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Roadmap

• We are on module 2: Machine Learning
• Two major canonical problems:

• Regression: Already completed
• Used the Max-Min trick for absolute value
• Introduced Quadratic programming

• Binary Classification: Next
• Using the max-min trick
• Using quadratic programming

• Class goals after this:
• Comfortable with Basic LPs, Min-Max/Max-Min trick, 

Quadratic Programming
• Understand the optimization behind basic ML algorithms

• Discussion Point: Why study optimization when there are 
libraries available for all this?

2



Pattern Classification
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Examples

• Spam detection

• Face recognition

• Medical diagnosis
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Hyperplanes
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Hyperplanes
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Preview: ( x,α) will be the decision variables, and 

z will represent points in the data set

S = {z | x
T
z = α} where x ∈ ℜN , α ∈ ℜ



• A hyperplane defines two half spaces

• Goal
• Positive samples in first half space, Negative samples in 

second half space, nothing on the boundary
• This general classification technique is known as a 

Perceptron

Linear Separation of Data
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Linear Program for Separable Data
• Data

• Positive samples

• Negative samples

• Linear program

• What is wrong with this LP?
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Linear Program for Separable Data
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Linear Program for Separable Data
• Data

• Positive samples

• Negative samples

• Linear program

•
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Linear Program for Separable Data

• Why did we choose “1”? What would go wrong with 
another choice?

•
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What if Data is not Completely Separable
• Data

• Positive samples

• Negative samples

• Linear program

• But what penalty?
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Notation Clarification

• We will use the following terms:
• Violation

• Just the value of the LHS 
 

• This should be negative for the point to be “correctly classified”
• Can not minimize the “violation” directly, since we don’t want a point that is 

correctly classified to contribute a “negative amount” to the objective 
function

• If violation is positive, then the point is incorrectly classified and there 
should be a penalty 

• Penalty: This must be 0 when the violation is “negative”
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Inseparable Data

• Minimize number of misclassifications?
• That is, penalty = 1 if violation > 0 and 0 otherwise
• NP-complete 

• Another  natural penalty function: = violation when the 
violation is positive; zero otherwise (later: quadratic) 

• Penalty:                                         , 

• Objective:
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Inseparable Data
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Linear Program for Inseparable Data

• Introduce additional decision variables:

• Linear program
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Breast Cancer Diagnosis
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