Participatory Budgeting

Given any suggested alternate budget \mathbf{x} (e.g. the budget of the first voter), define sets

 A_i = set of all voters who want at least as much money for item j as x_i

 B_i = set of all voters who want strictly more money for item j than x_i

For any set of voters Q, let p(Q) represent the total weight of the voters in Q. The test now becomes

$\exists ? \mathbf{p} \in S(\alpha, \beta)$ and $t \in R$ such that

 $\forall j: p(A_j) \ge t \ge p(B_j)$

N voters, M items \Rightarrow 2M+2N+1 constraints, N+1 variables