Participatory Budgeting

Given any suggested alternate budget \mathbf{x} (e.g. the budget of the first voter), define sets
$A_{j}=$ set of all voters who want at least as much money for item j as x_{j}
$B_{j}=$ set of all voters who want strictly more money for item j than x_{j}
For any set of voters Q, let $p(Q)$ represent the total weight of the voters in Q. The test now becomes
$\exists \mathbf{?} \mathbf{p} \in S(\alpha, \beta)$ and $t \in R$ such that
$\forall \mathrm{j}: \mathrm{p}\left(\mathrm{A}_{\mathrm{j}}\right) \geq \mathrm{t} \geq \mathrm{p}\left(\mathrm{B}_{\mathrm{j}}\right)$
N voters, M items $\Rightarrow 2 M+2 N+1$ constraints, $N+1$ variables

