the table that go along this cycle and decrease flow by
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0.1 on edges that go against.) This gives the solution in figure 4(a). This
must also satisfy the conservation constraints since the IN and OUT flows
of each node on the cycle are increased by the same amount. Remember
that we already ensured that the capacity and non-negativity constraints
are satisfied as well, and hence this new solution is also feasible. Now send
a flow of 0.1 against the cycle to obtain the feasible solution in figure 4(b).
The average of these two new feasible solutions gives us the original fraction
solution from figure 3 and hence the solution in figure 3 can not be basic
feasible. This is the third step in the general proof.

(a) (b)

Figure 4: (a) Sending flow along the cycle (s, p, t, r, q, s). (b) Sending flow
against the cycle (s, p, t, r, q, s).

We can always follow these three steps to prove theorem 7.5 in gen-
eral. This theorem also has interesting corollaries about shortest paths and
matchings, since we already showed that these problems can be reduced to
minimum cost flow.

Corollary 7.6 Any basic feasible solution to the maximum compatibility
matching problem must be integral.

Corollary 7.7 Any basic feasible solution to the shortest path problem must
be integral.

In fact, basic feasible solutions to the shortest path problem have a very nice
structure if the capacities u are set to ∞: any simple path (i.e. no cycles)
from s to t is a basic feasible solution, and these are the only basic feasible
solutions. With capacities set to ∞, if there is a cycle of edges of negative
cost, then there is no optimum solution (since sending infinite flow around
that cycle results in cost −∞); in all other cases, if there is a path from s
to t, commercial solvers such as Excel will return a simple path.

If the goal is to find a negative cost cycle in a graph (eg. for some
arbitrage purposes) then set all demands to 0, all capacities to 1, and solve
the minimum cost flow problem. If the optimum solution value is 0, then
there is no negative cost cycle. If the optimum solution value is -ve, there
is a negative cost cycle and the solution returned by the LP can be used to
deduce such a cycle (the cycle will be composed of edges with xv,w = 1).
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Exercise 7.8 Suppose you are given a variant of the minimum cost flow
problem where there is a lower bound lv,w on the flow on edge (v, w) as well
as an upper bound uv,w, i.e. we have constraints xv,w ≥ lv,w along with the
standard constraints xv,w ≤ uv,w. When can we claim that all basic feasible
solutions are integral?

Example 7.9 Consider the problem where we are given a graph G = (V,E),
success probabilities pv,w on each edge (v, w), a source vertex s and a destina-
tion vertex t. Assume edge successes are independent. A path is successful if
all the edges on the path are successful. Accordingly, the success probability,
or the reliability, of a path (or a route) R is∏

(v,w)∈R
pv,w.

The goal is to find the most reliable route from s to t. Assume all probabilities
are between 0 and 1.

Since ln is an increasing function7, maximizing the objective∏
(v,w)∈R

pv,w

gives the same route R as maximizing the objective

ln

 ∏
(v,w)∈R

pv,w

 .
By using the property that lnxy = lnx + ln y, it is equivalent to maximize
the objective ∑

(v,w)∈R
(ln pv,w) ,

or, to minimize the objective ∑
(v,w)∈R

(− ln pv,w) .

This last objective function is just the shortest path objective with cost
cv,w = − ln pv,w. Thus, we can solve the most reliable path problem by

7The function ln(a), or the natural logarithm of a, is the number b such that a = eb.
We have ln 1 = 0; ln 0 = −∞; lnxy = lnx + ln y.
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solving a shortest path problem using − ln pv,w as the cost of edge (v, w).
Since pv,w ≤ 1, we have ln pv,w ≤ 0, or, − ln pv,w ≥ 0. Hence the edge costs
in the new shortest path problem are non-negative, and we will not get any
-ve cycles. Thus, as long there is a path from s to t, solving the resulting
shortest path problem as an LP (with u = either ∞ or 1) will give a simple
path as an optimum solution (assuming we use a typical commercial solver).

7.4 Max-flow

Consider a graph G = (V,E) which has two special vertices s and t. Every
edge has a capacity (but no cost). Instead of having demands on nodes, the
goal is to send as much flow from s to t as possible, while respecting the
capacity constraints. This is known as the max-flow problem, and has many
applications. In order to model this as an LP, we use the same decision
variables as for the min-cost-flow problem. The capacity constraints are the
same as before:

∀(v, w) ∈ E : xv,w ≤ uv,w,

and all variables are non-zero:

x ≥ 0.

No node other than s or t can either produce or consume flow, so we have
the following flow conservation constraints for all nodes v other than s and
t:

∀v ∈ V − {s, t} : OUTx(v)− INx(v) = 0.

The goal is to maximize the net flow out of s, which must be the same as
the net flow into t since all other nodes can not supply or consume flow.
Hence, the objective function is:

maximize INx(t)−OUTx(t),

which completes the LP formulation.
There is an interesting way to reduce max-flow to min-cost-flow. Keep

the demands of all nodes as 0. Add a new edge from t to s and set its
capacity to be infinite, and cost −1. For all the original edges in the graph
G, keep the original capacity, and set the cost to 0. Since the new edge (t, s)
has a cost of -1, and all other edges have a cost of 0, the objective function
of the min-cost-flow problem is equivalent to maximizing the flow on edge
(t, s). Since the demands are 0, any flow on the edge (t, s) must then be
shipped from s to t through the original network to satisfy the conservation
constraints; this is the original max-flow objective.
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This allows us to claim that if all the edge capacities are integral, then
all basic feasible solutions to a max-flow-problem are integral.

Exercise 7.10 Suppose there are k special nodes s1, s2, . . . , sk in a graph
and j other special nodes t1, t2, . . . , tj. The goal is to maximize the total
flow going from the nodes s1, . . . , sk to t1, . . . , tj. How will you model this
as a standard max-flow problem with only one source node and only one
terminal node?

8 Duality

Duality is a central concept in the theory of optimization. Duals of linear
programs play an important role in understanding, using, and solving linear
programs. Details are in VRM4; in this section, we will merely provide
additional illustrative examples.

8.1 The knapsack problem revisited: duality

Suppose a crime syndicate wants to buy out the thief. They offer to pay
the thief a price y1 for the gold, a price y2 for the diamonds, a price y3 for
the silver, and a price y4 per lb for the knapsack8. But the thief can use 2
lbs of knapsack capacity and all her gold to generate a profit of 5 units, so
2y4 + y1 should be at least 5. Similarly, 3y4 + y2 ≥ 20 and 4y4 + y3 ≥ 3.
The syndicate would like to minimize the total price it pays, i.e. minimize
y1+y2+y3+4y4. Also, the prices should be non-negative, otherwise the thief
will hold on to that resource (gold, diamond, silver, or knapsack capacity).
This gives us the following LP which the syndicate can use to decide the
minimum price:

minimize y1 + y2 + y3 + 4y4

subject to:

y1 + 2y4 ≥ 5
y2 + 3y4 ≥ 20

y3 + 4y4 ≥ 3
y ≥ 0.

8The Excel spreadsheet names the variables a little differently, with y1 being the price
for knapsack capacity.
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Try solving this linear program in Excel. It turns out that y = 〈0, 12.5, 0, 2.5〉
is an optimum solution, giving an optimum value of 22.5, or, the same as
the optimum value of the previous LP.

In retrospect, the connection is not really surprising. What is the min-
imum total price the thief would settle for? Clearly 22.5, since this is how
much the thief can make by filling her knapsack and walking away from any
deal being offered by the syndicate. This is an example of duality. The
variables y1, y2, y3, y4 are called dual variables or dual prices. Duality is a
very important concept in economics; in fact prices in the real world can
often best be understood as dual variables.

Recall that N is the number of goods, which gave N variables and N +1
constraints in the original LP formulation of the general knapsack problem.
Hence, the dual of the knapsack problem has N+1 variables y1, y2, . . . yN+1,
and N constraints labeled x1, x2, . . . , xN . The dual is:

minimize

(
N∑
i=1

yi

)
+WyN+1

subject to:

∀i ∈ {1, . . . , N} : yi + wiyN+1 ≥ vi
y ≥ 0.

8.2 Dual prices as sensitivities

Try increasing the knapsack capacity by 0.1 in the above knapsack example.
The optimum solution changes from 22.5 to 22.75. The ratio of change in
the optimum solution to a very small (i.e., infinitesimally small) change in
the right hand side of a constraint (assuming all the variables are to the
left and the constant term is on the right) is known as the sensitivity. In
this case, the sensitivity to knapsack capacity is (22.75 − 22.5)/0.1 = 2.5.
This is not surprising, since any extra knapsack capacity (assuming the
extra amount is small) is used for additional gold. Since gold weighs 2lbs,
additional capacity used for gold gives us an additional profit of $2.5 per
unit of knapsack capacity.

What is surprising is that the dual variable y4 corresponding to the
knapsack capacity constraint has value 2.5. In general, a dual variable’s
value in an optimum dual solution is equal to the sensitivity of the primal
to the corresponding constraint in the primal. In order to understand this,
consider a primal linear program in standard form:

maximize cT · x
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subject to:

Ax ≤ b
x ≥ 0

and its dual:

minimize bT · y
subject to:

AT y ≥ c
y ≥ 0.

Assume for simplicity that the primal and the dual both have unique
optimum solutions. Focus on the optimum solution (say y∗) for the dual.
Since the optimum solution is unique, it must be a basic feasible solution.
Imagine changing the right hand side of the i-th constraint in the primal
slightly: i.e. suppose bi is changed to bi + δi where δi is infinitesimally
small. For the dual, this only changes the objective function (since the bi’s
only occur in the objective function in the dual) and hence does not impact
the set of basic feasible solutions. For an infinitesimally small change in
the objective, the same basic feasible solution will still remain optimum9.
Hence, the change in the optimum objective value for the dual will be δiy

∗
i .

By strong duality, this will also be the change in the primal. Hence, the
sensitivity of the primal to the i-th constraint is δiy

∗
i /δi = y∗i .

If you solve a linear program using Excel, you get a sheet called “sensi-
tivity”: these are essentially the dual variables. Thus, we now have another
concrete connection between the primal and the dual. This Excel sheet also
has a “range”. As we change the right hand side of a constraint, we are also
changing the dual objective function, and when this change is large enough,
some other basic feasible solution could become optimum. At this point,
the sensitivities of the primal will change; the “range” gives the maximum
amount by which we can change the right hand side of a constraint without
changing the corresponding dual solution and hence the sensitivities.

If the dual has multiple optimum basic feasible solutions, at least one of
the ranges will be 0, and you should interpret the sensitivities (or shadow
prices as they are sometimes called) with caution. For an illustrative exam-
ple, see the sensitivity report you obtain when you set the knapsack capacity
to 5 in the above problem and then solve the primal.

9Since y∗ is the unique optimum solution, it must be better than all other basic feasible
solutions by at least some small positive amount, and an infinitesimally small change in
the objective can not make another basic feasible solution optimum.
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8.3 The dual of the shortest path problem

Consider a linear program of the form:

minimize cT · x
subject to:

Ax = b
x ≥ 0.

Suppose the LP has K constraints and J variables. We will reduce this to
the standard primal form, take the dual, and simplify. We have had some
practice reducing LPs to standard form, so we will go this through quickly.
Define

E =

(
A
−A

)
, f =

(
b
−b

)
, and g = −c.

Now the LP becomes

−maximize gT · x
subject to:

Ex ≤ f
x ≥ 0.

We now have 2K constraints and J variables, and the dual is

−minimize fT · z
subject to:

ET z ≥ g
z ≥ 0.

The dual has 2K variables, z1, z . . . z2K . We will refer to the first K as
p1 . . . pK and the next K as q1 . . . qK . The constraint ET z ≥ g is now
equivalent to AT (p−q) ≥ g and the objective function fT z is now equivalent
to bT (p−q). Since p, q always occur together as p−q, we might as well define
a new set of variables y1, . . . , yK such that yi = qi − pi. While the variables
z, and hence the variables p, q, were constrained to be non-negative, the
variables y are unconstrained. Replacing fT z by bT (−y), ET z by AT · (−y),
g by −c and removing the non-negativity constraints, we have the following
equivalent dual LP:

−minimize cT · (−y)

subject to:

AT (−y) ≥ −b,
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which simplifies to:

maximize cT y

subject to:

AT y ≤ b.

What does all this have to do with the shortest path problem? Write
the shortest path problem as:

minimize
∑

(v,w)∈E cv,wxv,w
subject to:

∀v ∈ V − {s, t} : INx(v)−OUTx(v) = 0
INx(t)−OUTx(t) = 1
INx(s)−OUTx(s) = −1

x ≥ 0.

This linear program is now in the form with which we started this sub-
section, and hence we can read off its dual using the form that we derived.
The primal linear program has M variables, one for each edge (M is the
number of edges) and N constraints, one for each node. Its dual will have
M constraints (one for each edge) and N variables (one for each node). We
will label the variables in the dual as yv, where v ∈ V . The dual constraint
corresponding to edge (v, w) is simple: yw−yv ≤ cv,w. The objective function
is yt − ys. The dual is:

maximize yt − ys
subject to:

∀(v, w) ∈ E : yw − yv ≤ cv,w.

This is a starkly simple form! Let us interpret this informally. First, observe
that in the primal, the constraint IN(s)−OUT (s) = 0 is redundant, since it
can be obtained by adding all the other conservation constraints. Removing
this constraint from the primal is equivalent to setting ys = 0 in the dual,
which is what we will implicitly assume from now on. Now, suppose we
change the right hand side of the conservation constraint corresponding to
node v by an infinitesimally small amount δv. This is equivalent to saying
that the demand of node v has been increased by δv. How will this demand
get satisfied? Since there are no capacities in the primal, this demand will
get satisfied by sending flow from s to v along a shortest path from s to
v; this will incur a cost of δv times the cost of the shortest path from s
to v. Hence we expect the dual variables yv to represent the shortest path
distance between s and v.
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What about the constraints ∀(v, w) ∈ E : yw − yv ≤ cv,w? This cor-
responds to enforcing triangle inequality. If the shortest path length from
s to v is yv, then the shortest path length yw from s to w can be at most
yv + cv,w: having arrived at v, we need to pay at most cv,w extra to get to
w.

This dual linear program gives rise to the following simple algorithm for
finding shortest paths:

Ford’s algorithm

1. Set ys = 0 and all the other yv’s to ∞ (i.e. some very large number,
for example 1 +

∑
(v,w)∈E) |cv,w|)

2. while there exists an edge (v, w) such that yw > yv + cv,w set yw =
yv + cv,w.

The algorithm is guaranteed to terminate if there are no negative cost cycles.
An edge (v, w) such that yw > yv + cv,w is called a violated edge; fixing the
edge by setting yw = yv + cv,w is called relaxation. This is the canonical
algorithm used for most shortest path applications with the main variation
being in the method to decide which edge is relaxed when there are multiple
violated edges.

Exercise 8.1 Manually simulate Ford’s algorithm for the shortest path ex-
ample in figure 1.

Thus, we see how linear program duality can have a great impact in obtain-
ing efficient algorithms for important problems.

9 Dynamic Programming – a (very) brief intro-
duction

The term dynamic programming is used in multiple ways in optimization.
In this class, we will focus on a narrow chunk of dynamic programming,
where (a) The overall problem can be decomposed into a tractable number
of subproblems, and (b) Each subproblem can be solved efficiently if all
subproblems of smaller “size” have been solved. Part (a), which involves
only writing down notation and definitions, is by far the hardest part. Part
(b) usually follows, and once we have both parts (a) and (b), solving using
Excel or a programming language is generally trivial. We will illustrate
this technique for problems which can be solved using Excel (i.e. where the
subproblems are at most 2-dimensional).
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9.1 Longest Common Subsequence, aka, Are you a man or
a mouse?

The field of computational genomics involves looking at the human (or an-
other species’) genome as a sequence of A, C, T, G (the four DNA bases) and
using computation on these sequences to determine genetic functionality,
similarity between species, similarity between individuals, disease markers,
etc. It is a field which is revolutionizing biology, and dynamic programming
is a key technique.

Rather than survey the entire field, we will discuss a representative
problem called “Longest Common Subsequence”. Here we are given two
sequences of bases P = 〈p1, p2, . . . , pM 〉 and Q = 〈q1, q2, . . . , qN 〉, of lengths
M and N respectively. Remember that a sequence is different from a set in
that the bases are ordered, i.e. they occur in sequence.

A subsequence of a sequence is obtained by deleting an arbitrary num-
ber of elements from the sequence; the remaining elements form the sub-
sequence. The elements of a subsequence must be in the same order as
the original sequence, but need not be contiguous in the original sequence.
Also, the elements in a sequence need not be unique. Given the sequence
〈AAACCTTTAAGGGA〉 the following are all subsequences: 〈ACTG〉, 〈AATGGA〉,
〈TTT 〉, 〈〉, the last of these being the special sequence called the empty se-
quence, of length 0. But 〈TC〉 is not a subsequence. Our goal is to find the
length of the longest common subsequence of P and Q. This is clearly an
optimization problem: notice the term “longest”.

This problem is of key important to phylogeny, the branch of genomics/evolution
that attempts to make an evolution graph showing how species could have
evolved. Scientists use the longest common subsequence problem (and its
variants) to determine how similar current or archaeologically obtained genomes
of various species are, which allows them to deduce evolutionary distances
between species. Variants of this problem are also of great importance in
discovering genetic markers for disease, physical traits, and behavior. There
are several large supercomputer clusters whose main purpose is to run a tool
called BLAST which uses variants of the lcs problem to discover similarity
between genetic material.

Without further ado, we will proceed to step (a). We define L(i, j) to be
the length of the longest common subsequence between the first i elements
of P and the first j elements of Q. The first i elements of P will be denoted
P [1 . . . i] the first j elements of Q will be denoted Q[1 . . . j].

Notice that part (a) is very simple to write down, but very perplexing
to discover the first time you see a problem. At the same time, it can
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be very exhilarating to encounter a complex problem, just define the right
subproblems, and watch the problem solve itself, as this one will. We will
define L(0, j) = L(i, 0) = 0 for all i, j. The number we are interested in is
L(M,N).

Suppose P (i) = Q(j). If the last bases are the same, there is no ad-
vantage to not putting them both in the common subsequence, and we
have L(i, j) = 1 + L(i − 1, j − 1). If P (i) 6= Q(j) then every common
subsequence of P [1 . . . i] and Q[1 . . . j] must involve deleting either the i-th
element of P or the j-th element of Q (or both). Since we do not know
in advance which of the two will be deleted, we can simply set L(i, j) =
max{L(i − 1, j), L(i, j − 1)}, and we are done. Notice that to compute
L(i, j) we only need values of L with a smaller i or a smaller j so the “size”
requirement of part (b) is satisfied. To summarize:

1. Define L(i, 0) = L(0, j) = 0. This correspond to making an (M + 1)×
(N + 1) table in Excel and making the first row and the first column
0.

2. Fill the rest of the table using the formula

L(i, j) = 1 + L(i− 1, j − 1) if P (i) = Q(j)
= max{L(i− 1, j), L(i, j − 1)} other wise.

It is important to note that the above formula will only be used when
i ≥ 1 and j ≥ 1 and hence all the L values used have been previously
defined.

If your Excel tables are properly set up, the values P (i), Q(j), L(i−1, j), L(i, j−
1), L(i, j) are all easy to locate using Excel style addressing (using $’s to fix
the rows/columns where you look up P , Q). Just type in the above formula
in the cell corresponding to L(1, 1) and copy/paste the formula into the rest
of the table. Since the formula only refers to cells of a smaller “size” i.e.
smaller i or j, there will be no cyclic definitions and Excel will fill the whole
table. You can then read off the value of L(M,N). The Excel file lcs.xls
provides an example. It is clear that you can solve this problem easily in
any high level programming language. We will now see another interesting
application of lcs:

Example 9.1 You are given a sequence P of numbers. Find the largest
non-decreasing subsequence of P .

The above problem can be solved by sorting P ; let Q be the sorted sequence.
The lcs of P and Q solves the problem.
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